Tracking by Risky Particle Filtering over Sensor Networks
Abstract
:1. Introduction
2. Problem Formulation
2.1. Dynamic State Model
2.2. Measurement Model
3. Proposed Approach
Algorithm 1: The minimax PF algorithm for the standard PF in wireless sensor networks |
□ Initialization |
for , where N is the number of particles. |
1. Random generation of initial particles: |
, and assign initial weights: . |
end |
□ Sequential update |
for , where T is the total time steps. |
for , |
2. Propagation of particles via a proposal density: |
end |
for , |
3. Computing the weights of particles: |
assuming the proposal density, |
. |
end |
for , |
4. Normalization. |
5. Selecting the minimum weight among M weights. |
end |
6. Normalization of the weights: |
7. Computing the estimate at the time step t: |
8. Resampling N particles. |
end |
4. Performance Assessment
4.1. Standard Particle Filter
4.2. Auxiliary Particle Filter (APF)
4.3. Regularized PF (RPF)
4.4. Kullback-Leibler Divergence PF (KLDPF)
4.5. Gaussian PF (GPF)
4.6. Processing Time
4.7. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Derivation of Cramér-Rao Lower Bound
References
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
- Ramnath, S.; Javali, A.; Narang, B.; Mishra, P.; Routray, S.K. IoT based localization and tracking. In Proceedings of the 2017 International Conference on IoT and Application (ICIOT), Nagapattinam, India, 19–20 May 2017; pp. 1–4. [Google Scholar]
- Paul, A.; Sato, T. Localization in wireless sensor networks: A survey on algorithms, measurement techniques, applications and challenges. J. Sens. Actuator Netw. 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Yoo, S.J. Optimal UAV path planning: Sensing data acquisition over IoT sensor networks using multi-objective bio-inspired algorithms. IEEE Access 2018, 6, 13671–13684. [Google Scholar] [CrossRef]
- Wu, P.; Su, S.; Zuo, Z.; Guo, X.; Sun, B.; Wen, X. Time Difference of Arrival (TDoA) Localization Combining Weighted Least Squares and Firefly Algorithm. Sensors 2019, 19, 2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, B.; Xu, X.; Zhang, T. Robust time-difference-of-arrival (TDOA) localization using weighted least squares with cone tangent plane constraint. Sensors 2018, 18, 778. [Google Scholar]
- Chen, Z.; Wang, J. ES-DPR: A DOA-Based Method for Passive Localization in Indoor Environments. Sensors 2019, 19, 2482. [Google Scholar] [CrossRef] [Green Version]
- Aboutanios, E.; Hassanien, A.; El-Keyi, A.; Nasser, Y.; Vorobyov, S.A. Advances in DOA Estimation and Source Localization. Int. J. Antennas Propag. 2017, 2017, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.; Pahlavan, K. Precision of RSS-Based Localization in the IoT. Int. J. Wireless Inf. Netw. 2019, 26, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Tomic, S.; Beko, M.; Dinis, R. RSS-based localization in wireless sensor networks using convex relaxation: Noncooperative and cooperative schemes. IEEE Trans. Veh. Technol. 2014, 64, 2037–2050. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Chong, J.W. An efficient TDOA-based localization algorithm without synchronization between base stations. Int. J. Distrib. Sens. Netw. 2015, 11, 832351. [Google Scholar] [CrossRef] [Green Version]
- Sari, R.; Zayyani, H. RSS localization using unknown statistical path loss exponent model. IEEE Commun. Lett. 2018, 22, 1830–1833. [Google Scholar] [CrossRef]
- Achroufene, A.; Amirat, Y.; Chibani, A. RSS-based indoor localization using belief function theory. IEEE Trans. Autom. Sci. Eng. 2018, 16, 1163–1180. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, C.; Liu, R.; Liang, G.; Zhang, H.; Ur Rehman, S. Moving object localization based on UHF RFID phase and laser clustering. Sensors 2018, 18, 825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhang, Y.; Xue, W. Unsupervised indoor localization based on Smartphone Sensors, iBeacon and Wi-Fi. Sensors 2018, 18, 1378. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, R.K.; Shet, N. Localization based on RSSI exploiting gaussian and averaging filter in wireless sensor network. Arabian J. Mater. Sci. Eng. 2018, 43, 4145–4159. [Google Scholar] [CrossRef]
- Sun, W.; Xue, M.; Yu, H.; Tang, H.; Lin, A. Augmentation of fingerprints for indoor WiFi localization based on Gaussian process regression. IEEE Trans. Veh. Technol. 2018, 67, 10896–10905. [Google Scholar] [CrossRef]
- Liu, J.S.; Chen, R. Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 1998, 93, 1032–1044. [Google Scholar] [CrossRef]
- Guarniero, P.; Johansen, A.M.; Lee, A. The iterated auxiliary particle filter. J. Am. Stati. Assoc. 2017, 112, 1636–1647. [Google Scholar] [CrossRef]
- Murangira, A.; Musso, C.; Dahia, K. A mixture regularized rao-blackwellized particle filter for terrain positioning. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1967–1985. [Google Scholar] [CrossRef]
- Fox, D. Adapting the sample size in particle filters through KLD-sampling. Int. J. Rob. Res. 2003, 22, 985–1003. [Google Scholar] [CrossRef]
- Li, T.; Sun, S.; Sattar, T.P. Adapting sample size in particle filters through KLD-resampling. Electron. Lett 2013, 49, 740–742. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Peng, D.; Xu, C.; Zhang, W.; Shen, J. Adaptive particle filter based on Kullback–Leibler distance for underwater terrain aided navigation with multi-beam sonar. IET Radar Sonar Navig. 2018, 12, 433–441. [Google Scholar] [CrossRef]
- Kotecha, J.H.; Djuric, P.M. Gaussian particle filtering. IEEE Trans. Signal Process. 2003, 51, 2592–2601. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Hong, D. Gaussian particle filtering approach for carrier frequency offset estimation in OFDM systems. IEEE Signal Process Lett. 2013, 20, 367–370. [Google Scholar] [CrossRef]
- Míguez, J.; Bugallo, M.F.; Djurić, P.M. A new class of particle filters for random dynamic systems with unknown statistics. EURASIP J. Adv. Sign. Proces. 2004, 2004, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Hong, D. Cost reference particle filtering approach to high-bandwidth tilt estimation. IEEE Trans. Ind. Electron. 2010, 57, 3830–3839. [Google Scholar] [CrossRef]
- Lim, J. Particle filtering for nonlinear dynamic state systems with unknown noise statistics. Nonlinear Dyn. 2014, 78, 1369–1388. [Google Scholar] [CrossRef]
- Arulampalam, M.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bolic, M.; Djuric, P.M. Resampling methods for particle filtering: Classification, implementation, and strategies. IEEE Signal Process Mag. 2015, 32, 70–86. [Google Scholar] [CrossRef]
- Li, T.C.; Villarrubia, G.; Sun, S.d.; Corchado, J.M.; Bajo, J. Resampling methods for particle filtering: Identical distribution, a new method, and comparable study. Front. Inf. Technol. Electron. Eng. 2015, 16, 969–984. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.S.; Park, H.M. Minimax particle filtering for tracking a highly maneuvering target. Int. J. Robust Nonlinear Control 2020, 30, 636–651. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.S.; Park, H.M. Interactive-Multiple-Model Algorithm based on Minimax Particle Filtering. IEEE Signal Process Lett. 2020, 27, 36–40. [Google Scholar] [CrossRef]
- Gustafsson, F.; Gunnarsson, F.; Bergman, N.; Forssell, U.; Jansson, J.; Karlsson, R.; Nordlund, P.J. Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process. 2002, 50, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Djuric, P.M.; Vemula, M.; Bugallo, M.F. Target tracking by particle filtering in binary sensor networks. IEEE Trans. Signal Process. 2008, 56, 2229–2238. [Google Scholar] [CrossRef]
- Lim, J. A target tracking based on bearing and range measurement with unknown noise statistics. J. Electr. Eng. Technol. 2013, 8, 1520–1529. [Google Scholar] [CrossRef] [Green Version]
- Patwari, N.; Hero III, A.O.; Perkins, M.; Correal, N.S.; O’Dea, R.J. Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process. 2003, 51, 2137–2148. [Google Scholar] [CrossRef] [Green Version]
- Pitt, M.K.; Shephard, N. Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 1999, 94, 590–599. [Google Scholar] [CrossRef]
- Lim, J. Performance degradation due to particle impoverishment in particle filtering. J. Electr. Eng. Technol. 2014, 9, 2107–2113. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.M. Fundamentals of Statistical Signal Processing; Estimation Theory; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1993; Volume 1. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.; Park, H.-M. Tracking by Risky Particle Filtering over Sensor Networks. Sensors 2020, 20, 3109. https://doi.org/10.3390/s20113109
Lim J, Park H-M. Tracking by Risky Particle Filtering over Sensor Networks. Sensors. 2020; 20(11):3109. https://doi.org/10.3390/s20113109
Chicago/Turabian StyleLim, Jaechan, and Hyung-Min Park. 2020. "Tracking by Risky Particle Filtering over Sensor Networks" Sensors 20, no. 11: 3109. https://doi.org/10.3390/s20113109
APA StyleLim, J., & Park, H. -M. (2020). Tracking by Risky Particle Filtering over Sensor Networks. Sensors, 20(11), 3109. https://doi.org/10.3390/s20113109