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Abstract: Height detection of a low elevation angle target is crucial in radar applications. Due to
the presence of the multiple path reflections, elevation angle estimation is difficult with conventional
narrowband radar waveforms. The reflection ground area parameters are especially hard to obtain
for modeling. In this paper, we proposed a wideband, low elevation angle estimator based on range
super-resolution, achieving a high robustness to variations in reflection coefficients. A relaxation
(RELAX) algorithm was applied as the range super-resolution algorithm to separate the direct target
echo and the reflected signal thanks to the relatively abundant frequency diversity. The grazing
angle was obtained by synthesizing the steering vector of the direct signal and the range structure
relationship between the two signal components. Theoretical analysis and simulation results confirmed
the improved behavior of the proposed robust estimator in contrast to other conventional algorithms.

Keywords: low elevation; angle estimation; wideband radar; super-resolution

1. Introduction

Low elevation radar tracking has become an urgent and important issue since the 1970s [1,2].
A considerable amount of research has been devoted to this complex multipath problem [3–5]. The radar
signal travels from target to radar in direct and indirect paths. The indirect paths consist of specular
and diffuse components, where the former dominates in the case of a low grazing angle. It is difficult
to perform angle estimation when the elevation of the target is so low that the angular separation
between the direct signal and the specular reflection signal is less than 0.8 of an antenna beam width [6].
Here, the conventional mono-pulse radar fails to perform tracking due to its weak capacity to cope
with such closely spaced and correlated waveforms [7].

Many methodologies have been developed for tracking low elevation targets based on array
signal processing, and are mainly classified as subspace-based methods and maximum likelihood (ML)
estimators. Subspace-based methods are also called non-parametric methods, such as multiple signal
classification algorithm(MUSIC) and estimation of signal parameters via rotational invariant techniques
(ESPRIT) [8]. Generally, use of these methods can yield an angle resolution of less than one beam-width.
However, the snapshots are usually inadequate for a full rank covariance matrix in radar applications.
Meanwhile, the signal coherence may cause the covariance matrix to ill-condition. A spatial smoothing
technique can be used to mitigate this problem [9]. Unfortunately, this technique degrades the array
gain and resolution and introduces biases to the estimates. On the other hand, a parametric model
takes the height of the antenna, reflection coefficients and so on as a priori information, which works
with a few snapshots and correlated sources. A refined maximum likelihood (RML) technique has
been proposed based on a refined model [10]. This model combines the geometric information
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and physical parameters, such as the refractivity gradient, the reflection coefficient, and the divergence
factor [11]. Using this a priori information contributes to good performance. However, in practice,
the environmental parameters are difficult or even impossible to obtain. Vertical polarization, however,
is usually not recommended as an alternative in low-angle estimation for its relatively fluctuating
reflection coefficient both in amplitude and phase compared to horizontal polarization [12]. Differences
in surface coverage also perturb of the steering vector of the reflected wave. The uncertainty of
the model leads to estimator failure, which is highly undesirable. Many approaches, including carrying
out multiple iterations and approximations, have been proposed to solve this problem. Sparse Bayesian
learning has been used to estimate the perturbation and elevation angle iteratively [13,14]. A robust
maximum likelihood estimator involving the use of the minimax approach has been developed [15].
Alternatively, the projection gradient method has been used to estimate jointly the reflecting surface
height and target height [16]. Two approximate maximum likelihood algorithms have been proposed
for a joint estimation of the angle and Doppler in partially known additive noise [17].

The methodologies mentioned above have improved the quality of the estimations to various
extents. However, most of them suffer from being sensitive to the reflection coefficient, which needs
to be estimated in advance. Moreover, there are not many works on broadband low elevation angle
estimation. To achieve a suppression of grating lobes in low angle estimation, a noncoherent synthesis
method is extracted from multiple frequency points [18]. A frequency-agile algorithm using the RML
model and involving adaptively adjusting the operating frequency during target tracking has also
been developed. It can minimize the mean squared errors (MSEs) of the angle estimator [19]. However,
few of these works fully utilize the target information in the wideband multi-frequency signals.

In frequency diversity radar systems, the operating frequency is agile in a relatively wide frequency
band, bringing about good detection and countermeasures performance. For wideband angle detection,
the incoherent signal subspace method (ISSM) uses narrowband techniques on each frequency point,
and finally combines the results incoherently [20]. It is not an optimal solution since full usage of
the coherent signals is not achieved. The coherent signal subspace method (CSSM) [21] introduces a
focusing step before estimating the covariance matrix at every frequency bin. Decoherence of the signal
is achieved during focusing. Then, MUSIC is used on the entire focused narrowband covariance
matrix. Both rotational signal subspace (RSS) [22] and two-sided correlation transformation (TCT) [23]
are based on this focusing method, but they use two different ways to construct the focusing matrix.
Several preliminary angle estimates of the target are needed to form the steering matrix for the focus.

The difference between the range of the direct wave and that of the reflected wave is determined
geometrically from the target angle and the radar height, with this difference being small due to
the low elevation angle. Since the use of wideband radar can provide a higher range resolution,
a super-resolution algorithm was introduced here to further improve the range resolution. In this case,
it became feasible to extract the angle information from the range difference. Many super-resolution
methods have been used for image formation [24], and with some of them, like Capon and the amplitude
and phase estimator (APES) [25,26], the resolution levels are not significantly improved due to their
nonparametric nature. RELAX [27–29] was chosen in the current work as the super-resolution algorithm
with an extended range resolution, which can not only recover the amplitude and phase of the signal
in each element, but also effectively improve the performance for range estimation as an iterative
optimization algorithm similar to the greedy algorithm.

In order to use wideband radar to track a low elevation angle target, we proposed using an angle
estimation algorithm based on range super-resolution. The RELAX algorithm was used to further
improve the range resolution for low elevation angle tracking. The energy of the direct wave and that
of the reflected wave are separated in the distance dimension. Focus processing was performed on each
of the two waves respectively. The algorithm obtained the angle values by synthesizing the steering
vector of the direct wave and the range structure relationship between the two waves without any
reflection parameter estimation. Thus, this algorithm was found to be more robust to various ground
covers and more flexible for polarization waveform applications.
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The rest of the paper is organized as follows. In Section 2, the multipath propagation model is built.
In Section 3, the derivation of the multi-frequency refined maximum likelihood principle is described.
Based on the sensitivity of the reflection coefficient, a robust angle estimator is proposed based on
the range super-resolution for wideband radar systems. In Section 4, we analyze the parameter
selection and the performance of the algorithm, and in Section 5, simulation results are presented to
validate the proposed method.

2. Multipath Propagation Model

First, the multipath propagation models are discussed. The propagation of the electromagnetic
wave between radar and target is two-way, and this means that four distinct paths occur from
the transmitter antenna to the target and back to the array element. These four paths are composed of
the transmitting multipath and the receiving multipath. For the phased array radar system, the impact
of the transmitting multipath could be reduced by upturning the transmitting beam. The model in
this paper only considers the one-way beacon propagation model [1,2] from the target to the radar
to simplify analysis. Since the mechanisms of transmitting and receiving multipath are similar,
the model and the algorithm proposed in this paper can be extended to the two-way propagation
scenario. The geometries for the flat-Earth model and the curved-Earth model are illustrated in
Figure 1. The propagation medium was assumed to be linear, homogeneous, and isotropic within a
wide frequency band. Meanwhile, the target location is at a great distance from the receiving antenna
so that the direct and reflected signals can be considered as plane waves.
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Figure 1. The geometry of the multipath propagation model. (a) Flat-Earth model; (b) Curved-Earth 
model. 
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The reflected signals consist of the specular and the diffuse components. The specular component
is highly correlated with the direct wave and is usually referred to as the coherent part of the reflected
signal. The diffuse energy scattered from the irregular surface at random angles, which is the incoherent
part of the reflected signal. When the reflection area is relatively smooth, like an ocean or lake surface
with negligible wave disturbance, flat desert surfaces, and snow-covered terrains, the specular
component dominates. Although the diffuse reflection is omitted in this paper, it will be added to
the model in the next stage of research for complex terrain.

In the flat-Earth model shown in Figure 1a, the echo of the target would reach each element
along two paths. The reflection points of different array elements were distributed on the reflection
plane, which is grid marked. Here, it is assumed that there is only one reflected path from the target
for each array element. The diffuse component was treated as white Gaussian noise for simplicity.
The width of the area was related to the array size and the target angle. For the relatively low grazing
angles, the reflection point distribution area would be large. Such a result causes differences between
the reflection coefficients corresponding to each element.

A uniform linear array (ULA) was applied in the current work, as shown in Figure 1, which could
be generalized to non-ULA models as well. Based on the assumptions above, in the flat-Earth model,
the distance along the direct path between the nth array element and the target may be calculated
using the equation

RDn = RD1 − (n− 1)dsinθD (1)

where RD1 is the target range information obtained using acquisition mode, and the array consists of N
sensors, d is the distance between the two array elements, equaling to a half wavelength of the highest
frequency in the bandwidth. θD is the angle of incidence of the direct signal. The distance along
the reflected path between the nth array element and the target is

RRn = RR1 − (n− 1)dsinθR (2)

where θR is the incident angle of the reflected signal. Generally, the target is tens or hundreds of
kilometers away, and the height of the radar is much smaller than that of the target. The approximation

θD ≈ −θR (3)

can be made. The difference between these two paths was then derived, as shown in Appendix A, to be

∆Rn ≈ 2sinθD[HR + (n− 1)d] (4)

According to Equation (4), the path difference was determined from the array elements heights
and the grazing angle.

In the curved-Earth model, the Earth can be replaced by the tangent plane of the reflection point.
The difference between the two paths turns out to be:

∆Rn_C ≈ 2
HT_C

RDcosθD
[HR_C + (n− 1)d]≈ 2

(
HT −

R2
T

2RE

)
RDcosθD

[HR + (n− 1)d−
R2

A
2RE

] (5)

where RA and RT represent the distances along the curve from the reflection point to the array
and the target, respectively. They can be calculated iteratively by using Newton’s method [18] to solve
a cubic equation. RE is the imaginary Earth radius, which can be calculated from the real Earth radius
and the refractivity gradient, and HT_C is the virtual height of the target relative to the tangent plane.
The actual height can be calculated by Equation (5).

The discussion below was developed based on the flat-Earth model for simplicity.
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3. Wideband Multifrequency Low-Angle Estimation

3.1. Multifrequency Signal Equation

Assume that the entire bandwidth is B and the frequency spectrum interval is ∆f.
The wideband waveform consists of M frequency points uniformly distributed in the whole band,
giving the equation (M− 1)∆ f = B. It is essential that the subsequent angle estimation starts only after
a target is detected. Moreover, due to the target being at low altitudes, the effects of the antenna pattern
are not taken into account for the small grazing angle compared with the beam width. Meanwhile,
the propagation losses experienced by the direct and reflected waves are assumed to be identical for
the small range difference between them. Under these assumptions, the signal received by the nth
element at the mth frequency point can be written as

Smn = Aexp
{
− j2π

fm
c

RDn

}
+ Aρexp

{
− j2π

fm
c

RRn

}
+ nmn (6)

where A denotes the complex amplitude of the received signal from the direct path, ρ is the complex
reflection coefficient assumed to be same for all the reflected rays in a simplified model, fm represents
the mth frequency point, c is the light speed, and nmn is the zero-mean white complex Gaussian noise.
Furthermore, the noises for different frequencies and elements are assumed to be independent.

Using the vector/matrix form expressions

f =



f1
.
.

fm
.
.

fM



T

∈ C1×Md =



0
.
.

(n− 1)d
.
.

(N − 1)d


∈ CN×1N =


n11 · · · nM1

...
. . .

...
n1N · · · nMN

 ∈ CN×M

In the following, the grazing angle is abbreviated as θ. Then, Equation (6) can be rewritten in a
N ×M matrix form below

S = Aexp
{
− j2π(RD1 − dsinθ)

f
C

}
+ Aρexp

{
− j2π(RD1 + dsinθ+ 2HRsinθ)

f
C

}
+ N (7)

where HR is the radar height, while ρ is the reflection coefficient determined mainly from the Fresnel
reflection coefficient along with the surface roughness factor and the divergence factor [18]. Without
considering roughness and divergence impact, ρ in the X-band can be obtained by analytical
calculation [12]. Significantly different properties in the horizontal and vertical polarizations are shown
in Figure 2. Unlike horizontal polarization (marked with dots), which is shown not depend much on
grazing angle, the vertical polarization (marked with stars) changes significantly with changing grazing
angle, especially between 0 and 4 degrees. So, most researchers prefer using horizontal polarization in
low-angle estimation because of its relatively stable characteristics both in amplitude and phase, but it
also limits the application of the corresponding algorithms.
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The modulation term of the common steering vector in (7) can be expressed as
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− j4πsinθ(HR+d)f

C

}
= 1 + ρ− 2ρsin

(
2πsinθ(HR+d)f

C

)
e j(π2 −

2πsinθ(HR+d)f
C )

(8)

where
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is used to introduce a periodic modulation effect on the direct path signal, which leads to
a phase flip along the angle axis. The frequency of the periodic modulation consists of two factors,
namely the working frequency and the array element height, and thus the phase inversions of different
array elements, are not synchronized. The amplitude and phase of ρ determine the modulation depth
and additive phase respectively. Figure 3 demonstrates the effects of the modulation term on the single
array element at 300 MHz and 9 GHz. The modulation becomes obviously denser as the working
frequency is increased, and the resulting angular ambiguity will invalidate the phase division-based
beam splitting algorithm [6] at high frequencies.
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3.2. Refined ML Estimator

The refined ML estimator (RML) was used to determine target height by finding the maximum
correlation between the received array signals and the simulated signatures based on the highly
refined module in Section 3.1. This method constructs a noise-free signal um(θ) based on the model
above, incorporating specific propagation parameters, namely radar height, target range, the reflection
coefficient ρ, and the characteristics of the radar. The ML estimate of the angle is the one corresponding
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to the largest peak of the following equation. The maximum likelihood results between different
frequency points are directly accumulated, forming the basis of the final angle estimation [18].

θ̂ = arg max
θ

1∑M
m = 1

‖sm‖2
σ2

m

M∑
m = 1

‖sH
mum(θ)2‖

σ2
m‖um(θ)‖2

(9)

where ‖·‖2 denotes the Euclidean norm, which is the square root of the sum of squares.
Among all these parameters, ρ is most closely related to the estimator performance, however,

it is difficult to be estimated accurately with a small number of snapshots. In actual application
scenarios, the reflection coefficients according to the different array elements are not the same, so it

should be expressed by an N-element vector ρ =
[
ρ1 · · · ρn · · · ρN

]T
. An inconsistency between

the estimated value of ρ and the actual value is undesirable. This will cause the estimator to be biased
or even invalid.

3.3. Robust Estimator Based on Range Super Resolution

3.3.1. Range Compression Based on Super Resolution

The multi-frequency maximum likelihood algorithm only accumulates the maximum likelihood
function of each frequency point. However, expansion of the system bandwidth will effectively
enhance the range resolution. Relying on this improvement, it is possible to distinguish the direct wave
and reflected wave from the distance dimension. In order to further improve the range resolution, we
adopted the super-resolution algorithm which can maintain the amplitude and the phase. Combining
the array phase and the signal structure relationship of the direct and reflected paths, a low altitude
angle estimation algorithm is proposed based on range super-resolution.

By separating the phase portions changed with frequency from those fixed in each element,
the signal in Equation (7) in the nth element could be rewritten as follows

sn = AϕDn( fc,θ)·φDn
(
fB,θ

)
+ AρnϕRn( fc,θ)·φRn

(
fB,θ

)
+ nn (10)

where

ϕDn( fc,θ) = exp
{
− j2π(RD1 − ndsinθ)

fc
C

}
φDn

(
fB,θ

)
= exp

{
− j2π(RD1 − ndsinθ)

fB
C

}
ϕRn( fc,θ) = exp

{
− j2π(RD1 + ndsinθR + 2HRsinθ)

fc
C

}
φRn

(
fB,θ

)
= exp

{
− j2π(RD1 + ndsinθR + 2HRsinθ)

fB
C

}
In Equation (10), fc is the center of the bandwidth while fB = f − fc. ϕDn( fc,θ) and ϕRn( fc,θ)

only change with the array position, and they are the fixed phase portion in each element. Meanwhile,
φDn

(
fB,θ

)
and φRn

(
fB,θ

)
vary when the frequency points are altered, and its bandwidth can guarantee

the range information with the corresponding accuracy.
The Fourier transform is taken as an example to illustrate the range compression on each element,

due to the uniform distribution of the frequency points. We use the compressed signal expression

sF n = F {sn}

= AϕDn( fc,θ)·Bsinc
{

B
C ·[r− (RD1 − ndsinθ)]

}
+AρnϕRn( fc,θ)·Bsinc

{
B
C ·[r− (RD1 + ndsinθR + 2HRsinθ)]

}
+ nF n

(11)
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in which sinc() is the Fourier transform of the rectangular window in the frequency domain. It represents
the envelope of the pulse compression. After range pulse compression, the two sinc functions in sF n are
the range envelopes of the direct wave and the reflected wave. They include the range migration which
varies with the elevation angle and the element position. The remainder is the gain and the phase
in the angular dimension independent of the range compression. It can be noticed that the phase
difference between the array elements is only determined by the center frequency point fc, which no
longer corresponds to a wide frequency band.

Figure 4 demonstrates the magnitude of the range compression results based on the data received
by all of the array elements by performing fast Fourier transform (FFT). In Figure 4a, when the elevation
angle is 6◦, the direct and the reflected waves can be easily distinguished from the range-array (RA)
surface due to the relatively large difference between their ranges. At the same time, it can be observed
that the range migrates between the different array elements. So, the two lines formed by the range
peaks are inclined along the array element dimension, with opposite tilt angles. That is also consistent
with the wave propagation difference between the array elements. With increasing element position,
the direct wave range gets shorter while the reflected range turns longer. However, when the elevation
angle decreases to 1◦, the range peaks of the lower elements overlap, making it difficult to resolve
the two signals based on the range dimension. Simultaneously, the phases of the two range main lobes
also interfere with each other at the overlapping position.
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Therefore, in order to increase the angular resolution and extend the angular estimation
lower limit, the range resolution need to be further improved. Considering the fixed system
bandwidth, the super-resolution algorithm is adopted to complete the range compression. Considering
the utilization of phase information along the array elements for the elevation angle estimation
with the range information, the RELAX super-resolution algorithm is selected for its preservation of
amplitude and phase.

The RELAX algorithm is a nonlinear least-squares relaxation algorithm, which can solve
the parameter of the scattering model with fixed points. In the low elevation scenario, having
only one target within the range sampling gate, the number of the scattering points is set to 2, and only
the direct wave and the specular reflection wave will be recovered. The algorithm can also filter
the interferences from the other scattering paths. The idea of the program CLEAN, in particular its
iterative updating method, was introduced to solve the signal parameters [30].

The signal received by the nth array element is taken as an example to illustrate
the RELAX algorithm

sn = Ωa + en (12)
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in which
Ω = [$(r1),$(r2), · · · ,$(rK)],

$(rk) = [exp
{
j2πrk f1

}
, exp

{
j2πrk f2

}
, · · · , exp

{
j2πrk fM

}
],

a = [a1, a2, · · · , aK],

and en is the relaxed noise component.
The estimation of {r̂k1, r̂k2, âk1, âk2} can be obtained by minimizing the nonlinear least-squares

(NLS) expression
{r̂k1, r̂k2, âk1, âk2} = argmin

{ ˆrk1, ˆrk2, ˆak1, ˆak2}

‖sn −Ωa‖2. (13)

The generalized inverse of Ω is defined as Ω+ =
(
ΩHΩ

)−1
ΩH.

r̂k1 can be determined using the expression{
r̂1

k1

}
= argmin

{r̂k1}

‖sn −ΩΩ+sn‖2. (14)

Then, â1
k1 can be calculated by

a = Ω+sn (15)

Removing the estimated signal {r̂1
k1, â1

k1} from the original signal sn yields

s1
nk2 = sn − â1

k1$(r̂
1
k1) (16)

The first estimation of the second signal can be obtained according to the following formula

{r̂1
k2} = argmin

{r̂k2}

∥∥∥∥∥∥∥
I− $

(
r̂1

k1

)
$H

(
r̂1

k1

)
M

s1
nk2

∥∥∥∥∥∥∥
2

, (17)

and

â1
k2 =

$H
(
r̂1

k1

)
M

s1
nk2. (18)

The parameters of both signals can be updated alternately by iterating the previous two steps.
When ‖sg+1

nk2 − sg
nk2‖2/‖sg

nk2‖2 ≤ ε, the iteration can be stopped. The RELAX solution
{
r̂g

k1, âg
k1, r̂g

k2, âg
k2

}
can be outputted for further estimation. r̂g

k2 can be obtained by locating the dominant peak of

the ‖$H
(
r̂g

k1

)
sg

nk2‖2. FFT can be used to implement the matrix multiplication which occupies the major
calculation in the iteration. The number of FFT points is MNI, where NI is the multiple of the zero
paddings. It is generally assumed that when the resolution of MNI points FFT can reach twice
the expected accuracy, the reconstruction accuracy of RELAX can meet the requirements without
introducing an excessive calculation burden.

It can be clearly seen from Figure 5 that use of the super-resolution algorithms achieves a successful
separation of the two waves on the RA surface even for a low angle of 1◦. Since RELAX outputs sparse
results, there is no problem with the side lobes interference. RELAX shows a better performance by
utilizing the two targets prior assumption.
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3.3.2. The Robust Estimator

Range compression provides a signal-to-noise (SNR) ratio gain for the range peak position.
However, due to the broadband effect, the range peaks of different array elements shift according to
the elevation angle. Therefore, the signals of the two columns on the RA surface cannot be directly
used to extract ϕDn( fc,θ) and ϕRn( fc,θ). A calibration for the range migration is essential.

The calibration matrix
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𝒇𝐵

𝐶
(𝑅𝐷1)},  

𝝓𝒞𝐷𝑅𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 − 2𝑛𝑑𝑠𝑖𝑛𝜃)},  

𝝓𝒞𝑅𝐷𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 + 2𝐻𝑅𝑠𝑖𝑛𝜃 + 2𝑛𝑑𝑠𝑖𝑛𝜃)},  

𝝓𝒞𝑅𝑅𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 + 2𝐻𝑅𝑠𝑖𝑛𝜃)},  

and 𝒏𝒞𝐷𝑛 and 𝒏𝒞𝑅𝑛 are the noise vectors after calibration. 

As one of the two calibration results, 𝑺𝓒𝑫(𝜃)  achieves a decoupling of the angle and range 

information for the direct wave when the angle used for 𝓒(𝜃) is the same as the target angle. The 

calibration will not change the relationship between the ranges of the two waves. Correction of the 

direct wave range migration leads to the slope of the reflected wave being two times the slope of the 

original reflected wave. Despite this, in the range compressed RA signal, the two waves are separated 

in distance, and hence their interaction can be ignored. The angle and the range for the direct wave 

could be determined and investigated separately, a process also applicable to the reflected signal  

in 𝑺𝓒𝑹(𝜃). 

𝑹𝑨𝒞𝐷(𝜃) and 𝑹𝑨𝒞𝑅(𝜃) denote the output matrices of the super-resolution algorithms operating 

on 𝑺𝒞𝐷(𝜃) and 𝑺𝒞𝑅(𝜃), with 𝒓𝒂𝒞𝐷𝑟(𝜃) and 𝒓𝒂𝒞𝑅𝑟(𝜃) denote the column vectors these two matrices. 

𝑁𝐼 is the multiple of the range interpolation 

𝑹𝑨𝒞𝐷(𝜃) = [𝒓𝒂𝒞𝐷1(𝜃), 𝒓𝒂𝒞𝐷2(𝜃)⋯ , 𝒓𝒂𝒞𝐷𝑟(𝜃),⋯𝒓𝒂𝒞𝐷𝑀𝑁𝐼
(𝜃)], (24) 

𝑹𝑨𝒞𝑅(𝜃) = [𝒓𝒂𝒞𝑅1(𝜃), 𝒓𝒂𝒞𝑅2(𝜃)⋯ , 𝒓𝒂𝒞𝑅𝑟(𝜃),⋯𝒓𝒂𝒞𝑅𝑀𝑁𝐼
(𝜃)]. (25) 

The peak positions of the different array elements of the direct wave in 𝑹𝑨𝒞𝐷(𝜃) are aligned in 

range. The phases of each element can be directly extracted for angle estimation. Similarly, the phases 

of the reflected wave are also available in 𝑹𝑨𝒞𝑅(𝜃). 
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and 𝒏𝒞𝐷𝑛 and 𝒏𝒞𝑅𝑛 are the noise vectors after calibration. 

As one of the two calibration results, 𝑺𝓒𝑫(𝜃)  achieves a decoupling of the angle and range 

information for the direct wave when the angle used for 𝓒(𝜃) is the same as the target angle. The 

calibration will not change the relationship between the ranges of the two waves. Correction of the 

direct wave range migration leads to the slope of the reflected wave being two times the slope of the 

original reflected wave. Despite this, in the range compressed RA signal, the two waves are separated 

in distance, and hence their interaction can be ignored. The angle and the range for the direct wave 

could be determined and investigated separately, a process also applicable to the reflected signal  

in 𝑺𝓒𝑹(𝜃). 

𝑹𝑨𝒞𝐷(𝜃) and 𝑹𝑨𝒞𝑅(𝜃) denote the output matrices of the super-resolution algorithms operating 

on 𝑺𝒞𝐷(𝜃) and 𝑺𝒞𝑅(𝜃), with 𝒓𝒂𝒞𝐷𝑟(𝜃) and 𝒓𝒂𝒞𝑅𝑟(𝜃) denote the column vectors these two matrices. 

𝑁𝐼 is the multiple of the range interpolation 

𝑹𝑨𝒞𝐷(𝜃) = [𝒓𝒂𝒞𝐷1(𝜃), 𝒓𝒂𝒞𝐷2(𝜃)⋯ , 𝒓𝒂𝒞𝐷𝑟(𝜃),⋯𝒓𝒂𝒞𝐷𝑀𝑁𝐼
(𝜃)], (24) 

𝑹𝑨𝒞𝑅(𝜃) = [𝒓𝒂𝒞𝑅1(𝜃), 𝒓𝒂𝒞𝑅2(𝜃)⋯ , 𝒓𝒂𝒞𝑅𝑟(𝜃),⋯𝒓𝒂𝒞𝑅𝑀𝑁𝐼
(𝜃)]. (25) 

The peak positions of the different array elements of the direct wave in 𝑹𝑨𝒞𝐷(𝜃) are aligned in 

range. The phases of each element can be directly extracted for angle estimation. Similarly, the phases 

of the reflected wave are also available in 𝑹𝑨𝒞𝑅(𝜃). 

compensate for the range offset caused
by the distance between the array elements being dependent on the elevation angle. The calibration
essentially involved focusing the broadband frequency points on the center frequency. Since the angle

of the direct wave is opposite to that of the reflected wave,
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𝝓𝒞𝑅𝑅𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 + 2𝐻𝑅𝑠𝑖𝑛𝜃)},  

and 𝒏𝒞𝐷𝑛 and 𝒏𝒞𝑅𝑛 are the noise vectors after calibration. 

As one of the two calibration results, 𝑺𝓒𝑫(𝜃)  achieves a decoupling of the angle and range 

information for the direct wave when the angle used for 𝓒(𝜃) is the same as the target angle. The 

calibration will not change the relationship between the ranges of the two waves. Correction of the 

direct wave range migration leads to the slope of the reflected wave being two times the slope of the 

original reflected wave. Despite this, in the range compressed RA signal, the two waves are separated 

in distance, and hence their interaction can be ignored. The angle and the range for the direct wave 

could be determined and investigated separately, a process also applicable to the reflected signal  

in 𝑺𝓒𝑹(𝜃). 

𝑹𝑨𝒞𝐷(𝜃) and 𝑹𝑨𝒞𝑅(𝜃) denote the output matrices of the super-resolution algorithms operating 

on 𝑺𝒞𝐷(𝜃) and 𝑺𝒞𝑅(𝜃), with 𝒓𝒂𝒞𝐷𝑟(𝜃) and 𝒓𝒂𝒞𝑅𝑟(𝜃) denote the column vectors these two matrices. 

𝑁𝐼 is the multiple of the range interpolation 

𝑹𝑨𝒞𝐷(𝜃) = [𝒓𝒂𝒞𝐷1(𝜃), 𝒓𝒂𝒞𝐷2(𝜃)⋯ , 𝒓𝒂𝒞𝐷𝑟(𝜃),⋯𝒓𝒂𝒞𝐷𝑀𝑁𝐼
(𝜃)], (24) 

𝑹𝑨𝒞𝑅(𝜃) = [𝒓𝒂𝒞𝑅1(𝜃), 𝒓𝒂𝒞𝑅2(𝜃)⋯ , 𝒓𝒂𝒞𝑅𝑟(𝜃),⋯𝒓𝒂𝒞𝑅𝑀𝑁𝐼
(𝜃)]. (25) 

The peak positions of the different array elements of the direct wave in 𝑹𝑨𝒞𝐷(𝜃) are aligned in 

range. The phases of each element can be directly extracted for angle estimation. Similarly, the phases 

of the reflected wave are also available in 𝑹𝑨𝒞𝑅(𝜃). 

∗

. (21)

In these equations for range calibrations, ◦ presents the Hadamard product. The nth row vectors
in SCD(θ) and SCR(θ) could be expressed as

sCDn(θ) = AϕDn( fc,θ)·φCDDn
(
fB,θ

)
+ AρnϕRn( fc,θ)·φCDRn

(
fB,θ

)
+ nCDn (22)

and
sCRn(θ) = AϕDn( fc,θ)·φCRDn

(
fB,θ

)
+ AρnϕRn( fc,θ)·φCRRn( fB,θ) + nCRn (23)

where

φCDDn
(
fB,θ

)
= exp

{
− j2π

fB
C
(RD1)

}
,

φCDRn
(
fB,θ

)
= exp

{
− j2π

fB
C
(RD1 − 2ndsinθ)

}
,

φCRDn
(
fB,θ

)
= exp

{
− j2π

fB
C
(RD1 + 2HRsinθ+ 2ndsinθ)

}
,
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φCRRn
(
fB,θ

)
= exp

{
− j2π

fB
C
(RD1 + 2HRsinθ)

}
,

and nCDn and nCRn are the noise vectors after calibration.
As one of the two calibration results, SCD(θ) achieves a decoupling of the angle and range

information for the direct wave when the angle used for
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3.3.2. The Robust Estimator 

Range compression provides a signal-to-noise (SNR) ratio gain for the range peak position. 

However, due to the broadband effect, the range peaks of different array elements shift according to 

the elevation angle. Therefore, the signals of the two columns on the RA surface cannot be directly 

used to extract 𝜑𝐷𝑛(𝑓𝑐 , 𝜃) and 𝜑𝑅𝑛(𝑓𝑐 , 𝜃). A calibration for the range migration is essential. 

The calibration matrix 𝓒(𝜃) is constructed as follow 

𝓒(𝜃) =𝑗2𝜋
𝒅𝑠𝑖𝑛(𝜃)𝒇𝐵

𝐶 . (19) 

The complex exponential terms contained in matrix 𝓒(𝜃) compensate for the range offset caused 

by the distance between the array elements being dependent on the elevation angle. The calibration 

essentially involved focusing the broadband frequency points on the center frequency. Since the angle 

of the direct wave is opposite to that of the reflected wave, 𝓒(𝜃) and its conjugate matrix are used to 

complete the range calibrations for the direct wave and reflected wave, respectively 

𝑺𝒞𝐷(𝜃) = 𝑺 ∘ 𝓒(𝜃) (20) 

𝑺𝒞𝑅(𝜃) = 𝑺 ∘ 𝓒(𝜃)∗. (21) 

In these equations for range calibrations, ∘ presents the Hadamard product. The nth row vectors 

in 𝑺𝒞𝐷(𝜃) and 𝑺𝒞𝑅(𝜃) could be expressed as 

𝒔𝒞𝐷𝑛(𝜃) = 𝐴𝜑𝐷𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝐷𝐷𝑛(𝒇𝐵, 𝜃) + 𝐴𝜌𝑛𝜑𝑅𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝐷𝑅𝑛(𝒇𝐵, 𝜃) + 𝒏𝒞𝐷𝑛 (22) 

and 

𝒔𝒞𝑅𝑛(𝜃) = 𝐴𝜑𝐷𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝑅𝐷𝑛(𝒇𝐵, 𝜃) + 𝐴𝜌𝑛𝜑𝑅𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝑅𝑅𝑛(𝒇𝐵, 𝜃) + 𝒏𝒞𝑅𝑛 (23) 

where 

𝝓𝒞𝐷𝐷𝑛(𝒇𝐵, 𝜃) =  𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1)},  

𝝓𝒞𝐷𝑅𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 − 2𝑛𝑑𝑠𝑖𝑛𝜃)},  

𝝓𝒞𝑅𝐷𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 + 2𝐻𝑅𝑠𝑖𝑛𝜃 + 2𝑛𝑑𝑠𝑖𝑛𝜃)},  

𝝓𝒞𝑅𝑅𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 + 2𝐻𝑅𝑠𝑖𝑛𝜃)},  

and 𝒏𝒞𝐷𝑛 and 𝒏𝒞𝑅𝑛 are the noise vectors after calibration. 

As one of the two calibration results, 𝑺𝓒𝑫(𝜃)  achieves a decoupling of the angle and range 

information for the direct wave when the angle used for 𝓒(𝜃) is the same as the target angle. The 

calibration will not change the relationship between the ranges of the two waves. Correction of the 

direct wave range migration leads to the slope of the reflected wave being two times the slope of the 

original reflected wave. Despite this, in the range compressed RA signal, the two waves are separated 

in distance, and hence their interaction can be ignored. The angle and the range for the direct wave 

could be determined and investigated separately, a process also applicable to the reflected signal  

in 𝑺𝓒𝑹(𝜃). 

𝑹𝑨𝒞𝐷(𝜃) and 𝑹𝑨𝒞𝑅(𝜃) denote the output matrices of the super-resolution algorithms operating 

on 𝑺𝒞𝐷(𝜃) and 𝑺𝒞𝑅(𝜃), with 𝒓𝒂𝒞𝐷𝑟(𝜃) and 𝒓𝒂𝒞𝑅𝑟(𝜃) denote the column vectors these two matrices. 

𝑁𝐼 is the multiple of the range interpolation 

𝑹𝑨𝒞𝐷(𝜃) = [𝒓𝒂𝒞𝐷1(𝜃), 𝒓𝒂𝒞𝐷2(𝜃)⋯ , 𝒓𝒂𝒞𝐷𝑟(𝜃),⋯𝒓𝒂𝒞𝐷𝑀𝑁𝐼
(𝜃)], (24) 

𝑹𝑨𝒞𝑅(𝜃) = [𝒓𝒂𝒞𝑅1(𝜃), 𝒓𝒂𝒞𝑅2(𝜃)⋯ , 𝒓𝒂𝒞𝑅𝑟(𝜃),⋯𝒓𝒂𝒞𝑅𝑀𝑁𝐼
(𝜃)]. (25) 

The peak positions of the different array elements of the direct wave in 𝑹𝑨𝒞𝐷(𝜃) are aligned in 

range. The phases of each element can be directly extracted for angle estimation. Similarly, the phases 

of the reflected wave are also available in 𝑹𝑨𝒞𝑅(𝜃). 

is the same as the target angle.
The calibration will not change the relationship between the ranges of the two waves. Correction of
the direct wave range migration leads to the slope of the reflected wave being two times the slope
of the original reflected wave. Despite this, in the range compressed RA signal, the two waves are
separated in distance, and hence their interaction can be ignored. The angle and the range for the direct
wave could be determined and investigated separately, a process also applicable to the reflected signal
in SCR(θ).

RACD(θ) and RACR(θ) denote the output matrices of the super-resolution algorithms operating
on SCD(θ) and SCR(θ), with raCDr(θ) and raCRr(θ) denote the column vectors these two matrices.
NI is the multiple of the range interpolation

RACD(θ) =
[
raCD1(θ), raCD2(θ) · · · , raCDr(θ), · · · raCDMNI (θ)

]
, (24)

RACR(θ) =
[
raCR1(θ), raCR2(θ) · · · , raCRr(θ), · · · raCRMNI (θ)

]
. (25)

The peak positions of the different array elements of the direct wave in RACD(θ) are aligned in
range. The phases of each element can be directly extracted for angle estimation. Similarly, the phases
of the reflected wave are also available in RACR(θ).

To effectively integrate the angle information and the range relationship structure of the echo
signal, we proposed an estimator designed to combines a maximum likelihood estimation of the array
angle and a range peak search. After obtaining the direct wave range according to the first range peak,
the elevation angle can be determined by finding the maximum value of Formula (26) in the angle search

θ̂ = argmax
θ

‖aH(θ)raCDr(θ)‖
2

‖a(θ)‖2
+
‖aT(θ)raCR[r+∆r(θ)](θ)‖

2

‖a∗(θ)‖2

. (26)

where ∆r(θ) represents the range step-index according to the analysis of the range relationship between
the two waves in Section 2. It is an integer calculated by rounding the quotient of the range difference
in Equation (4) and the range resolution

∆r(θ) =
2HRBNIsinθ

C
+ 0.5 (27)

The proposed estimator mimics an ML estimator, assuming that the nCDn and nCRn are
still zero-mean Gaussian distribution after range compression by the super-resolution algorithm.
Since RELAX is not a linear operation, the noises in the RA signal are not statistically independent
of each other or have the same unknown covariance matrix. So, the proposed algorithm is an ML
estimator only in an approximate sense. Due to the gain from the range compression, the effect of
the noise at the range peak will also decrease proportionally. The estimator in Equation (26) assumes
that the parameter related to the reflection coefficient is invariable in the reflection area, which indicates
all the elements in ρ are equal. So, this estimator takes advantage of the phase of the reflected wave for
angle estimation.

In practical applications, the distribution area of reflection points slides along the direction of
the motion of the target. For low elevation angles, the area would be relatively large. Changes in
the roughness, coverage and the grazing angle all lead to changes of the reflection coefficients both in
amplitude and phase, and that coefficients corresponding to the different array elements will differ
from each other and change constantly. As discussed above, for ML estimation, inaccurate reflection
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coefficients will cause model mismatch and estimation error. Therefore, when facing a non-ideal
reflecting surface, without the prior information of the reflection coefficients, the amplitude-phase
relationship of the reflected wave will provide no additional information for the angle estimation.
Due to the direct waves propagating only through free space, the amplitude-phase relationship is
relatively stable and reliable. As the range compression realizes the energy separation between
the direct wave and the reflected wave, the distance structure between the two waves can provide
robust but slightly less accurate angle information, according to its high wideband gain. Therefore,
only the array phase of the direct wave is used with and the range structure to realize the angle
estimation. Better robustness can be achieved with little gain loss. There is no need to estimate
the reflection coefficients of different array elements when using this algorithm

θ̂ = argmax
θ
{

‖aH(θ)ra
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3.3.2. The Robust Estimator

Range compression provides a signal-to-noise (SNR) ratio gain for the range peak position. 

However, due to the broadband effect, the range peaks of different array elements shift according to 

the elevation angle. Therefore, the signals of the two columns on the RA surface cannot be directly 

used to extract 𝜑𝐷𝑛(𝑓𝑐 , 𝜃) and 𝜑𝑅𝑛(𝑓𝑐 , 𝜃). A calibration for the range migration is essential.

The calibration matrix 𝓒D
D

is constructed as follow 

𝓒(𝜃) =𝑗2𝜋
𝒅𝑠𝑖𝑛(𝜃)𝒇𝐵

𝐶 . (19) 

The complex exponential terms contained in matrix 𝓒(𝜃) compensate for the range offset caused

by the distance between the array elements being dependent on the elevation angle. The calibration 

essentially involved focusing the broadband frequency points on the center frequency. Since the angle 

of the direct wave is opposite to that of the reflected wave, 𝓒(𝜃) and its conjugate matrix are used to

complete the range calibrations for the direct wave and reflected wave, respectively

𝑺𝒞𝐷(𝜃) = 𝑺 ∘ 𝓒(𝜃) (20) 

𝑺𝒞𝑅(𝜃) = 𝑺 ∘ 𝓒(𝜃)∗. (21) 

In these equations for range calibrations, ∘ presents the Hadamard product. The nth row vectors

in 𝑺𝒞𝐷(𝜃) and 𝑺𝒞𝑅(𝜃) could be expressed as 

𝒔𝒞𝐷𝑛(𝜃) = 𝐴𝜑𝐷𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝐷𝐷𝑛(𝒇𝐵, 𝜃) + 𝐴𝜌𝑛𝜑𝑅𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝐷𝑅𝑛(𝒇𝐵, 𝜃) + 𝒏𝒞𝐷𝑛 (22) 

and 

𝒔𝒞𝑅𝑛(𝜃) = 𝐴𝜑𝐷𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝑅𝐷𝑛(𝒇𝐵, 𝜃) + 𝐴𝜌𝑛𝜑𝑅𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝑅𝑅𝑛(𝒇𝐵, 𝜃) + 𝒏𝒞𝑅𝑛 (23) 

where 

𝝓𝒞𝐷𝐷𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1)}, 

𝝓𝒞𝐷𝑅𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 − 2𝑛𝑑𝑠𝑖𝑛𝜃)}, 

𝝓𝒞𝑅𝐷𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 + 2𝐻𝑅𝑠𝑖𝑛𝜃 + 2𝑛𝑑𝑠𝑖𝑛𝜃)}, 

𝝓𝒞𝑅𝑅𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 + 2𝐻𝑅𝑠𝑖𝑛𝜃)}, 

and 𝒏𝒞𝐷𝑛 and 𝒏𝒞𝑅𝑛 are the noise vectors after calibration. 

As one of the two calibration results, 𝑺𝓒𝑫(𝜃)  achieves a decoupling of the angle and range 

information for the direct wave when the angle used for 𝓒(𝜃) is the same as the target angle. The 

calibration will not change the relationship between the ranges of the two waves. Correction of the 

direct wave range migration leads to the slope of the reflected wave being two times the slope of the 

original reflected wave. Despite this, in the range compressed RA signal, the two waves are separated 

in distance, and hence their interaction can be ignored. The angle and the range for the direct wave

could be determined and investigated separately, a process also applicable to the reflected signal

in 𝑺𝓒𝑹(𝜃).

𝑹𝑨𝒞𝐷(𝜃) and 𝑹𝑨𝒞𝑅(𝜃) denote the output matrices of the super-resolution algorithms operating

on 𝑺𝒞𝐷(𝜃) and 𝑺𝒞𝑅(𝜃), with 𝒓𝒂𝒞𝐷𝑟(𝜃) and 𝒓𝒂𝒞𝑅𝑟(𝜃) denote the column vectors these two matrices. 

𝑁𝐼 is the multiple of the range interpolation 

𝑹𝑨𝒞𝐷(𝜃) = [𝒓𝒂𝒞𝐷1(𝜃), 𝒓𝒂𝒞𝐷2(𝜃)⋯ , 𝒓𝒂𝒞𝐷𝑟(𝜃),⋯𝒓𝒂𝒞𝐷𝑀𝑁𝐼
(𝜃)], (24) 

𝑹𝑨𝒞𝑅(𝜃) = [𝒓𝒂𝒞𝑅1(𝜃), 𝒓𝒂𝒞𝑅2(𝜃)⋯ , 𝒓𝒂𝒞𝑅𝑟(𝜃),⋯𝒓𝒂𝒞𝑅𝑀𝑁𝐼
(𝜃)]. (25) 

The peak positions of the different array elements of the direct wave in 𝑹𝑨𝒞𝐷(𝜃) are aligned in

range. The phases of each element can be directly extracted for angle estimation. Similarly, the phases 

of the reflected wave are also available in 𝑹𝑨𝒞𝑅(𝜃).

_SRr(θ)‖
2

‖a(θ)‖2
+ ‖ra
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3.3.2. The Robust Estimator

Range compression provides a signal-to-noise (SNR) ratio gain for the range peak position. 

However, due to the broadband effect, the range peaks of different array elements shift according to 

the elevation angle. Therefore, the signals of the two columns on the RA surface cannot be directly 

used to extract 𝜑𝐷𝑛(𝑓𝑐 , 𝜃) and 𝜑𝑅𝑛(𝑓𝑐 , 𝜃). A calibration for the range migration is essential.

The calibration matrix 𝓒R is constructed as follow 

𝓒(𝜃) =𝑗2𝜋
𝒅𝑠𝑖𝑛(𝜃)𝒇𝐵

𝐶 . (19) 

The complex exponential terms contained in matrix 𝓒(𝜃) compensate for the range offset caused

by the distance between the array elements being dependent on the elevation angle. The calibration 

essentially involved focusing the broadband frequency points on the center frequency. Since the angle 

of the direct wave is opposite to that of the reflected wave, 𝓒(𝜃) and its conjugate matrix are used to

complete the range calibrations for the direct wave and reflected wave, respectively

𝑺𝒞𝐷(𝜃) = 𝑺 ∘ 𝓒(𝜃) (20) 

𝑺𝒞𝑅(𝜃) = 𝑺 ∘ 𝓒(𝜃)∗. (21) 

In these equations for range calibrations, ∘ presents the Hadamard product. The nth row vectors

in 𝑺𝒞𝐷(𝜃) and 𝑺𝒞𝑅(𝜃) could be expressed as 

𝒔𝒞𝐷𝑛(𝜃) = 𝐴𝜑𝐷𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝐷𝐷𝑛(𝒇𝐵, 𝜃) + 𝐴𝜌𝑛𝜑𝑅𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝐷𝑅𝑛(𝒇𝐵, 𝜃) + 𝒏𝒞𝐷𝑛 (22) 

and 

𝒔𝒞𝑅𝑛(𝜃) = 𝐴𝜑𝐷𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝑅𝐷𝑛(𝒇𝐵, 𝜃) + 𝐴𝜌𝑛𝜑𝑅𝑛(𝑓𝑐 , 𝜃) ∙ 𝝓𝒞𝑅𝑅𝑛(𝒇𝐵, 𝜃) + 𝒏𝒞𝑅𝑛 (23) 

where 

𝝓𝒞𝐷𝐷𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1)}, 

𝝓𝒞𝐷𝑅𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 − 2𝑛𝑑𝑠𝑖𝑛𝜃)}, 

𝝓𝒞𝑅𝐷𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 + 2𝐻𝑅𝑠𝑖𝑛𝜃 + 2𝑛𝑑𝑠𝑖𝑛𝜃)}, 

𝝓𝒞𝑅𝑅𝑛(𝒇𝐵, 𝜃) = 𝑒𝑥𝑝 {−𝑗2𝜋
𝒇𝐵

𝐶
(𝑅𝐷1 + 2𝐻𝑅𝑠𝑖𝑛𝜃)}, 

and 𝒏𝒞𝐷𝑛 and 𝒏𝒞𝑅𝑛 are the noise vectors after calibration. 

As one of the two calibration results, 𝑺𝓒𝑫(𝜃)  achieves a decoupling of the angle and range 

information for the direct wave when the angle used for 𝓒(𝜃) is the same as the target angle. The 

calibration will not change the relationship between the ranges of the two waves. Correction of the 

direct wave range migration leads to the slope of the reflected wave being two times the slope of the 

original reflected wave. Despite this, in the range compressed RA signal, the two waves are separated 

in distance, and hence their interaction can be ignored. The angle and the range for the direct wave

could be determined and investigated separately, a process also applicable to the reflected signal

in 𝑺𝓒𝑹(𝜃).

𝑹𝑨𝒞𝐷(𝜃) and 𝑹𝑨𝒞𝑅(𝜃) denote the output matrices of the super-resolution algorithms operating

on 𝑺𝒞𝐷(𝜃) and 𝑺𝒞𝑅(𝜃), with 𝒓𝒂𝒞𝐷𝑟(𝜃) and 𝒓𝒂𝒞𝑅𝑟(𝜃) denote the column vectors these two matrices. 

𝑁𝐼 is the multiple of the range interpolation 

𝑹𝑨𝒞𝐷(𝜃) = [𝒓𝒂𝒞𝐷1(𝜃), 𝒓𝒂𝒞𝐷2(𝜃)⋯ , 𝒓𝒂𝒞𝐷𝑟(𝜃),⋯𝒓𝒂𝒞𝐷𝑀𝑁𝐼
(𝜃)], (24) 

𝑹𝑨𝒞𝑅(𝜃) = [𝒓𝒂𝒞𝑅1(𝜃), 𝒓𝒂𝒞𝑅2(𝜃)⋯ , 𝒓𝒂𝒞𝑅𝑟(𝜃),⋯𝒓𝒂𝒞𝑅𝑀𝑁𝐼
(𝜃)]. (25) 

The peak positions of the different array elements of the direct wave in 𝑹𝑨𝒞𝐷(𝜃) are aligned in

range. The phases of each element can be directly extracted for angle estimation. Similarly, the phases 

of the reflected wave are also available in 𝑹𝑨𝒞𝑅(𝜃).

_SR[r+∆r(θ)](θ)‖
2
}. (28)

4. Performance Analysis

The algorithm proposed in the current work achieves the angle estimation by employing
high-precision range structure information. Therefore, the resolution and accuracy of the range
estimation have a decisive impact on the angle estimation result. This section describes our analysis of
system parameter requirements and the adaptability to the environment.

4.1. Lower Limit of the Angle Estimation

The range interval between the two signals affects the performance of the RELAX algorithm. ∆R is
used to represent the resolution of the actual signal based on B. Figure 6 shows the root mean square
errors (RMSEs) versus signal-to-noise ratio (SNR) calculated using RELAX of two signals separated
from each other by various range intervals.
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When the range interval between the two signals is greater than ∆R, the RMSE curves are found to
be relatively stable with increasing range gap. A reliable estimation can be got for SNR values greater
than 5 dB. When the range gap is between ∆R/2 and ∆R, the RMSE gradually increases as the range
interval becomes narrow. The SNR required increases to 10 dB. When the two signals are close to
each other in the range domain, i.e., with range intervals smaller than ∆R/2, the estimation fails. ∆R/2
is therefore chosen as the lower limit of the range interval between the signals, and is also used to
determine the lower bound of the angle estimation based on the range super-resolution algorithm.
We are able to calculate the required bandwidth based on the lower frequency limit to be measured

θ̂min ≈ arcsin
C

4B(HR −Nd)
(29)
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4.2. Range Resolution Equivalent to Angular Resolution

The range variation corresponding to angular resolution ∆θ is calculated

∆r = 2HRsinθ− 2HRsin(θ− ∆θ) ≈ 2HRsin∆θ. (30)

The number of the RELAX interpolation points required in one-way beacon mode can be
calculated as

NI ≥
C

2HRBsin∆θ
. (31)

In the radar model including transceivers, the product of the bandwidth and the number of
interpolation points need only be half that for the beacon mode.

The number of frequency points in the bandwidth determines the unambiguous distance range.
Considering the distance migration of the direct and reflected waves, the number of frequency points
M should be at least greater than that indicated by the equation:

M ≥
2B(HR + Nd)sinθmax

C
. (32)

4.3. Surface Environment Adaptability

The variation in the ground cover in general affects the amplitude and phase of the reflection
coefficient. At the same time, the surface fluctuations affect the distance of the reflected wave.
According to Equation (28), it can be concluded that the phase changes of the reflection coefficients
between different array elements do not affect the angle estimation. Attenuations in the amplitudes
of the reflection coefficients will cause a proportional change in the SNR of the reflected wave,
and hence decrease the estimation accuracy. The algorithm principle described in this paper is based
on the combination of distance structure information and angle information. When the range variation
caused by the height fluctuations in the reflection area becomes greater than the range resolution
unit, the distance structure will change, directly leading to errors in the angle estimation. The height
fluctuation of the reflecting surface needs to meet the requirement

∆HRS ≤
C

2BNIsinθ
. (33)

Therefore, the use of a relatively flat terrain is recommended, or a known terrain elevation can be
used as a priori information for compensation.

4.4. Requirements for Radar Systems

The algorithm proposed in this paper is based on a mono-pulse radar system with phased array.
Generally, the higher carrier frequencies are easier to carry wideband signals, so it has a stronger
capacity of low angle estimation when use the algorithm we proposed. As this algorithm integrates
multiple frequency information within the whole frequency band, the integration process requires
fast frequency agility of the radar system. For high-speed moving targets, a faster scanning time is
essential to ensure that the range change caused by the target motion during the scanning time will not
cross the distance resolution unit. Meanwhile, it is also necessary to increase the transmission power
appropriately to compensate for the short signal duration for a sufficient received SNR.

5. Simulation

In this section, numerical simulations are executed to evaluate the proposed algorithm,
demonstrating an improved robust performance in low elevation angle estimation.



Sensors 2020, 20, 3104 14 of 21

We set simulation parameters for a typical wideband radar system in X band. A beacon model is
applied in the simulation settings. All variables of the target state, the radar and the reflection area are
parameterized. Different frequency points within the bandwidth are completely coherent.

The simulation parameters are listed in Table 1.

Table 1. Simulation parameter.

Radar parameters

Bandwidth (B)/GHz 3

Carrier frequency (Fc)/GHz 9

Radar height (HR)/m 4

Number of Array Elements(N) 20

Number of the frequency point(Nf ) 32

Interpolation points in RELAX 16

Multi-frequency RML and RSS algorithms are applied here as comparisons. Both of them can
complete the angle estimation from the wideband signal. In RML, the reflection coefficient used to
build the model is a fixed value −0.95. In RSS, based on three points near the estimated value of each
angle, a total of six points were selected as the estimated angles to construct the focus matrix.

5.1. Robustness of the Reflection Coefficient

First, we verify the robustness of the algorithms to the reflection coefficient ρ through simulations.
We illustrate the global performance of the four algorithms in terms of the RMSE versus the SNR
and the elevation angle θ in three cases. In the first and second cases, the reflection coefficient is −0.95
and 0.7, respectively. In the third case, the amplitude and phase of the reflection coefficient have
random distribution errors within a certain range.

In the first case, when the signal parameters are completely consistent with the model
parameters, the RML algorithm yields the smallest estimation errors for different SNR and θ valuse.
When the elevation angle is reduced to 1◦, RML only needs the SNR of about −7 dB to complete
the angle estimation, and shows an RMSE of less than 0.1◦. For SNRs less than 0 dB, an accurate
estimation can be achieved along the angle interval of 0.5–6◦. Unlike other algorithms, RSS analyzes
reflected and direct waves as two targets. In comparison, RSS is less capable of measuring closely
targets. As shown in Figure 7, the RSS yielded a significantly higher RMSE for an angle of 1◦ than for
that of 5◦. From Figure 8, it could be concluded that when the SNR is 0 dB, RSS will not be able to
distinguish between the direct wave and the reflected signal with an angle below 1.4◦. At an SNR of
10 dB, this limit is 0.9◦. Compared with the proposed Algorithms (26) and (28), the noise performance
of Algorithm (28) is slightly better than the other one, and it is more obvious when the SNR is low.
That is because the range estimation brings higher robustness. The (28) algorithm can obtain the RMSE
accuracy which is less than 0.1◦ when the SNR is greater than −6 dB. Such angle estimation accuracy
equivalent to RML can be achieved if SNR is higher than 8 dB, consistent with the analysis in Section 4.1.
Generally, the low elevation angle interval is defined as less than six degrees. With a sufficient SNR,
Algorithm (28) can achieve accurate angle estimations for targets with elevation angles between 0.7
and 6◦.
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Figure 8. RMSE against elevation angle θ in different SNR when ρ = −0.95. (a) SNR = 0 dB;
(b) SNR = 10 dB.

In the second case, both the amplitude and the phase of the reflection coefficient have fix error
with the parameter ρ in the RML model. The simulation results are shown in Figures 9 and 10. RML is
obviously deteriorated with an angular deviation, even for sufficiently high SNR. The calculation
process of RSS does not utilize the reflection coefficient. In this case, the overall performance of
RSS improves due to the reduced energy of the reflected wave located on the negative angle axis.
As the reflected energy declines, its interference to the direct wave also decreased accordingly. Despite
this, the low angle estimation performance of RSS is still non-ideal. Similarly, with a reduced reflected
wave energy, the noise performance of the Algorithm (28) would be expected to slightly decline.
Nevertheless, it performs better than several other algorithms.
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Figure 9. RMSE against input SNR in different elevation angles when ρ = 0.7. (a) θ = 1◦ and (b) θ = 5◦.
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Figure 10. RMSE against elevation angleθ in different SNR whenρ= 0.7. (a) SNR = 0 dB; (b) SNR = 10 dB.

In the third case, both the amplitude and the phase of the reflection coefficient have random errors
between each array element. Three different degrees of random distribution of ρ are listed in Table 2.

Table 2. Random distribution parameters of the reflection coefficient ρ.

Classification Amplitude Distribution of ρ Phase Distribution of ρ

ρ: case i 0.45 ~ 0.95 0 ~ 180◦

ρ: case ii 0.65 ~ 0.95 80 ~ 180◦

ρ: case iii 0.85 ~ 0.95 160 ~ 180◦

Among them, in ρ:case i, the difference of the ρ distribution between the array elements is
the largest, while for ρ: case iii, it is the smallest.

For low elevation angle, the phase difference between the array elements is small, and thus
random distribution of c has a greater effect on the phases of the reflected wave. It can be observed
in Figure 11, for θ = 1◦, as the variation range of ρ rises, the RML and RSS performance decreases
significantly. Meanwhile, Algorithm (28) exhibits stable performance.
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When the elevation angle gets higher, the influence of the reflection coefficient on the phase of
the reflected wave is expected to decrease. The performances of the comparison algorithms improve
correspondingly. As seen in the inset of Figure 12, RML performs best when the perturbation of ρ is
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small. However, in the presence of a large perturbation, the algorithm corresponding to Equation (28)
could provide the highest angle estimation accuracy.
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5.2. Robustness of Reflection Surface Height

Fluctuations in height on the reflecting surface were concluded, from the analysis in Section 4.3,
to contribute errors to the estimated values produced by the proposed algorithm of the current work.
Here, we also carry out simulation analysis of the presence of reflective surface height disturbances in
the three cases. Table 3 lists three cases of height fluctuations from small to large.

Table 3. Random distribution of the reflection surface height fluctuation ∆h.

Classification Height Distribution

∆h: case i 0 ~ 1λ 1

∆h: case ii 0 ~ 5λ

∆h: case iii 0 ~ 10λ
1 λ is the wavelength corresponding to fc

When the target elevation angle is relatively low, the perturbations on the range and element
phases caused by the reflection surface height fluctuation are negligibly small. Therefore, in this
case, the performances of the four algorithms does not change much. As shown in Figure 13,
in the presence of large disturbances, however, the proposed Algorithm (28) proves superior to RML
due to the combination of the phase of the direct wave, which is not affected by the surface height.
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As the target elevation angle rises, the distance errors and phase errors increase proportionally
in Figure 14. At this time, the RML has a poor performance when the disturbance is large. RSS has
improved performance due to the increased angle. Algorithm (28) starts to appear in small errors
depending on the level of the disturbance. When the reflection surface height fluctuation is 10 times
the wavelength, the angle estimation accuracy is also less than 0.1◦.
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5.3. Bandwidth Performance

The bandwidth determines the range resolution of the radar system. As analyzed in Section 4.1,
the bandwidth determines the lower bound of the angle estimation based on the range super-resolution
algorithm. The simulation of angle estimation capability under different bandwidth values is shown in
Figure 15.
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Appendix A 
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Figure 15. The performance of the estimator in Equation (28) with different values of bandwidth when
ρ = −0.95 SNR = 10 dB.

We compare the performance of the proposed Algorithm (28) with different bandwidth values.
Assume that the SNR is 10 dB and the reflection coefficients are a constant value −0.95. As shown in
Figure 15, to achieve the estimation angle RMSE less than 0.1◦, the lower limit of the angle estimation is
nearly 3◦when the system bandwidth is 1 GHz, the angle lower limit rises above 4◦when the bandwidth
values decrease to 500 MHz. At a bandwidth of 2 Ghz, this limit is found to be around 1◦. These results
are consistent with the theoretical analysis in Section 4.1.
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6. Conclusions

In this paper, a novel low elevation angle estimation scheme based on a wideband radar system is
derived. The use of this scheme together with the RELAX super-resolution algorithm successfully
separated the direct wave and reflected wave in the range dimension. The angle estimation could
be obtained by synthesizing the phase characteristics between the array elements corresponding to
the direct wave angle, and the range structure relationship between these two waves. We analyze
the performance and robustness of the algorithm. Numerical simulations reveal the high precision of
the proposed approach for a low elevation target. In addition, when compared with RML and RSS,
the proposed algorithm demonstrates strong robustness to variations in the reflection coefficients
and the reflecting surface height. In our further research, we plan to realize the low elevation angle
estimation in a random frequency-hopping wideband system.
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Appendix A

Considering the RD can be directly acquired by range detection, we describe the multipath
geometry relation in polar coordinates.

The range difference between the direct path and the reflected path is

∆Rn = RRn −RDn = RR1 −RD1 − (n− 1)d(sinθR − sinθD). (A1)

Using the approximation in Equation (3), we have

∆Rn = RR1 −RD1 + 2(n− 1)dsinθD. (A2)

According to the geometry relations

RR1 =

√
(RD1cosθD)

2 + ((RD1sinθD + 2HR)
2 =

√
R2

D1 + 4HRRD1sinθD + 4H2
R. (A3)

Equation (A3) can be expanded by the binomial theorem. In the low elevation circumstance, except for
the first two orders, the higher-order terms in the expansion can be neglected since they are too small.
It follows that

RR1 ≈ RD1 +
4HRRD1sinθD + 4H2

R
2RD1

≈ RD1 + 2HRsinθD. (A4)

Hence,
∆Rn ≈ 2sinθD[HR + (n− 1)d]. (A5)
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