Detection of Abnormal Respiration from Multiple-Input Respiratory Signals
Abstract
:1. Introduction
2. Acquisition of Respiration Signals
- stable pose without any other activities,
- breathing with speaking activities, and
- breathing with small movements (walking or after exercise).
3. Detection of Existence of Abnormal Status
3.1. Case 1: Single Respiration Signal
3.2. Case 2: Multiple Respiration Signals
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Daw, W.; Kingshott, R.; Saatchi, R.; Burke, D.; Holloway, A.; Travis, J.; Evans, R.; Jones, A.; Hughes, B.; Elphick, H. Medical Devices for Measuring Respiratory Rate in Children: A Review. J. Adv. Biomed. Eng. Tech. 2016, 3, 21–27. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolo, A.; Lo Pesti, D.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-Based Methods for Measuring Respiratory Rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernjak, A.; Stefanovska, A. Importance of wavelet analysis in laser Doppler flowmetry time series. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 4064–4067. [Google Scholar]
- Yahya, O.; Faezipour, M. Automatic detection and classification of acoustic breathing cycles. In Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education, Bridgeport, CT, USA, 3–5 April 2014; pp. 1–5. [Google Scholar]
- Nam, Y.; Reyes, B.A.; Chon, K. Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset. IEEE J. Biomed. Health Inform. 2016, 20, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Dafna, E.; Rosenwein, T.; Tarasiuk, A.; Zigel, Y. Breathing rate estimation during sleep using audio signal analysis. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5981–5984. [Google Scholar]
- Al-khalidi, F.; Saatchi, R.; Burke, D.; Ephick, H.; Tan, S. Respiration rate monitoring methods: A review. Pediatr. Pulmonol. 2011, 46, 523–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janbakhshi, P.; Shanmsollahi, M.B. ECG-derived respiration estimation from single-lead ECG using gaussian process and phase space reconstruction methods. Biomed. Signal Process. Control 2018, 45, 80–90. [Google Scholar] [CrossRef]
- Kumarand, V.; Singh, G. Estimation of Respiration rate from ECG Using Canonical Components Analysis and Ensemble Empirical Mode Decomposition. Int. J. Bio-Sci. Bio-Tech. 2015, 7, 139–146. [Google Scholar]
- Tiinanen, S.; Noponen, K.; Tulppo, M.; Kiviniemi, A.; Seppänen, T. ECG-derived respiration methods: Adapted ICA and PCA. Med. Eng. Phys. 2015, 37, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Labate, D.; Foresta, F.L.; Occhiuto, G.; Morabito, F.C.; Lay-Ekuakille, A.; Vergallo, P. Empirical Mode Decomposition vs. Wavelet Decomposition for the Extraction of Respiratory Signal From Single-Channel ECG: A Comparison. IEEE Sens. J. 2014, 13, 2666–2674. [Google Scholar] [CrossRef]
- Chazal, P.; Sadr, N. Sleep apnoea classification using heart rate variability, ECG derived respiration and cardiopulmonary coupling parameters. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3203–3206. [Google Scholar]
- Lázaro, J.; Alcaine, A.; Romero, D.; Gil, E.; Laguna, P.; Pueyo, E.; Bailón, R. Electrocardiogram Derived Respiratory Rate from QRS Slopes and R-Wave Angle. Ann. Biomed. Eng. 2014, 42, 2072–2083. [Google Scholar] [CrossRef] [PubMed]
- Mirmohamadsadeghi, L.; Vesin, J.-M. Respiratory rate estimation from the ECG using an instantaneous frequency tracking algorithm. Biomed. Signal Process. Control 2014, 14, 66–72. [Google Scholar] [CrossRef]
- Krehel, M.; Schmid, M.; Rossi, R.M.; Boesel, L.F.; Bona, G.-L.; Scherer, L.J. An Optical Fibre-Based Sensor for Respiratory Monitoring. Sensors 2014, 14, 13088–13101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, S.D.; Kim, J.W.; Shin, H.S.; Youn, Y.H.; Lee, C.K.; Lee, M. Noncontact Respiration Rate Measurement System Using an Ultrasonic Proximity Sensor. IEEE Sens. J. 2010, 10, 1732–1739. [Google Scholar]
- Lee, Y.S.; Pathirana, P.N.; Steinfort, C.L.; Caelli, T. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar. J. Transl. Eng. Health Med. 2014, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Erden, F.; Alkar, A.Z.; Cetin, A.E. Contact-free measurement of respiratory rate using infrared and vibration sensors. Infrared. Phys. Technol. 2015, 73, 88–94. [Google Scholar] [CrossRef]
- Lee, Y.S.; Pathirana, P.N.; Evans, R.J.; Steinfort, C.L. Noncontact Detection and Analysis of Respiratory Function Using Microwave Doppler Radar. J. Sensors 2015, 2015, 1–14. [Google Scholar] [CrossRef]
- Sun, G.; Matsui, T. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5985–5988. [Google Scholar]
- Lee, Y.S.; Pathirana, P.N. Motion artefact separation in single channel Doppler radar respiration measurement. In Proceedings of the 2015 International Symposium on Bioelectronics and Bioinformatics (ISBB), Milan, Italy, 25–29 August 2015; pp. 79–82. [Google Scholar]
- Schaerer, J.; Fassi, A.; Riboldi, M.; Cerveri, P.; Baroni, G.; Sarrut, D. Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration. Phys. Med. Biol. 2012, 57, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Yang, Y.; Liu, C.; Tsow, F.; Yu, H.; Tao, N. Noncontact Monitoring Breathing Pattern, Exhalation Flow Rate and Pulse Transit Time. IEEE. Trans. Biomed. Eng. 2014, 61, 2760–2767. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Routray, A.; Mukherjee, R.; Shit, S. Infrared imaging based hyperventilation monitoring through respiration rate estimation. Infrared Phys. Technol. 2016, 77, 382–390. [Google Scholar] [CrossRef]
- Khan, F.; Leem, S.K.; Cho, S.H. Hand-Based Gesture Recognition for Vehicular Applications Using IR-UWB Radar. Sensors 2017, 17, 833. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cho, S. IR-UWB Radar Sensor for Human Gesture Recognition by Using Machine Learning. In Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, NSW, Australia, 12–14 December 2016; pp. 1246–1249. [Google Scholar]
- Novelda X4. Available online: www.xethru.com or https://www.xethru.com/x4-soc.html (accessed on 2 May 2020).
- Kim, S.-H.; Geem, Z.W.; Han, G.-T. A Novel Human Respiration Pattern Recognition Using Signals of Ultra-Wideband Radar Sensor. Sensors 2019, 19, 3340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, D.; Zhao, H.; Hong, H.; Zhu, X.; Li, C. Doppler radar-based human breathing patterns classification using Support Vector Machine. In Proceedings of the IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 456–459. [Google Scholar]
Normal () | Normal () |
Normal () | Abnormal () |
Abnormal () | Normal () |
Abnormal () | Abnormal () |
Components | Specification |
---|---|
Frequency | 4.1–10.3 GHz |
Bandwidth | 1.7–3.1 GHz |
TX peak power | −40 dBm/50 MHz |
TX min power | −60 dBm/MHz |
Power consumption | 180 mA |
Package | mm |
Motion range | 10 m |
Respiration range | 5 m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.O.; Lee, D. Detection of Abnormal Respiration from Multiple-Input Respiratory Signals. Sensors 2020, 20, 2977. https://doi.org/10.3390/s20102977
Kim JO, Lee D. Detection of Abnormal Respiration from Multiple-Input Respiratory Signals. Sensors. 2020; 20(10):2977. https://doi.org/10.3390/s20102977
Chicago/Turabian StyleKim, Ju O, and Deokwoo Lee. 2020. "Detection of Abnormal Respiration from Multiple-Input Respiratory Signals" Sensors 20, no. 10: 2977. https://doi.org/10.3390/s20102977
APA StyleKim, J. O., & Lee, D. (2020). Detection of Abnormal Respiration from Multiple-Input Respiratory Signals. Sensors, 20(10), 2977. https://doi.org/10.3390/s20102977