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Abstract: Geometric model fitting is a fundamental issue in computer vision, and the fitting accuracy
is affected by outliers. In order to eliminate the impact of the outliers, the inlier threshold or scale
estimator is usually adopted. However, a single inlier threshold cannot satisfy multiple models in the
data, and scale estimators with a certain noise distribution model work poorly in geometric model
fitting. It can be observed that the residuals of outliers are big for all true models in the data, which
makes the consensus of the outliers. Based on this observation, we propose a preference analysis
method based on residual histograms to study the outlier consensus for outlier detection in this paper.
We have found that the outlier consensus makes the outliers gather away from the inliers on the
designed residual histogram preference space, which is quite convenient to separate outliers from
inliers through linkage clustering. After the outliers are detected and removed, a linkage clustering
with permutation preference is introduced to segment the inliers. In addition, in order to make the
linkage clustering process stable and robust, an alternative sampling and clustering framework is
proposed in both the outlier detection and inlier segmentation processes. The experimental results
also show that the outlier detection scheme based on residual histogram preference can detect most of
the outliers in the data sets, and the fitting results are better than most of the state-of-the-art methods
in geometric multi-model fitting.

Keywords: geometric multi-model fitting; residual histogram; outlier detection; alternative sampling
and clustering

1. Introduction

Geometric model fitting attracts a lot of attention in the computer vision field, for example,
in image registration and stitching [1-3], structure from motion [4-6], visual positioning [7-9], object
recognition [10-12] and 3D reconstruction [13,14]. In image registration and stitching, geometric model
fitting is used to remove the outliers (wrong matches) and find a subset of reliable matches—the
inliers—which conform to a given geometric model. Then these correct matches are used to estimate
an accurate homography matrix. Structure from motion uses these reliable matches to recover the
pose. In contrast, in visual positioning, object recognition and 3D reconstruction, geometric model
fitting is used to estimate the model parameters. For example, in 3D reconstruction, robust model
fitting is used to estimate multiple rigid moving objects in order to initialize multi-body structure
from motion, or in the processing of 3D point clouds, where planar patches are fitted to produce
intermediate geometric interpretations.
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Geometric transformations are needed when two-view or multi-view images are considered,
but these images often contain noise and outliers, thus a robust geometric transformation is needed
to deal with these cases. It is well known that random sample consensus (RANSAC) [15] and its
variants [16] are commonly used to exclude the outliers, which are single geometric model fitting
methods and suitable for processing simple outliers and small noise levels. On the other hand,
the geometric multi-model fitting methods extended from the single-model fitting approaches such as
sequential RANSAC [17,18] and multi-RANSAC [19] usually fail when dealing with large amounts of
outliers and noise. The reason is the mutual interference of these multiple models. Hence a robust
multi-model fitting method should simultaneously extract multiple model instances.

So far, the most popular strategy for fitting multiple geometric models is preference analysis [20-32].
The multi-model fitting problem can be considered as a typical example of a chicken-and-egg
problem [29]: both the data-to-model assignments and model parameters are unavailable, but given a
solution of one sub-problem, the solution of the other can be easily derived. Hence, the preference
analysis-based method first generates a large number of hypotheses by sampling a minimum sample
set (MSS), and then performs preference analysis on the hypotheses residuals. The most classical
method, J-linkage [20,21,33], adopts the binarized conceptual preference of points, which binarizes
the residuals by inlier threshold, and introduces the Jaccard distance to conduct linkage clustering
of the point preferences, thus the inliers are segmented into different clusters. Similar to J-linkage,
T-linkage [22,24,25] uses relaxation of the binary preference function and the soft Tanimoto distance
to improve the conceptual preference in J-linkage for better clustering. Unlike the common “linkage
clustering with preference” strategy, robust preference analysis (RPA) [23,25] first represents the data
points in the conceptual space similar to J-linkage, and then performs robust principal component
analysis (PCA) and symmetric non-negative matrix factorization (NMF) to reduce the multi-model
fitting problem to many single-model fitting problems, which in turn are solved with a strategy
that resembles m-estimator sample consensus (MSAC) [34]. Because the outliers greatly affect the
hypotheses and thus also affect the preference, both J-linkage and T-linkage get rid of outliers by
means of an inlier threshold. On the other hand, kernel fitting (KF) [26] uses permutations as
preferences by sorting the residuals of the hypotheses, where the Mercer kernel is built to elicit
potential points belonging to a common structure and to remove the outliers. Since then permutation
preference had been widely used to represent the hypotheses or the data points for model fitting [27-32].
Furthermore, instead of the random cluster models, simulated annealing (SA-RCM) [32] organizes the
point preferences by permutation in a weighted graph, and the multi-model fitting task is stated as a
optimization problem based on graph cut, which has been widely used for model segmentation [35-39]
by combining the model error and smoothness of the points.

Because the fitting accuracy is seriously affected by the outliers, a series of scale estimation
techniques [40-44] have been proposed to estimate the inlier scale and automatically eliminate the
impact of outliers. Most of the scale estimator methods depend on a Gaussian distribution model:
k-th order scale estimator (KOSE) [40] assumes that the data do not include pseudo-outliers [45]
and the residuals of the inliers are Gaussian distributed; adaptive least k-th order scale estimator
(ALKS) [40] and modified selective statistical estimator (MSSE) [41] try to find the parameter k in KOSE
automatically; iterative k-th ordered scale estimator (IKOSE) [42,43] attempts to handle scale estimation
with pseudo-outliers with KOSE iteratively, which is quite sensitive to the parameter k. However, in
the geometric model fitting problem, the noise distribution is always extremely complicated, and more
or less deviation is caused by using Gaussian distribution, thus the scale estimators perform poorly in
geometric model fitting.

In geometric model fitting, generally the residuals of outliers to all the true models are big, which
presents the notion of a consensus of the outliers that will be highlighted when the proportion of good
hypotheses is big enough. However, few works have been proposed studying the outlier consensus
to exclude the outliers for robust fitting. Preference analysis methods like J-linkage and T-linkage
eliminate the impact of outliers by using an inlier threshold. Permutation preference doesn’t need an
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inlier threshold, but is very sensitive to outliers. The conceptual space in J-linkage is the binarization of
the residuals by inlier threshold, which extremely compresses the residual information and decreases
the differences of points belonging to the different models and thus leads to under-segmentation, while
T-linkage proposes a continuous relaxation of the binary to construct the preference set for linkage
clustering, which keeps the continuous residual information and the retains the differences of inliers
belonging to the same model, thus it results in over-segmentation.

The residual histograms for each data point have peaks corresponding to the true models because
hypotheses generated with random sampling tend to cluster around the true model (as presented
in Figure 1), which is used by residual histogram analysis (RHA) [46] to find modes in the data set.
When quantizing the residuals, the peaks corresponding to the true models in histogram will be
possibly transformed into one quantized value, while the flat areas corresponding to the quite different
residuals will be quantized to different values. As a result, by quantifying the residual histogram,
the differences of inliers belonging to the same model can be reduced and the differences of the points
belonging to different models can be maintained. Especially, since the residuals of outliers to all the
true models are bigger, the quantized values of outliers will tend to be bigger values corresponding
to true models. In this way; if the proportion of good hypotheses close to true models is big enough,
the residuals of outliers will share more common items to be bigger quantized values, which make the
outliers gather away from the inliers in residual histogram preference space.
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Figure 1. The X-axis represents the residual value, and the Y-axis represents the number of model
hypotheses votes. (a) The residual histogram of an inlier. Peak appear in bands with small residual
value, which is corresponding to the true model. (b) The residual histogram of an outlier. Most residual
values are large and there is no obvious peak in the whole band.

Therefore, in this paper we first introduce the residual histogram preference concept and compare
its performance for outlier consensus with other different preferences including the binarized conceptual
preference in J-linkage, the soft conceptual preference in T-linkage and the permutation preference.
Then the residual histogram preference is applied in the proposed multi-model fitting method for
detecting the outliers. After the outlier detection, an inlier segmentation process is carried out by
linkage clustering, but with the permutation preference [26,30,31,47] applied on the data set with
outliers removed. In order to reduce the instability of the sampling process and make the clustering
process robust, an alternative sampling and clustering framework is integrated for both outlier
detection process and inlier segmentation process, which involves alternately conducting random
sampling within each cluster sets, and linkage clustering with the preferences obtained from the
sampling hypotheses.

Hence, the contributions of this paper are three fold: (1) We propose a new preference analysis
method for geometric model fitting and compare the proposed residual histogram preference with
some current preferences like the binarized conceptual preference, the soft conceptual preference
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and the permutation preference. (2) Based on the residual histogram preference, we propose an
outlier detection strategy for geometric model fitting. (3) We introduce a framework for alternative
sampling and clustering in both the outlier detection and inlier segmentation for improving the stability
and accuracy.

The rest of this paper is organized as follows: In Section 2, we analyze the outlier consensus
in different preference spaces. In Section 3, we introduce the proposed multi-model fitting method
in detail. The experiments in geometric multi-model fitting, including multi-homography matrix
estimation and multi-fundamental matrix estimation, are presented in Section 4. Finally, we draw our
conclusions in Section 5.

2. Preference Analysis on Outlier Consensus

In multi-model fitting, outliers greatly affect the fitting accuracy, and inliers polluted by a few
outliers can make the fitting parameters far from the true result. As illustrated in Figure 2, the least
squares line fitting result is greatly influenced by outliers. With the increasing proportion of outliers,
the bias between the fitting result and the real model also increases. It can be seen from Figure 2a that
the fitted line model is very accurate when the data does not involve outliers. Therefore, in order to fit
correct model instances in the presence of outliers, the outliers in the data must be removed. In fact,
many geometric model fitting algorithms usually include some procedure for outlier removal.

o inlier
o e . *  outlier
Least Square

° inlier o inlier

Least Square 40 *  outiier 5| 40
M Least Square

a0 20 10 0 10 20 20 -30 20 -10 [ 10 20 30 -30 20 -10 0 10 20 30

(a) Outlier-free data. (b) Data includes 20% outliers. (c) Data includes 50% outliers.

Figure 2. Least squares line fitting results under different degree of outlier contamination.

Most of existing geometric multi-model fitting methods depend on an inlier threshold to exclude
the outliers, which make the fitting accuracy greatly reliant on the inlier threshold. Because the scales of
different models vary from each other, a single inlier threshold cannot satisfy all the models to exclude
the outliers, thus the single inlier threshold often works poorly in geometric multi-model fitting.

Some scale estimators (KOSE, ALKS, MSSE and IKOSE) consider the distribution of inliers as a
Gaussian model and try to find the inlier scale of each model in the data automatically, which successfully
makes the fitting process more adaptive and robust. However, the distribution of the inliers is extremely
complicated in geometric multi-model fitting, and the Gaussian model cannot fit the inlier distribution
well. Therefore, Gaussian-based scale estimators work poorly in geometric multi-model fitting with
non-Gaussian inlier distribution conditions.

Because outliers are not assigned to any of the true models, the residuals of outliers are bigger to
all the true models, which suggests using a consensus of the outliers. When the proportion of good
hypotheses is big enough after the sampling process, the residuals of outliers will share more common
items to have big values. However, the consensus of the outliers is not obviously presented in the
residual space. Because the scales of different models are different, the extent of the “big” values in
different models is also different. On the other hand, the pseudo-outliers will tend to be much closer
to the outliers in residual space, which also have many common items with big values. Currently
the preference of the data points, designed from the residuals like conceptual space in J-linkage or
soft conceptual space in T-linkage, can highlight the consensus of the outliers from the inliers or
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pseudo-outliers with the help of an inlier threshold. Permutation preference decreases the impact
of the inlier scale difference by sorting the residuals and getting a serial number as the preference
for data points, which also obviously represents the consensus of the outliers. Similarly, a residual
histogram is quite a good way to reduce the influence of inlier scale differences by quantizing the
residuals according to each model. Moreover, residual histograms can compress the residual according
to the histogram, and when used to present the consensus of the outliers, the difference of outliers
will be greatly compressed, thus it will make the outliers gather away from the inliers. We present the
detailed preference analysis on outlier consensus for residual histogram preference below.

2.1. Binarized Conceptual Preference in J-Linkage

Preference analysis-based method was first used in J-linkage [20], in which the consensus
set of each hypothesis is computed by collecting the points whose residual is lower than
inlier threshold. In this way each point can be seen as the preference set of the hypotheses
with the residuals less than inlier threshold. Given the data point set X = {x1,xp,---,xn},
the hypotheses set H = {hl, W2, b, WM } after the hypothesis generation, and the residual matrix
R= {rl,rz, el ,rM}, where 1/ = (1,4, 20 i rN,]-}T refers to the residuals of hypothesis
W to all the data points in X, N is the data number, and M is the number of hypotheses. Then the
conceptual space S in J-linkage is the binarization of residual matrix R by an inlier threshold ¥ given by:

1 Ti,j <9
Sij= (1)

0 othersize

where 9 is the inlier threshold used to determine whether a point is inlier. Then the conceptual
representation S; = [S;1,S;2,-**,Sij, SilM]T of point x; indicates which model point x; prefers, thus
making the conceptual preference of point x;. The preference set can be defined by PS; = { j(Sil j=1 },
which represents the hypotheses set of point x; preference. And the Jaccard distance is proposed to
measure the distance d;(i, j) between preference set PS; and PS;:

o |PSiUPSj|—|PSiﬁPS]'|
dj(i,j) = PS,UPS, : @

The conceptual space in J-linkage can be considered as {0, 1}H = {(j) :H — {0, 1}}, and points
belonging to the same structure have similar conceptual representations, thus making the linkage
clustering effective to segment the inliers. While for the outliers, whose residuals are bigger to all the
true models, when the proportion of good hypothesis is high enough, the conceptual preference of
outliers will share more common items to be zero, which will make the outliers aggregately distribute
away from the inliers on conceptual preference space.

2.2. Soft Conceptual Preference in T-Linkage

Unlike the binarized conceptual space in J-linkage, T-linkage [22] introduces a relaxation of the
binary representation by preference function, which allows the preferences of a point integrating more
specific information on residuals. The preference function of point x; is defined by:

—V,', ] / T

e rij <57

¢ij = 3)

0 Tij 2 5t
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where the time constant 7 plays the same role of the inlier threshold 9 in Equation (1). Then the soft
conceptual preference of point x; is defined by ¢; = [¢;1, Pi2, -+, i+, Pim] T, each element in ;i
represents the conversion of the residual 7; ; through Equation (3), where 7; ; is the residual of point x;
to hypothesis j. The distance between two soft conceptual preference ¢; and ¢; is defined as Tanimoto
distance as follows:

(90 07)
il + 1 — (bi, ;)

where the notation (-, -) indicates the standard inner product, and || - || is the induced norm.

dr(i,j)=1- 4)

2.3. Permutation Preference

The permutation preferences are also extracted from the hypotheses residuals [29,47].
When calculating the permutation preference of point x;, we first sort the residuals of x; as

SRZ‘ = {1’1»’_[,'_
i
i
8T = \Tj|l
a top-k list rather than a full rankings list, i.e., T = [T’i, Té, e, T;'(], 1<k<m.

r iﬂi <

il <...< ri,rj- <<t }, and then the permutation preference of point x;

Fiah STy S S <<

}. In practice, the permutation preference is often used as

When comparing two points x; and x; with the corresponding permutation preferences 7' and 7/,
the Spearman footrule distance dr (i, j) [29,47] between preferences 7 and 7/ is computed as follows:

i)=Y |p(nt)-¢n )

netiuti
®)

i _ t o ifn==r1
W"”‘{ k+1 ifned

where 7 is the union of T’ and 7/. ¢(1, 7') equals t, which represents the position of an element in 7/
when element in 1 is also exist in /. Conversely, ¢(n, ') equals (k + 1), where k is the number of
elements in 7. Moreover, the preferences 7’ and 7/ are identical when dr (i, j) = 1, the preferences !
and 7/ are not identical when d(i, j) = 0.

2.4. Residual Histogram Preference

The residual histograms for each data point have quite significant features whose peaks correspond
to the true models because hypotheses generated with random sampling tend to cluster around the
true model, which was used by residual histogram analysis (RHA) [46] to find modes in the data set.
Usually the residual histograms of the inliers are skewed right, which is not in line with the outliers.
Equivalent with RHA, we introduce a more convenient residual histogram method for representing the
data points. The residual histogram preference namely conducts quantization on residuals R, and takes
the quantized value 51’, j for representation by:

j
~ | i min
qi,j_L/ j *9}

=r_.
max 'min

j (6)

Tmax = maX{Tl,j, T2, s Tijr e ,VN,]'}

i
Vimin — mln{rl,j/T’Z,j/‘" sTijjyeee ﬂ’N,j}
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where 0 refers to the quantization level. When using the quantized residuals to represent the hypotheses
or the data points, a valid quantization length A is needed to decrease the complexity of the residual
histogram preferences. Then the quantized value ﬁi, j is transformed as follows:

9ij = . (7)

We will introduce the selection principle on the quantization length A in detail in Section 4.
In this way, we can obtain the residual histogram matrix Q = [qlT, qg, e, q{l] The residual histogram
preference for data point x; is the ith row of Q, i.e., q; = [gi1,9i2,"** ,qij,*** ,9im]- When comparing
two residual histogram preferences g; and g, the distance measurement dyy (i, j) defined by:

Zi\il (f)(%,t/q]',t)

o B I ARC)) if max(p(qi), p(q;)) # 0
dw(i,j) =
1 else
1 ifqir=qj1qi: %0 (8)
©(qi i) =
0 else

M
pai) = L ® (s ir)

where ¢(g;t,q;+) = 1 when the quantized value g;+ between point x; and hypothesis ¢ is equal with g,
conversely, p(qit,qj+) = 0.

2.5. Comparison of the Four Preferences on Outlier Consensus

In the binarized conceptual preference in J-linkage, the residuals bigger than the inlier threshold
are set to 0 and the smaller are set to 1, the residuals of outliers are bigger for all the true models,
and when the proportion of the good hypotheses is high enough, the binarized conceptual preference
of the outliers will have more common items to be 0 with a proper inlier threshold. When projecting to
the binarized conceptual preference with the Jaccard distance, the outliers will gather together.

Similar to the binarized conceptual preference in J-linkage, the soft conceptual preference in
T-linkage cuts off the residuals bigger than the inlier threshold to 0, and the soft conceptual preference
of the outliers will have more common items to be 0 with a proper inlier threshold, thus the outliers
gather together in the soft conceptual preference space.

As for permutation preference, the residuals of outliers are bigger for all the true models and the
residuals of the inliers are small for the hypotheses close to true models, the top-k items of the outliers’
permutation preferences will share quite few common list with the inliers’, while outliers” permutation
preferences will more likely to have more common items with each other when using a proper
permutation length, thus the outliers gather away from the inliers in permutation preference space.

Because the residuals of outliers will be bigger for all the models in the data, the bigger residuals
will more likely tend to be close to A or 0 (Equation (7)) after quantization. In this way, the residual
histogram preferences of the outliers will tend to have more values with 0 or A, and when the
proportion of good hypotheses is high enough, most of the values in the residual histogram preferences
of the outliers will tend to be close to A or 0, whereas the corresponding inliers will have quite small
values. When projecting the data points into residual histogram preference space with the distance
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measurement in Equation (8), most of the outliers will present a concentrated distribution, and will be
far away from the inliers, thus the outliers are easy separated from the inliers.

As shown in Figure 3, the matched points between “Imagel” and “Image2” in “johnsona” for
homography estimation are presented in Figure 3a, in which the outliers (usually mismatched points)
are labeled by red circle. After sampling from the matched points, a great amount of homographies
can be calculated as the hypothesis models, and then the Sampson distance is used for calculating the
residuals, finally the preferences of the matched points can be obtained to transform the matched points
into preference space. The distribution of the matched points in binarized conceptual preference space,
soft conceptual preference space, permutation preference space and residual histogram preference
space are presented in Figure 3b—e, respectively, and the mismatched points as the outliers are labeled
with red color corresponding to Figure 3a.

2 /’;.‘—r. ; 7'-. “

(a) Mismatched points as the outliers for multi-homography estimation in “johnsona”.
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(c) Matched points in soft conceptual preference
space in T-linkage.

(b) Matched points in binarized conceptual
preference space in J-linkage.
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(d) Matched points in permutation preference
space.

Figure 3. The distribution of matched points for homography estimation in different preference spaces.

(e) Matched points in residual histogram
preference space.
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As shown in Figure 3b-e, outliers in these four preference spaces gather away from the inliers.
Although outliers in binarized conceptual preference space (Figure 3b) and soft conceptual preference
space (Figure 3c) are even more concentrated, both of these preferences need a proper inlier threshold,
and the outlier cluster is seriously mixed with inliers, while the outlier cluster in permutation preference
space (Figure 3d) seems pure, but it is more dispersed and the boundary line with the inliers are not
obvious. The outliers in residual histogram preference space (Figure 3e) are quite obviously separated
from the inliers, and only a few outliers are mixed in the inlier cluster, which makes the outlier detection
in the residual histogram preference space quite successful and always better than the other three
preference spaces.

3. Proposed Multi-Model Fitting

Because the outliers greatly affect the fitting accuracy, the proposed fitting method should detect
the outliers first, and then conduct inlier segmentation on the data without outliers. Hence our
proposed method consists of two main parts: outlier detection and inlier segmentation. As presented
in Section 2, the residual histogram preference shows great superiority in presenting the outliers’
consensus, so the outlier detection will be conducted on the residual histogram preference space.
In this section, we will first explain how the residual histogram preference is used to detect the outliers,
and then the inlier segmentation, which segments the inliers belonging to different models, will be
presented in detail.

3.1. Outlier Detection

As presented in Section 2, outlier consensus is well highlighted in residual histogram preference
space, and the outliers can be well separated in the residual histogram preference space. The outlier
detection is actually used to conduct outlier clustering in the residual histogram preference space.
Firstly, the points are transformed into the residual histogram preference space, and then a linkage
clustering method is proposed for clustering. Most of the time, the sampling process makes the result
unstable, an alternative sampling and clustering framework is adopted to make the result stable
by iterating the sampling and clustering processes. Also, this alternative framework can improve
the sampling and clustering results. The flowchart of the proposed outlier detection is presented in

Figure 4.

‘ Hypothesis sampling

Model hypotheses

‘ Residual histogram ‘

I

Residual histogram
preference

Inlier clusters

‘ Linkage clustering ‘

Outlier cluster and
inlier clusters

Outliers No

Yes
Outlier cluster

Figure 4. The flowchart of outlier detection.
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The proposed outlier detection method starts with a sampling process to generate enough
hypotheses, and then calculates the residuals to construct the preferences for the data points. Similar
to the sampling method in J-linkage [20], which gives neighboring points a higher probability to be
selected, the sampling process of the proposed method enhances the spatial correlation hypothesis that
neighboring points tend to be inliers for the same model, by directly selecting the MSS within a region.
Firstly, the data points are divided into several sub-regions by the Euclidean distance, and we then
conduct random sampling on each sub-region. In this way, inliers from the same structure will be
more likely to be selected to make up the MSS and the more good hypotheses will be generated.

After the hypothesis generation, residuals for each hypothesis will then be calculated and get the
residual matrix. The residual histogram preference for the data points can be obtained by method
presented in Section 2.4, which will be used for linkage clustering to cluster the outliers. For the linkage
cluster process, in each iteration, two points with the minimum residual histogram preference distance
are merged into a cluster, and we then update the distance using the single linkage method, with the
minimum distance of two elements as the distance of the two clusters. After the linkage clustering,
the data points will be segmented into several clusters. Because the residual histogram preferences of
the outliers will tend to have more large quantized values or a value of 0 (when the quantized value is
larger than the valid quantization length 1), we can determine whether a point is an outlier by the
outlier index & calculated as follows:

Tij i #0 ©)

ﬁi, i
A else

where g; ; € g;. q; is the residual histogram preference of point x; (Equation (7)). M is the number
of hypotheses. The bigger &; is, the more likely x; is an outlier. In order to determine whether the
cluster is the outlier cluster, the average outlier index of all the points &+ in the cluster ¢ is calculated
by Equation (10):

card{ct}
. Zk:l ék

t
= , X E€C 10
£ card{ct} ' * (19
where card{-} counts the number of points in cluster ¢. Finally, the cluster with the maximum average
outlier index is selected as the outlier cluster c©:
O _ t 4 _ )
¢’ =c, t=argmax, (17)

]

By the linkage clustering, most of the outliers in the data points will be detected, but because
of the random sampling process, the detected outliers will change slightly every time. In order to
decrease the change and further improve the outlier detection, an alternative sampling and clustering
framework is proposed to conduct sampling the hypotheses and then carry out linkage clustering
alternately, which make it possible to sampling the hypotheses in inlier clusters to further increase the
proportion of the good hypotheses, and in turn improve the preference for better linkage clustering.

As a result, the whole process for outlier detection is summarized here. Initially, we perform
the random sampling within the sub-regions, which are divided by the Euclidean space distance
of the data points, and the initial outlier cluster is detected by linkage clustering with the residual
histogram preference. Then, in turn, the inlier clusters obtained by the linkage clustering are regarded as
sub-regions for the random sampling to generate hypotheses and, in the same way, to perform linkage
clustering with the residual histogram preference to detect the outlier cluster. Thus, the sampling and
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clustering processes are iteratively conducted until the outlier cluster is unchanged. The details of the
algorithm are listed in Algorithm 1.

Algorithm 1 Outlier Detection

1: Divide X into m sub-regions D = {dl, az,..., d’”} by Euclidean space distance of the points, and initialize
outlier cluster ¢© = 0;

: Conduct random sampling on each sub-region and generate hypotheses H;

: Calculate the residual histogram preference matrix Q;

: Calculate the distance matrix dy, for the residual histogram preferences of points i and j;

: Conduct linkage clustering with distance and obtain clusters C = {cl, 2, C"};

N Ul = W N

: Calculate the outlier index & = [£a, &2, -+, &] for each cluster in C, and select the cluster with the maximum

outlier index as the outlier cluster c© = ¢f, t = argmax;é&j, inlier clusters CI = C-¢9;

7: If c© == €O, return c© as the outlier detection result; else ¢° = ¢©, D = C!, and return to step 2.

3.2. Inlier Segmentation

The outlier detection process usually makes it possible to detect most of the outliers in the data
set, and after removing the outliers from the data set, the inlier segmentation is carried out on the
remaining data set. The inlier segmentation process is conducted by using linkage clustering integrated
with the alternative sampling and clustering framework, similar to the outlier detection process.
However, during the linkage clustering, permutation preference [26,30,31,47] is used instead of residual
histogram preference. This is because permutation preference presents a better performance in practice
than residual histogram preference and conceptual preference in J-linkage or T-linkage when dealing
with data with few outliers (Figure 5).

Figure 5 shows points in four different kinds of preference spaces from “johnsonb” (from the
AdelaideRMF data set [28]) after outliers are removed. These preference spaces include the conceptual
preference space in J-linkage and T-linkage, and the residual histogram preference space and the
permutation preference space, where the data points belonging to different homography model inliers
are labeled with different colors. Figure 5b—d show that inliers for the model with a large inlier scale
(inliers for Homography 3, labeled with the blue circles) show a scattered distribution, but inliers for
the models with a smaller inlier scale (inliers for Homography 1, 4, 6) are covered by the other model
inliers, and inliers for models with different inlier scales are unevenly distributed in preference space.
Meanwhile, for the permutation preference in Figure 5e, inliers for models with both a large inlier scale
and a smaller scale show a concentrated distribution, and the inliers for the model with a smaller inlier
scale are not seriously covered by the larger ones in permutation preference space, which is beneficial
for extracting models with a smaller inlier scale.

Homography 1§
Homography 2
Homography 3 §i
Homography 4
Homography 5 §
Homography 6
Homography 7 {

£ 2

(a) Multi-homography matrix fitting data set “johnsonb” without outliers.

Figure 5. Cont.
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Figure 5. MDS (Multiple Dimensional Scaling) plots for “johnsonb” without outliers by using
different preferences.

The inlier segmentation follows the alternative sampling and clustering framework, as presented
in Figure 6. Similar to the inlier detection process, and the number of clusters is not limited to the
inliers and outliers but changed to the actual obtained clusters. In the same way, the initial hypotheses
are first generated by random sampling within sub-regions D = {dj,a?, e ,Jm} divided with the
Euclidean distance on data points X! = X — c© with outliers removed. The permutation preference
is then calculated for each point to carry out the linkage clustering and obtain the inlier clusters
¢ = {El, &2, ,ﬁﬁ}. In turn, the sub-regions are updated with the inlier clusters D = {51,52, .. ,Eﬁ},
and the hypotheses are generated on the updated sub-regions. This alternative sampling and clustering
framework iteratively conducted until the inlier clusters are almost unchanged. The details of the
algorithm are presented in Algorithm 2.

Algorithm 2 Inlier Segmentation

1: Divide X! into 1 sub-regions D= {671, [;2, e, an } by Euclidean space distance of the points, and initialize
inlier cluster CO = 0;

2: Conduct random sampling on each sub-region and generate hypotheses H;

3: Calculate the permutation preference matrix P;

4: Calculate the Spearman footrule distance matrix F for the permutation preferences of points i and j
Equation (5);

5: Conduct linkage clustering with distance F and obtain clusters c={a 2, ,Eﬁ}
E/

6:IfC == E, return C as the inlier segmentation result; else ¢=CD= E, and return to step 2.
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Figure 6. The flowchart of inlier segmentation.

4. Experiments

In this section, we describe the experiments undertaken in geometric multi-model fitting, including
multi-homography estimation and multi-fundamental matrix estimation, which are fundamental issues
in image stitching [48,49] and visual localization [50]. Comparisons on the segmentation accuracy
for real data with some of the state-of-the-art methods (PEARL [35], SA-RCM [32], J-linkage [20],
and T-linkage [22]) are made to present the characteristics of the proposed method, and the
corresponding outlier detection results are also given. The reason for choosing PEARL, J-linkage,
SA-RCM and T-linkage as the comparison is not only because they are all state-of-the-art methods,
but also because J-linkage and T-linkage are algorithms based on preference analysis, which is suitable
for a comparison with our proposed method. Both the multi-homography estimation experiment and
the multi-fundamental matrix estimation experiments were based on the AdelaideRMF [28] data set.
In addition to the fitting preference images, we also use the overall misclassification percentage (number
of misclassified points divided by the number of points in the data set) [51] to present the fitting
performance when dealing with the multi-homography and multi-fundamental matrix estimation.

4.1. Multi-Homography Estimation

Table 1 shows the misclassification results of the state-of-the-art methods and the proposed
method for multi-homography estimation, where the results of the other four methods were obtained
from [22]. It can be seen that the proposed method obtains the lowest misclassification result on most
of the data sets and obtains the third lowest rate on “oldclassicswing”, which is actually very close to
the lowest rate. The corresponding inlier segmentation preference results are presented in Figure 7,
in which the black dots represent the outliers detected in Section 3.1 and most of the inliers for the
different homography models can be segmented quite accurately. For the “johnsonb” data set, inliers
for all four models are segmented accurately, which occupy the majority of all the points, but the inliers
for models with a smaller inlier scale are easily mixed up and poorly segmented.

As a matter of fact, most of the multi-model fitting methods do not work well when dealing
with a data set such as “johnsonb”, which contains quite a lot of models with highly varied inlier
scales. This results in the sampling being uneven and the sampling rate on models with a smaller inlier
scale being too low for the preferences to present a consensus on the inliers. Although the sub-region
random sampling method can overcome the uneven sampling problem, the improvement is quite
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limited without the consideration of the distribution of the model inliers, which is quite difficult to
obtain without sampling and preference analysis or a priori knowledge. The alternative sampling and
clustering framework make it possible to sample the inlier clusters, but the performance is greatly
dependent on the initial inlier segmentation results.

Table 1. Misclassification (%) for the multi-homography estimation.

Methods PEARL J-Linkage T-Linkage SA-RCM Proposed
johnsona 4.02 5.07 4.02 5.90 2.41
johnsonb 18.18 18.33 18.33 17.95 6.16
ladysymon 5.49 9.25 5.06 7.17 211
neem 5.39 3.73 3.73 5.81 1.24
oldclassicswing 1.58 0.27 0.26 211 0.53
sene 0.80 0.84 0.40 0.80 0.40

o

5 Loty s
® Homography 1 F?
©® Homography 2 [§§
® Homography 3 j‘
S| Homography 4 L&

R T
Homography 1
Homography 2 i
Homography 3 &
Homography 4 (&
Homography 5 &
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Homography 7

(a) johnsona

[ \ Al
o A ® Homography 1 ¥ ‘| ® Homography 1
o ° [ ] [J Hc:nographyz ©® Homography 2

® Homography 3
7

(c) ladysymon

Figure 7. Cont.
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® Homography 1
©® Homography 2

(e) oldclassicswing (f) sene
Figure 7. Inlier segmentation results for the multi-homography estimation.

4.2. Multi-Fundamental Matrix Estimation

The misclassification results of the state-of-the-art methods and the proposed method for
multi-fundamental estimation are presented in Table 2, where the results of the other four methods
were obtained from [22]. The proposed method obtains the lowest misclassification error on all six
experimental data sets, and even obtains zero misclassification error on three of them. The corresponding
inlier segmentation preference results are presented in Figure 8, in which the black dots represent the
outliers detected in Section 3.1 and most of the inliers for the different fundamental matrix models can
be segmented quite accurately.

Overall, the proposed method works quite well in the multi-fundamental estimation experiment.
For the “dinobooks” data set, the proportion of outliers (43%) is very high, and eight points need
to be randomly selected every time to generate a fundamental matrix hypothesis, which results
in the proportion of good hypotheses being very low and seriously impacts the performance of
the preferences.

Table 2. Misclassification (%) for the multi-fundamental matrix estimation.

Methods PEARL J-Linkage T-Linkage SA-RCM Proposed
biscuitbookbox 4.25 1.55 1.54 7.40 0
breadcartoychips 5.91 11.26 3.37 4.81 0.84
breadcubechips 4.78 3.04 0.86 7.85 0
breadtoycar 6.63 5.49 421 3.82 0.60
carchipscube 11.82 4.27 1.81 11.75 0

dinobooks 14.72 17.11 9.44 8.03 6.94
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Figure 8. Inlier segmentation results for the multi-fundamental matrix estimation.

4.3. Outliers Detection

The outlier detection results are presented in Figure 9, in which the outliers detected from all
12 data sets for the multi-homography estimation and multi-fundamental matrix estimation are shown.
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The ratio of the number of detected outliers to the number of total outliers is also listed in Figure 9.
As can be seen from the outlier detection results, most of the outliers can be detected and with no
inliers mixed over all the data sets and all the ratios of detected outliers are higher than 87%.

700

I I I I I I
[l Detected outliers [l Total outliers Total points

600 [~ -
500 [~ -
400 [~ -

300 [~ -

Number of points

87.10%

100% 99.15%

100%

100 1-93.59% 100% 9756%  100%

91.03%

98.70%

AN
ok\“s" 10 hns"“baysv“m “ee\‘;‘\ ssicsW ‘\boﬁ‘a&wﬁw a§ ubec b‘:e dtOthm?sc\‘ % ¢ obook®

\o\S“’

Figure 9. Outlier detection results on individual sequence.

During the outlier detection process, the key parameters are quantization level 6 and quantization
length A, which have a great impact on the residual histogram preference for detecting outliers. In our
experiments, these two parameters were set to be same for all six data sets in the multi-homography
matrix estimation and multi-fundamental matrix estimation, respectively. In order to better distinguish
inliers and outliers, the quantization length A should set to a small value, which makes the residual
histogram preferences of the inliers contain more nonzero elements, while the outliers will contain
few non-zero elements. In the multi-homography matrix estimation, we set 0 = 20 and A = 1 for
all six data sets. In the multi-fundamental matrix estimation, the model becomes more complicated,
and 0 = 200 gave a good result in our experiments. In this paper, we define an outlier-inlier distance
(OID) to measure the difference between the inlier and the outlier, and use OID in analyzing the
parameter settings. We calculated the outlier-inlier distance (Equation (12)) for every combination
of 6 =1,10,20,---,1000, and A = 1,5,10,-- -, 0, and the results for all the data sets are presented in
Figure 10.
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a . .
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Figure 10. Cont.
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Figure 10. The impact of the quantization level and quantization length on the outlier detection.

Figure 10 shows the impact of the quantization level and quantization length on the outlier-inlier
distance (OID in Equation (12)). The left column shows the outlier points in the images. The middle
column shows the MDS plots for the data points in quantified residual preference space, where
the quantization level 6 = 20 and the quantization length A = 1 for the multi-homography matrix
estimation data (Figure 10a—) and 6 = 200 and A = 20 for the multi-fundamental matrix estimation
data (Figure 10d—f). The right column presents the OID change with quantization level 6 and
quantization length A, in which areas with a color closer to red refer to bigger outlier-inlier distances
and outliers that are more easily separated from the inliers.

It is clear that the change trends of OID are very close for the three multi-homography matrix
data sets, which are also similar for the three multi-fundamental matrix data sets. The biggest OIDs
for the multi-homography matrix data sets are near to the side where 0 = 20 and A = 1. Actually,
0 € [10,30] obtains a good detection result, and A at the minimum value was applied for all the data
sets in our experiments. Meanwhile, for the multi-fundamental matrix data sets, the biggest OIDs
arise along the x-axis, which means that the value of A needs to be small, and 6 € [1,1000]. However,
in the multi-fundamental matrix estimation experiments, when 6 is too small, the outliers will be too
dispersed to cluster into one group and, in practice, 6 € [100,800] can give a good result, and A € [10, 50
can still ensure the separability of the outliers. We define the outlier-inlier distance (OID) as follows:
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L,0¢0 ¥ x (P k)

OID = — card{CO}

(12)
P, x5) = IPMPS (x;) — PMPS (x; )|

here c© and ¢! refer to the outlier set and inlier set, and PMPS(x;) means the three-dimensional
coordinate of x; when projected in MDS space. Then ¥(x;, x;) is the distance of point x; and x;
in MDS space, x(x; k) refers the k-nearest inlier to point x; in MDS space, x(x;, k) = xlTk, where
Yxxk, ) S pxpxk,)) < - < (k) < -+ < P(xpnd ) is the ascending order of the distance from outlier
x; to all inliers C! = [xlﬁ,xgz, e ,xik, . ,xITn]. Then OID is the average distance of the k-th nearest

inlier distance for each outlier. In our experiments, the value of k was set to 20.

5. Conclusions

In this paper, a robust geometric multi-model fitting method has been proposed. Firstly, the outliers
in the data set are detected by means of linkage clustering with residual histogram preferences and
then the inlier segmentation process is carried out on the data with outliers removed through linkage
clustering, but permutation preferences are used in this stage, which shows superior performance for
data sets with outliers removed. In order to obtain a stable clustering result after the linkage clustering,
an alternative sampling and clustering framework is proposed in both the outlier detection and inlier
segmentation processes. The experimental results also show that the outlier detection method based
on residual histogram preference can successfully detect most of the outliers in the data. Overall,
the proposed model fitting method can separate the inliers for different models and outperforms the
state-of-the-art methods in geometric multi-model fitting.

In the future, the accuracy of proposed solution can be further improved by combining some
state-of-the-art methods such as those described in [52-55] to preprocess the data. Then we perform
model fitting based on the semantic information or classification results provided by these algorithms.
The fitting results could be applied in solving the real-world motion segmentation problem, just as the
work of [56]. Real image sequences data usually contain many outliers due to imperfections in data
acquisition and preprocessing. The proposed geometric model fitting method can remove outliers and
segment different motion models more accurately. The most important research direction following
this paper could be multimotion visual odometry [57] and simultaneous localization and mapping
(SLAM) [58] in dynamic scenes, where motion segmentation is a key step for separating the pixels
corresponding to the dynamic background and the moving objects.
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