Crop Management in Controlled Environment Agriculture (CEA) Systems Using Predictive Mathematical Models †
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Original MEC Model
- (1)
- the absorption of PPFD by the canopy;
- (2)
- the absorbed energy (A) used in the photosynthetic process to convert carbon into sucrose;
- (3)
- the conversion of sucrose into biomass.
CQY = CQYMAX − (CQYMAX − CQYMIN)(t − tQ)/(tM − tQ) for tQ < t ≤ tM
CUE = CUEMAX − (CUEMAX − CUEMIN) (t − tQ)/(tM − tQ) for tQ < t ≤ tM
A = AMAX for t > tA
2.2. Limitations of the Original MEC Model Formulation
2.3. Experiments to Retrieve CQY Temporal Pattern
- (1)
- (2)
- From the initial slope of saturation-photosynthetic curves [29];
- (3)
- By means of a fluorimeter, an instrument which measures the proportion of the light absorbed by the chlorophyll associated with the photosystem II (PSII), thus indicating the efficiency of the carbon fixation and of the overall photosynthesis [34].
2.4. Experiments in a Controlled Environment Growth Chamber to Validate the Model
2.5. Model Structure and Parameter Identification
3. Results
3.1. Model Equations and Parameters
- (1)
- A period of CQY monotonically increasing, starting from the initial leaf lamina development till the beginning of the maturity stage (tMi).
- (2)
- A period of stationary CQY, during plant maturity.
- (3)
- A period of CQY monotonically decreasing, during senescence.
χ = χMIN + (χMAX − χMIN) (t − tD)/(tMi − tD) for tD ≤ t < tMi
χ = χMAX for tMi ≤ t < tM
3.2. Model Performance
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALSs | Advanced life support systems |
AMAX | Maximum fraction of PPFD absorbed by the canopy |
BCF | Biomass carbon fraction |
BIAS | Average difference between prediction and observation |
BLSSs | Bioregenerative life support systems |
CEA | Controlled environment agriculture |
CGR | Crop growth rate (g m−2 d−1) |
CO2 | Carbon dioxide (ppm) |
CQY | Canopy quantum yield |
CUE | Carbon use efficiency |
DCG | Daily carbon gain (mol C m−2 d−1) |
DLI | Daily light integral |
DOP | Daily oxygen production (mol O2 m−2 d−1) |
DTR | Daily canopy transpiration (mm d−1) |
gA | Aerodynamic conductance (mol m−2 s−1) |
gc | Canopy conductance (mol m−2 s−1) |
gs | stomatal conductance (mol m−2 s−1) |
H | Photoperiod |
IoT | Internet of things |
MEC | Energy cascade model |
MWc | Carbon molecular weight (12 g mol−1) |
MWW | Water molecular weight (18 g mol−1) |
O2 | Oxygen (ppm) |
PATM | Atmospheric pressure (kPa) |
PG | Gross photosynthesis (μmol CO2 m−2 s−1) |
PN | Net photosynthesis (μmol CO2 m−2 s−1) |
PPFD | Photosynthetic photon flux density (µmol photon m−2 s−1) |
PSII | Photosystem II |
RD | Day respiration (μmol m−2 s−1) |
RH | Relative humidity (%) |
RMSE | Root mean square error |
RN | Night respiration (μmol m−2 s−1) |
SPAC | Soil-plant-atmosphere-continuum |
T | Temperature (°C) |
tA | Time at canopy closure |
tD | Initial time of development |
tE | Onset of edible biomass |
TEB | Total edible biomass (g m−2) |
tM | Time of harvesting |
tMi | Initial time of maturity |
tQ | Time of the onset of senescence |
TS | Time of senescence |
VPD | Vapour pressure deficit (kPa) |
XRTF | Partitioning coefficient for the edible biomass |
ρW | Water density (100 g L−1) |
α | product of A, CQY and CUE |
β | product of A and CQY |
References
- Story, D.; Kacira, M. Design and implementation of a computer vision-guided greenhouse crop diagnostics system. Mach. Vis. Appl. 2015, 26, 495–506. [Google Scholar] [CrossRef]
- Guzmán, C.H.; Carrera, J.L.; Muñoz, H.A.D.; Berumen, J.; Ortiz, A.A.; Guirette, O.; Arroyo, A.; Brizuela, J.A.; Gómez, F.; Blanco, A.; et al. Implementation of Virtual Sensors for Monitoring Temperature in Greenhouses Using CFD and Control. Sensors 2019, 19, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, J.; Wang, Y.; Chan, F.T.; Hu, X.; Zhao, M.; Zhu, F.; Shi, B.; Shi, Y.; Lin, F. A Life Cycle Framework of Green IoT-Based Agriculture and Its Finance, Operation, and Management Issues. IEEE Commun. Mag. 2019, 57, 90–96. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, T.; Ji, J.; Sun, Z.; Wang, Y.; Sun, Y.; Li, Q. Estimation of Solar Radiation for Tomato Water Requirement Calculation in Chinese-Style Solar Greenhouses Based on Least Mean Squares Filter. Sensors 2020, 20, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amitrano, C.; Arena, C.; Rouphael, Y.; De Pascale, S.; De Micco, V. Vapour pressure deficit: The hidden driver behind plant morphofunctional traits in controlled environments. Ann. Appl. Boil. 2019, 175, 313–325. [Google Scholar] [CrossRef]
- King, B.; Wong, K. The 2017 CGIAR Inspire Challenge: Innovation Strategies for Digital Agriculture. 2017. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/99282/The-2017-CGIAR-Inspire-Challenge-3.pdf?sequence=1 (accessed on 31 May 2020).
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote. Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int. J Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Sukhova, E.; Sukhov, V. Connection of the Photochemical Reflectance Index (PRI) with the Photosystem II Quantum Yield and Nonphotochemical Quenching Can Be Dependent on Variations of Photosynthetic Parameters among Investigated Plants: A Meta-Analysis. Remote Sens. 2018, 10, 771. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Cavazzoni, J.; Keas, P. Crop Models for Varying Environmental Conditions. SAE Tech. Pap. Ser. 2002, 1, 2520. [Google Scholar] [CrossRef]
- Boscheri, G.; Kacira, M.; Patterson, L.; Giacomelli, G.; Sadler, P.; Furfaro, R.; Lobascio, C.; Lamantea, M.; Grizzaffi, L. Modified energy cascade model adapted for a multicrop Lunar greenhouse prototype. Adv. Space Res. 2012, 50, 941–951. [Google Scholar] [CrossRef]
- Amitrano, C.; Chirico, G.B.; De Pascale, S.; Rouphael, Y.; De Micco, V. Application of a MEC model for the irrigation control in green and red-leaved lettuce in precision indoor cultivation. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) Institute of Electrical and Electronics Engineers (IEEE), Portici, Italy, 24–26 October 2019; pp. 196–201. [Google Scholar]
- Kupper, P.; Sõber, J.; Sellin, A.; Lõhmus, K.; Tullus, A.; Räim, O.; Kull, O. An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ Exp Bot. 2011, 72, 432–438. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic modelling of lettuce transpiration for water status monitoring. Comput. Electron. Agric. 2018, 155, 50–57. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality–A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Sulman, B.N.; Roman, D.T.; Yi, K.; Wang, L.; Phillips, R.P.; Novick, K.A. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 2016, 43, 9686–9695. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang. 2015, 5, 669–672. [Google Scholar] [CrossRef]
- Franks, P.J. The Effect of Exogenous Abscisic Acid on Stomatal Development, Stomatal Mechanics, and Leaf Gas Exchange in Tradescantia virginiana. Plant Physiol. 2001, 125, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Van, L.H. Crop Systems Dynamics: An Ecophysiological Simulation Model for Genotype-by-Environment Interactions; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Ebenhöh, O.; Houwaart, T.; Lokstein, H.; Schlede, S.; Tirok, K. A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence. Biosystems 2011, 103, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Knauer, J.; Zaehle, S.; De Kauwe, M.G.; Haverd, V.; Reichstein, M.; Sun, Y. Mesophyll conductance in land surface models: Effects on photosynthesis and transpiration. Plant J. 2019, 101, 858–873. [Google Scholar] [CrossRef]
- Sukhova, E.; Khlopkov, A.; Vodeneev, V.; Sukhov, V. Simulation of a nonphotochemical quenching in plant leaf under different light intensities. Biochim. Biophys. Acta BBA Bioenerg. 2019, 1861, 148138. [Google Scholar] [CrossRef]
- Cavazzoni, J. Using explanatory crop models to develop simple tools for Advanced Life Support system studies. Adv. Space Res. 2004, 34, 1528–1538. [Google Scholar] [CrossRef] [PubMed]
- Volk, T.; Bugbee, B.; Wheeler, R.M. An approach to crop modeling with the energy cascade. Life Support Biosphere Sci. Int. J. Earth Space 1995, 1, 119–127. [Google Scholar]
- Jones, H.; Cavazzoni, J. Top-Level Crop Models for Advanced Life Support Analysis. SAE Tech. Pap. Ser. 2000. [Google Scholar] [CrossRef]
- Cavazzoni, J. Crop-Specific Parameters for Use in Modified Energy Cascade Models–Report to SIMA; The State University of New Jersey, New Jersey Rutgers: New Brunswick, NJ, USA, 2001. [Google Scholar]
- Monje, O. Predicting Transpiration Rates of Hydroponically-Grown Plant Communities in Controlled Environments. Ph.D. Thesis, Utah State University, Logan, UT, USA, 1998. [Google Scholar]
- Lambers, H.; Scheurwater, I.; Mata, C.; Nagel, O.W. Root respiration of fast-and slow-growing plants, as dependent on genotype and nitrogen supply: A major clue to the functioning of slow-growing plants. In Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences; Backhuys Publishers: Kerkwerve, The Netherlands, 1998; pp. 139–157. [Google Scholar]
- Logan, B.A.; Demmig, A.B.; Adams, W.W., III; Grace, S.C. Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. J. Exp. Bot. 1998, 49, 1869–1879. [Google Scholar] [CrossRef]
- Frantz, J.M.; Bugbee, B. Acclimation of Plant Populations to Shade: Photosynthesis, Respiration, and Carbon Use Efficiency. J. Am. Soc. Hortic. Sci. 2005, 130, 918–927. [Google Scholar] [CrossRef] [Green Version]
- Frantz, J.M.; Ritchie, G.; Cometti, N.N.; Robinson, J.; Bugbee, B. Exploring the Limits of Crop Productivity: Beyond the Limits of Tipburn in Lettuce. J. Am. Soc. Hortic. Sci. 2004, 129, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Klassen, S.P.; Ritchie, G.; Frantz, J.M.; Pinnock, D.; Bugbee, B.; Schepers, J.; VanToai, T. Real-Time Imaging of Ground Cover: Relationships with Radiation Capture, Canopy Photosynthesis, and Daily Growth Rate. In Nitrification Inhibitors-Potentials and Limitations; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2015; pp. 1–14. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K.; Johnson, G. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta BBA Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Van Iersel, M.W. Carbon use efficiency depends on growth respiration, maintenance respiration, and relative growth rate. A case study with lettuce. Plant Cell Environ. 2003, 26, 1441–1449. [Google Scholar] [CrossRef]
- DeLucia, E.H.; Drake, J.E.; Thomas, R.B.; Gonzalez-Meler, M. Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Glob. Chang. Boil. 2007, 13, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Zufferey, V. Leaf respiration in grapevine (Vitis vinifera ‘Chasselas’) in relation to environmental and plant factors. Vitis 2016, 55, 65–72. [Google Scholar]
- Xu, J.; Lv, Y.; Liu, X.; Wei, Q.; Qi, Z.; Yang, S.; Liao, L. A general non-rectangular hyperbola equation for photosynthetic light response curve of rice at various leaf ages. Sci. Rep. 2019, 9, 9909. [Google Scholar] [CrossRef] [PubMed]
- Minasny, B.; McBratney, A. Why you don’t need to use RPD. Pedometron 2013, 33, 14–15. [Google Scholar]
- Yi, J.; Sun, Y.; Zhu, Z.; Liu, N.; Lu, J. Near-infrared reflectance spectroscopy for the prediction of chemical composition in walnut kernel. Int. J. Food Prop. 2016, 20, 1633–1642. [Google Scholar] [CrossRef]
- Nilsen, E.T.; Stetler, D.A.; Gassman, C.A. Influence of Age and Microclimate on the Photochemistry of Rhododendron Maximum Leaves ii. Chloroplast Structure and Photosynthetic Light Response. Am. J. Bot. 1988, 75, 1526–1534. [Google Scholar] [CrossRef]
- Medlyn, B.E.; Dewar, R.C. Comment on the article by R. H.; Waring, J.J. Landsberg and M. Williams relating net primar production to gross primary production. Tree Physiol. 1999, 19, 137–138. [Google Scholar] [CrossRef] [Green Version]
- Kerkhoff, A.J.; Enquist, B.J.; Elser, J.; Fagan, W.F. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Glob. Ecol. Biogeogr. 2005, 14, 585–598. [Google Scholar] [CrossRef]
- Winzeler, H.; Hunt, L.A.; Mahon, J.D. Ontogenetic Changes in Respiration and Photosynthesis in a Uniculm Barley 1. Crop. Sci. 1976, 16, 786–790. [Google Scholar] [CrossRef]
- Amthor, J. The McCree–de Wit–Penning de Vries–Thornley Respiration Paradigms: 30 Years Later. Ann. Bot. 2000, 86, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Hover, J.M.; Gustafson, F.G. Rate of Respiration as Related to Age. J. Gen. Physiol. 1926, 10, 33–39. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Giordano, M.; Pannico, A.; Carillo, P.; Fusco, G.M.; De Pascale, S.; Rouphael, Y. Pascale Cultivar-Specific Performance and Qualitative Descriptors for Butterhead Salanova Lettuce Produced in Closed Soilless Cultivation as a Candidate Salad Crop for Human Life Support in Space. Life 2019, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, A.C.; Dodd, I.C.; Rothwell, S.; Jones, R.; Tardieu, F.; Draye, X.; Davies, W.J. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency. Plant Sci. 2016, 251, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, X.-C.; Song, X.-M.; Zhang, D.-L.; Du, Q.-J.; Li, J. Coordination between vapor pressure deficit and CO2 on the regulation of photosynthesis and productivity in greenhouse tomato production. Sci. Rep. 2019, 9, 8700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Z.; Li, J.; Chang, Y.; Du, Q.; Pan, T. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season. PLoS ONE 2015, 10, e0133919. [Google Scholar] [CrossRef]
- Gent, M.P. Effect of Degree and Duration of Shade on Quality of Greenhouse Tomato. HortScience 2007, 42, 514–520. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K.C. A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents. J. Food Sci. 2007, 72, S159–S166. [Google Scholar] [CrossRef]
- Leyva, R.; Aguilar, C.C.; Sánchez-Rodŕiguez, E.; Romero-Gámez, M.; Soriano, T. Cooling systems in screenhouses: Effect on microclimate, productivity and plant response in a tomato crop. Biosyst. Eng. 2015, 129, 100–111. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Chirico, G.B.; Pelosi, A.; De Michele, C.; Bolognesi, S.F.; D’Urso, G. Forecasting potential evapotranspiration by combining numerical weather predictions and visible and near-infrared satellite images: An application in southern Italy. J. Agric. Sci. 2018, 156, 702–710. [Google Scholar] [CrossRef]
- Murphy, M.C.; Jordan, G.J.; Brodribb, T.J. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant Cell Environ. 2013, 37, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Buckley, T.N.; John, G.P.; Scoffoni, C.; Sack, L. How Does Leaf Anatomy Influence Water Transport outside the Xylem? Plant Physiol. 2015, 168, 1616–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sack, L.; Scoffoni, C.; Johnson, D.M.; Buckley, T.N.; Brodribb, T.J. The Anatomical Determinants of Leaf Hydraulic Function; Springer Science and Business Media LLC: Berlin, Germany, 2015; pp. 255–271. [Google Scholar]
- Du, Q.; Liu, T.; Jiao, X.; Song, X.; Zhang, J.; Li, J. Leaf anatomical adaptations have central roles in photosynthetic acclimation to humidity. J. Exp. Bot. 2019, 70, 4949–4962. [Google Scholar] [CrossRef] [PubMed]
BIAS | RMSE | r | RPD | |
---|---|---|---|---|
G-t | −0.029 | 0.072 | 0.93 | 5.60 |
G-m | −0.027 | 0.065 | 0.96 | 5.61 |
G-b | −0.03 | 0.028 | 0.99 | 5.32 |
R-t | −0.05 | 0.021 | 0.99 | 5.44 |
R-m | −0.05 | 0.021 | 0.99 | 5.43 |
R-b | −0.05 | 0.020 | 0.99 | 5.23 |
Parameter | Definition | Value | Source |
---|---|---|---|
H | Photoperiod (hours) | 12 | E |
PPFD | Photosynthetic photon flux | 315 | E |
BCF | Biomass carbon fraction | 0.4 | L1 |
XFRT | Fraction of DCG allocated to edible biomass | 0.95 | L1 |
OPF | Oxygen production fraction (mol O2) (mol C)−1 | 1.08 | L1 |
gA | Aerodynamic conductance for water vapor transfer | 2.5 | L2 |
tD | Red lettuce initial time of development (days) | 8 | C1 |
tMi | Initial time of maturity (days) | 16 | C1 |
tM | Time of harvesting (days) | 23 | C1 |
αmin | G-N | 0.007 | C2 |
R-N | 0.007 | C2 | |
G-ON | 0.003 | C2 | |
R-ON | 0.003 | C2 | |
αmax | G-N | 0.017 | C2 |
R-N | 0.021 | C2 | |
G-ON | 0.010 | C2 | |
R-ON | 0.011 | C2 | |
βmin | G-N | 0 | C2 |
R-N | 0.022 | C2 | |
G-ON | 0.049 | C2 | |
R-ON | 0.036 | C2 | |
βmax | G-N | 0.045 | C2 |
R-N | 0.028 | C2 | |
G-ON | 0.056 | C2 | |
R-ON | 0.060 | C2 |
BIAS (L m−2) | RMSE (L m−2) | r | RPD | |
---|---|---|---|---|
G-N | 0.001 | 0.09 | 0.95 | 5.10 |
G-ON | −0.012 | 0.21 | 0.71 | 5.25 |
R-N | 0.000 | 0.10 | 0.74 | 6.40 |
R-ON | −0.040 | 0.35 | 0.56 | 5.34 |
BIAS (g m−2) | RMSE (g m−2) | r | RPD | |
---|---|---|---|---|
G-N | 0.19 | 4.46 | 0.99 | 4.87 |
G-ON | −0.12 | 2.98 | 0.99 | 4.88 |
R-N | 1.11 | 6.87 | 0.99 | 5.00 |
R-ON | 0.40 | 3.60 | 0.98 | 4.96 |
DAT | rBIAS gs | Predicted gs (mol m−2 s−1) | rBIAS PN | Predicted PN (µmol CO2 m−2 s−1) | |
---|---|---|---|---|---|
G-N | 23 | 39.4% | 0.26 | 34.1% | 9.80 |
G-ON | 23 | 68.2% | 0.13 | 75.9% | 10.38 |
R-N | 23 | −0.1% | 0.21 | −10.7% | 7.79 |
R-ON | 23 | 48.6% | 0.13 | 70.9% | 11.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amitrano, C.; Chirico, G.B.; De Pascale, S.; Rouphael, Y.; De Micco, V. Crop Management in Controlled Environment Agriculture (CEA) Systems Using Predictive Mathematical Models. Sensors 2020, 20, 3110. https://doi.org/10.3390/s20113110
Amitrano C, Chirico GB, De Pascale S, Rouphael Y, De Micco V. Crop Management in Controlled Environment Agriculture (CEA) Systems Using Predictive Mathematical Models. Sensors. 2020; 20(11):3110. https://doi.org/10.3390/s20113110
Chicago/Turabian StyleAmitrano, Chiara, Giovanni Battista Chirico, Stefania De Pascale, Youssef Rouphael, and Veronica De Micco. 2020. "Crop Management in Controlled Environment Agriculture (CEA) Systems Using Predictive Mathematical Models" Sensors 20, no. 11: 3110. https://doi.org/10.3390/s20113110
APA StyleAmitrano, C., Chirico, G. B., De Pascale, S., Rouphael, Y., & De Micco, V. (2020). Crop Management in Controlled Environment Agriculture (CEA) Systems Using Predictive Mathematical Models. Sensors, 20(11), 3110. https://doi.org/10.3390/s20113110