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Abstract: Proximal sensors in controlled environment agriculture (CEA) are used to monitor plant
growth, yield, and water consumption with non-destructive technologies. Rapid and continuous
monitoring of environmental and crop parameters may be used to develop mathematical models to
predict crop response to microclimatic changes. Here, we applied the energy cascade model (MEC)
on green- and red-leaf butterhead lettuce (Lactuca sativa L. var. capitata). We tooled up the model to
describe the changing leaf functional efficiency during the growing period. We validated the model
on an independent dataset with two different vapor pressure deficit (VPD) levels, corresponding to
nominal (low VPD) and off-nominal (high VPD) conditions. Under low VPD, the modified model
accurately predicted the transpiration rate (RMSE = 0.10 Lm−2), edible biomass (RMSE = 6.87 g m−2),
net-photosynthesis (rBIAS = 34%), and stomatal conductance (rBIAS = 39%). Under high VPD, the model
overestimated photosynthesis and stomatal conductance (rBIAS = 76–68%). This inconsistency is likely
due to the empirical nature of the original model, which was designed for nominal conditions. Here,
applications of the modified model are discussed, and possible improvements are suggested based on
plant morpho-physiological changes occurring in sub-optimal scenarios.

Keywords: crop modelling; energy cascade model (MEC); Lactuca sativa L. var. capitata; controlled
environment agriculture (CEA); precision horticulture

1. Introduction

Environmental control is a key factor to increase plant productivity in controlled environment
agriculture (CEA) [1]. Recently, increased interest has been directed towards plant production
in closed facilities (e.g., plant factories, vertical farms, indoor-growing modules) [2–4]. However,
with the introduction of advanced monitoring and control technologies, it becomes necessary to
properly discern plant/microclimate interaction, modulate environmental parameters, and manage
cultivation factors. Indeed, in protected agriculture, environmental factors and plant responses are
strictly interconnected: alteration of the microclimate can induce modifications in plants (both at
morphological and physiological levels), affecting plant behavior especially in terms of transpiration
and CO2/O2 exchanges, which in turn re-modify the surrounding environment [5].
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Recently, a technological “revolution” in agriculture is on-going, pushed by advances in
sophisticated technologies such as robots, aerial/proximal sensors and more broadly by the internet
of the things (IoT) [6]. This “revolution”, based on the automation of processes and the remote
monitoring of systems, would allow the realization of smart farming, with a more lucrative, efficient,
and sustainable production [7]. Remote sensing technologies allow the early monitoring of plant
responses to environmental stresses such as: drought, salinity, and heat due to high temperature
or excessive solar radiation. Currently, the remote sensing of plant physiological behavior is often
based on reflectance indices, including photochemical reflectance index (PRI), normalized difference
vegetation index (NDVI), leaf area index (LAI), and water index (WI) [8–10]. However, these indexes
are mostly used in the field and their use for the remote monitoring of the photosynthetic process
under controlled conditions is still limited. Indeed, in protected cultivations, crop monitoring mostly
relies on sensors controlling environmental parameters, and on plant gas-exchange and fluorescence
analyses [10].

As we progress in adopting technological advancement, issues related to sensor loss of control or
breakage may be experienced. Such phenomena would be responsible for modifications occurring at
the plant level during the cultivation cycle, such as alterations in plant growth, morphogenesis, and
development. In this context, mathematical models, which mimic the behavior of real systems, can be
adopted to monitor, simulate, predict, control, and facilitate the understanding of crop behavior in
protected cultivation under both nominal (optimal) and off-nominal (sub-optimal) conditions [11]. Until
now, most of the controlling tasks in CEA have been designed to maintain specific set-points, neglecting
the effects of environmental perturbations on crops [12]. However, evaluating crop status especially
under off-nominal conditions represents an added value to forecast possible growth reductions and
prevent yield losses by a real-time fine-tuning of environmental control and water management
(irrigation schedule), according to different plant phenological stages.

The aerial (moist/dry) control and, more specifically, the Vapor Pressure Deficit (VPD) regulation is
listed amongst the main critical issues for crop production in CEA [13]. Indeed, VPD is one of the main
drivers for plant transpiration: it affects crops during growth, changing plant morpho-physiological
development, especially impacting water fluxes in the soil–plant–atmosphere continuum (SPAC), and
thus the availability of water during the cultivation [14]. Given that plant transpiration is recognized to
be a convenient indicator of its water status, real-time sensor information is a fundamental pre-requisite
for the precision irrigation management of crops [15]. Furthermore, in small-indoor-growing modules,
like those used for cultivation in space, the regulation of plant water fluxes can be easily disrupted due
to difficulties in the control of VPD in limited volumes. Therefore, a proper irrigation management is
even more recommended.

These difficulties in VPD control in protected cultivation can determine a rise in air temperature and
consequently in evapotranspiration, which impact crop production, also resulting in decreasing stomatal
conductance and photosynthetic rates [16]. Transpiration in plants is influenced by environmental
conditions and regulated by stomatal opening/closing [17]. High VPD values (1.7–2 kPa) intensify plant
physiological stress, especially under water shortage, by increasing plant water loss and decreasing
carbon fixation, thus negatively influencing crop growth and productivity, which represents a major
issue for production in CEA [18]. Furthermore, together with increasing VPD and water stress, ABA
hormone tends to accumulate in leaves and its concentration is negatively correlated with the stomatal
conductance, further exacerbating leaf transpiration [19].

Nowadays, there are numerous models which simulate different photosynthetic and plant
productivity processes, often focusing on very specific aspects of plant physiology, such as: protection
of photosynthetic apparatus through the non-photochemical quenching, mesophyll conductance to
CO2, genotype-environment interactions [20–23]. Among these models, the energy cascade model
(MEC) has already been tested to implement crop growth in small prototypes for bioregenerative
life support systems (BLSSs) studies and in a lunar/Martian greenhouse [12,24]. This “explanatory”
model is therefore considered suitable to predict both biomass, photosynthesis, transpiration and
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energy balance in closed systems. Moreover, such a model could easily be applied by stakeholders
operating in controlled agriculture facilities for food production. Indeed, the model, requiring just
a few environmental and cultivation parameters as inputs, can help forecasting changes happening
during the cultivation after the modification of environmental factors, thus being possibly implemented
as decision support system.

In the present study, we report an application of the MEC model on butterhead lettuce (Lactuca
sativa L. var. capitate) cultivated under controlled conditions, also presenting a modification to the
original model. More specifically, we introduced additional components to include the variation of
canopy quantum yield of PSII (CQY) and carbon use efficiency (CUE) during leaf development. Such
parameters, which represent respectively the moles of carbon fixed per mole of photons absorbed
and the ratio of net carbon gain to gross carbon assimilation during growth, are critical to the model
for the calculation of the net photosynthesis and the biomass production. Furthermore, we applied
the modified version of the model on green- and red-leaf lettuce grown in a climatic chamber
under two VPD scenarios, namely low and high VPD, corresponding to nominal and off-nominal
conditions, respectively. This latter trial allowed the portrayal of the model parameters for nominal
and off-nominal scenarios for green- and red-leaf plants, since non-identical behavior often occurs for
different cultivars/varieties even under the same growth conditions.

2. Materials and Methods

2.1. The Original MEC Model

The original energy cascade model was developed for wheat by Volk et al. [25] and then calibrated
for other crops like lettuce, rice, soybean, sweet potato and tomato [26]. It is an explanatory model,
composed by multivariate equations whose coefficients have been determined through curve fitting of
experimental data [27]. The input variables of the first version of the model were the light intensity
(photosynthetic photon flux density; PPFD) and the photoperiod. All the model outputs, which mostly
concerned the biomass and the growth rate, were function of these two parameters.

The original MEC model was based on an “energy cascade” with three fundamental steps:

(1) the absorption of PPFD by the canopy;
(2) the absorbed energy (A) used in the photosynthetic process to convert carbon into sucrose;
(3) the conversion of sucrose into biomass.

Such a simple model required only three crop parameters, namely (i) the time of canopy closure
(tA), (ii) the time of senescence onset (tQ), and (iii) the time of harvesting (tM). Eventually, the model
was modified to add the following climatic parameters: air temperature, relative humidity, carbon
dioxide concentration, dark period, and plant density, in order to improve the accuracy and robustness
of the model [16]. In 2012, Boscheri et al. [12] implemented a modified version of the MEC model, for a
multi-crop Lunar greenhouse prototype. The version modified by Boscheri et al. [12] also included
a crop transpiration component, used to predict water and plant nutrient consumption.

The main model algorithm components were arranged according to twelve equations, sequentially
computed at each time step to calculate the key variables as listed below.

The canopy quantum yield (CQY, mol−1) is defined by an empirical equation as function of the
time t, expressed in days after emergence:

CQY = CQYMAX for t ≤ tQ

CQY = CQYMAX − (CQYMAX − CQYMIN)(t − tQ)/(tM − tQ) for tQ < t ≤ tM
(1)

where CQYMAX and CQYMIN are crop-specific parameters, while tQ and tM are time of the onset of
senescence and time of harvesting, respectively.
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The carbon use efficiency (CUE), is expressed similarly to CQY, according to the following relation:

CUE = CUEMAX for t ≤ tQ

CUE = CUEMAX − (CUEMAX − CUEMIN) (t − tQ)/(tM − tQ) for tQ < t ≤ tM
(2)

where CUEMAX and CUEMIN are crop specific parameters, although CUE has been often assumed to
be constant for most crops (i.e., CUEMAX = CUEMIN), tQ and tM are time of the onset of senescence and
time of harvesting, respectively.

The parameter A is the fraction of PPFD absorbed by the top of the canopy and is assumed to
increase with time t according to a power law equation, up to a maximum value AMAX at time t = tA,
when canopy closure is established:

A = AMAX·(t/tA)n for t ≤ tA

A = AMAX for t > tA
(3)

where tA is the time of canopy closure and n is a crop dependent exponent, which is considered to be
equal to 2.5 for lettuce [27].

The daily carbon gain (DCG, mol C m−2 d−1) is computed as follows:

DGC = 0.0036 H·α·PPFD (4)

where H is the photoperiod, α = CUE·A·CQY, and 0.0036 is a constant used to convert µmol to mol
and hours to seconds.

The daily oxygen production (DOP, mol O2 m−2 d−1) is then given by a fraction (oxygen production
fraction, OPF) of DGC:

DOP = OPF · DGC (5)

where OPF is expressed in mol O2 mol−1 C and is a crop-specific parameter.
The crop growth rate (CGR, g m−2 d−1) is given by:

CGR = MWc·DCG/BCF (6)

where MWc = 12 g mol−1 is the carbon molecular weight, while BCF is a crop specific parameter
representing the biomass carbon fraction.

Thus, the total edible biomass (TEB), expressed as specific dry weight (g m−2), was calculated by
integrating the crop growth rate, multiplied by the fraction of CGR allocated to edible biomass (XFRT):

TEB =

∫ tM

tE
XFRT · CGR · dt (7)

where tM is the time of harvesting, tE is the time of the onset of edible biomass formation and XFRT
represents a partitioning coefficient for the edible biomass, which combines the effects of determinacy
and temperature on storage organ growth rates [26].

The gross photosynthesis (PG, µmol CO2 m−2 s−1) is computed as follows:

PG = β · PPFD (8)

where β = A·CQY and PPFD is the photosynthetic photon flux density (µmol m−2 s−1).
The net photosynthesis (PN, µmol CO2 m−2 s−1) is computed by accounting for the carbon use

efficiency in the photoperiod:

PN = [H·α/24 + β (24 − H)/24] · PPFD (9)
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where H is the photoperiod, α = CUE·A·CQY, β = A·CQY and PPFD is the photosynthetic photon flux
density (µmol m−2 s−1).

The stomatal conductance (gS, mol m−2 s−1) for planophile-type canopies (such as lettuce) is
calculated according to Monje et al. [28]

gS = (1.717·T − 19.96 − 10.54·VPD)·PN/[CO2] (10)

where T (◦C) is the mean air temperature during light cycle and [CO2] is the air carbon dioxide
concentration expressed as µmol CO2 mol−1.

The canopy surface conductance for water vapor (gc, mol m−2 s−1) is defined as follows:

gc = gA·gS/(gA + gS) (11)

where gA = 2.5 mol m−2 s−1 is the aerodynamic conductance and gs the stomatal conductance.
The daily canopy transpiration (DTR, L m−2 d−1) is also calculated as follows:

DTR = 3600·H·(MWW/ρW)·gc·(VPD/PATM) (12)

where 3600 is a conversion constant from second to hours, MWW = 18 g mol−1 is the molecular weight
of water, ρW = 100 g L−1 is the water density, and PATM (kPa) is the total atmospheric pressure, which
was used to convert vapor pressure to mole fraction.

2.2. Limitations of the Original MEC Model Formulation

According to Equations (1)–(12), the original energy cascade model, used for advanced life support
systems (ALSs) studies, predicted the biomass production and the photosynthetic rate based on three
parameters: (i) the canopy light absorption (A), (ii) the crop quantum yield of PSII (CQY), and (iii) the
carbon use efficiency (CUE). The physical and biological trends of these parameters were: a linear
increase in PPFD absorption till the canopy closure; a constant CQY until the onset of senescence,
followed by a linear decrease till the end of the cycle, and a constant CUE throughout the life cycle
(Figure 1, orange lines). However, for lettuce and a few other crops like sweet potato, which are
harvested before the occurrence of senescence (tQ), the CQY, as the CUE, were assumed to be constant
during the entire growth cycle prior harvesting (Figure 1, blue lines).
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considered to be constant throughout the whole crop cycle; and for other crops (orange lines), in which
CQY (a) was considered to be constant until the onset of senescence (tQ), to linearly decrease till the
time of harvesting (tM), while CUE (b) was considered to be constant.

2.3. Experiments to Retrieve CQY Temporal Pattern

The canopy quantum yield (CQY) represents the moles of carbon fixed per mole of photons
absorbed [29–31] and can be assessed in different ways such as:

(1) Dividing the daily PG (mol C m2
·d–1) by the total absorbed photons (mol m2

·d–1) [32,33];
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(2) From the initial slope of saturation-photosynthetic curves [29];
(3) By means of a fluorimeter, an instrument which measures the proportion of the light absorbed by

the chlorophyll associated with the photosystem II (PSII), thus indicating the efficiency of the
carbon fixation and of the overall photosynthesis [34].

In this study, we designed a calibration experiment for assessing the CQY temporal pattern in
butterhead ‘Salanova’ lettuce (Lactuca sativa L. var. capitata), by means of a fluorimeter. The experiment
was performed from 10 July 2019 to 6 August 2019, at the Department of Agricultural Sciences
(University of Naples Federico II). Two weeks after sowing, the plants of butterhead lettuce cultivars,
green- and red-leaf Salanova® (Rijk Zwaan, Der Lier, The Netherlands) were transplanted into 10 cm
pots filled with a peat:soil mixture (1:1 volume ratio) and exposed to solar light. Air temperature (T)
was kept at 23 ◦C and plants were irrigated at 2-day intervals in order to reach the container capacity
(till the beginning of drainage). Chlorophyll “a” fluorescence analyses were performed by means
of a portable fluorimeter (ADC Bioscientific) on 3 expanded leaves per 4 green- and 4 red-lettuce
plants every day, in order to highlight the leaf-age-driven variations in CQY, according to Genty et al.
(1989) [35]. Fluorescence analyses were conducted at steady-state photosynthesis under a light intensity
of about 400 µmol m−2 s−1, with a saturation pulse duration of 0.8 s, by keeping the orientation of the
leaf relative to the actinic light source when taking CQY measurements. The leaves were chosen from
three different positions within the lettuce head (top—t, medium—m, and bottom—b) in order to gain
representative data for retrieving the general temporal pattern of CQY throughout the canopy.

2.4. Experiments in a Controlled Environment Growth Chamber to Validate the Model

Nine green- and nine red-leaf Salanova lettuce plants were grown in a controlled environment
growth chamber (KBP-6395F, Termaks, Bergen, Norvegia) (Figure 2), in two consecutive trials. In the first
trial, 1-week old plants were transplanted into 10 cm pots filled with peat:perlite substrate (1:1 volume
ratio) and incubated with an average VPD of 0.69 kPa, corresponding to nominal conditions of Low
VPD. In the second trial, 9 green- and 9 red-leaf lettuce plants were incubated with an average VPD
of 1.76 kPa, corresponding to off-nominal conditions of High VPD. The two different VPDs were
achieved by keeping air temperature (T) constant at 24 ◦C, while changing the relative humidity (RH)
accordingly. Temperature and RH were monitored and recorded every 10 min by means of mini sensors
equipped with a data logger (Testo 174H). All other microclimate parameters and agricultural practices
were the same in the two consecutive experiments. The lighting system was an RGB LED panel, with a
light intensity of 315 PPFD µmol m−2 s−1 at the canopy level (12 h photoperiod; 13.6 daily light integral,
DLI). Daily rotation of the trays was performed to ensure homogenous light and humidity across
the shelf surface. Plants were daily weighted to assess the loss of water by transpiration (DTR) and
were re-watered to field-capacity. Evaporation losses from the substrate were minimized by covering
the substrate with a plastic film. Plant growth was assessed by imaging, measuring canopy total
area every day, and counting the number of leaves. Furthermore, dry weight was recorded at the
beginning and at the end of both trials. These measurements were used to reconstruct the daily total
edible biomass (TEB). Changes in leaf temperature were monitored with an infrared thermometer on
three leaves per plant (H-1020; Helect). These measurements were averaged and used instead of T
in Equation (10) of the MEC model, to obtain more precise information of the leaf-to-air VPD which
influences stomata conductance the most. After 23 days, on fully developed leaves, eco-physiological
analyses in terms of gas exchanges (LCA 4; ADC BioScientific Ltd., Hoddesdon, UK) and chlorophyll
“a” fluorescence (through the above-reported portable fluorimeter), were performed. Gas-exchange
analyses were carried out on fully expanded leaves, using 9 replicates per condition to assess plants
physiological behavior (PN and gs) in response to different VPD conditions. During the measurements
PAR, RH and carbon dioxide concentrations were set at ambient value and the flow rate of air was set
to 400 mL s−1. PN and gs values were averaged and also used to evaluate the corresponding model
prediction performances.
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VPD) of green and red-leaf lettuce.

2.5. Model Structure and Parameter Identification

The results of the experiments conducted to retrieve CQY temporal pattern suggested the
opportunity to redesign the MEC model by modifying the temporal variability of some key parameters,
without increasing the model complexity. Indeed, fundamental model outputs like TEB and PN,
directly depend on these key parameters, which temporal patterns are influenced by the VPDs levels
(nominal and off-nominal) and often result to be cultivar-specific [13]. Based on Equations (1)–(12),
the three variables A, CQY, and CUE were reduced to the variable α = CUE·A·CQY and β = A·CQY.
The developmental stages observed for CQY were then assumed to be valid also for α and β, i.e.,
under the assumption of functional similarity between the variables involved, as also suggested by
other studies [36–39]. The key temporal parameters, explaining the different development for α and
β, were set equal to those observed for CQY. The other parameters, identifying the minimum and
maximum values for α and β, were calibrated by minimizing the root mean square error (RMSE)
of the predicted DTR with respect to the corresponding observations over the entire simulation
period, with the generalized reduced gradient optimization algorithm. The calibrated model was then
validated against TEB measured over the entire simulation period. Simulated and modelled gs and
PN were also compared on day 23 after transplanting (DAT), the day of the experiment when gas
exchange analyses were performed to experimentally determine PN and gs. Calibration and validation
were performed for each of the four examined scenarios: green lettuce under nominal VPD conditions
(G-N); green lettuce under off-nominal conditions (G-ON); red lettuce under nominal VPD conditions
(R-N); red lettuce under off-nominal conditions (R-ON).

The statistical performance indices for CQY, DTR and TEB were the linear correlation between
predictions and observations (r), the average difference between prediction and observation (BIAS),
the root mean square error (RMSE) and the ratio of performance to deviation (RPD). BIAS and RMSE
were computed as follows:

BIAS =

∑N
j=1

(
Xp,j −Xo,j

)
N

(13)

RMSE =

√√∑N
j=1

(
Xp,j −Xo,j

)2

N
(14)

where N is the number of simulation days considered for the computation of the performance index,
Xp,j is the prediction on the j-th day, Xo,j is the observation day on the j-th day, averaged among the
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9 sample plants for each examined scenario. Meanwhile, the RPD was calculated as the ratio of the
standard deviation of the experimental data to the standard error of the model predictions. Although
considered redundant by some authors [40], it has been suggested that RPD > 3 are good for screening
purpose, RPD > 5 are suitable for quality control and RPD values > 8 are considered optimal for every
kind of analytical application [41]. The model performance for PN and gs were assessed by the relative
BIAS, i.e., the BIAS normalized by the corresponding average measured value on the 23rd DAT.

3. Results

3.1. Model Equations and Parameters

Results from fluorescence analyses on green- and red-leaf lettuce plants are reported in Figure 3.
In both cultivars, top leaves always presented the highest values followed by medium leaves, while
the lowest values were recorded in the bottom leaves. Based on the analyzed experimental data,
in green-leaf plants, we distinguished three stages in CQY temporal patterns:

(1) A period of CQY monotonically increasing, starting from the initial leaf lamina development till
the beginning of the maturity stage (tMi).

(2) A period of stationary CQY, during plant maturity.
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Figure 3. Profiles of CQY for top (a,d), medium (b,e) and bottom (c,f) leaves in the green- (a–c) and
red-leaf (d–f) lettuce cultivars; model simulations (line) and experimental data (dots) are reported.
Three different phases are identified: (1) a linear increasing; (2) a constant maturity; (3) a decreasing
senescence plus an initial phase of stationary CQY for red-leaf plants. All data referred to 30 days after
transplanting (DAT).
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Furthermore, for the red-pigmented lettuce, the first phase was preceded by a period of
stationary CQY.

In the light of these considerations, instead of Equation (1), we designed a new mathematical
relation to analytically describe the temporal evolution of CQY, consistently with the experimental
data. The first stage was modelled by a linear equation, that fits the observed data between the initial
time of development (tD) and maturity (tMi). The second stage was modelled by constant value, with
CQY = CQYMAX, from tMi till end of maturity (tM). The third stage was modelled by a linear decreasing
equation, between tMi and the time tS, corresponding to the end of the senescence period, with CQY
= CQYS. The third stage is not relevant from a practical perspective, since it is beyond the time of
harvesting, which coincides with tM. Moreover, for the red-leaf cultivar, the initial period of stationary
CQY was modelled by a constant value, with CQY = CQYMIN, from the first day after transplanting till
tD. This stage is only relevant for the red lettuce, with tD = 8 days, since green lettuce does not present
this “adaptation” period (i.e., tD = 1). As illustrated in Figure 3, the other relevant times tMi and tM

resulted to be equal to 16 and 23 for all examined scenarios and leaves.
As shown in Table 1, predicted CQY BIAS was close to zero, while RMSE varied from 0.028

to 0.072 for green- and 0.020–0.021 for red-leaf lettuce. However, the linear correlation between
observed and predicted CQY was high in all conditions, always being larger than 0.92. Furthermore,
the values for RPD always showed values around 5, indicating the robustness and reliability of CQY
prediction model.

Table 1. BIAS, root mean square error (RMSE), linear correlation (r) and ratio of performance to
deviation (RPD) for CQY of PSII of green- (G) and red-leaf (R) lettuce cultivars for top-t, medium-m,
and bottom-b leaves.

BIAS RMSE r RPD

G-t −0.029 0.072 0.93 5.60
G-m −0.027 0.065 0.96 5.61
G-b −0.03 0.028 0.99 5.32
R-t −0.05 0.021 0.99 5.44

R-m −0.05 0.021 0.99 5.43
R-b −0.05 0.020 0.99 5.23

In accordance with the assumptions stated in Section 2.5, variables α and β were modelled to
change in time according to the following relation:

X = χMIN for t ≤ tD

χ = χMIN + (χMAX − χMIN) (t − tD)/(tMi − tD) for tD ≤ t < tMi

χ = χMAX for tMi ≤ t < tM

(15)

where χ denotes the generic variable (either α or β), while χMIN and χMAX the corresponding minimum
and maximum values. Parameters αmin, αmax, βmin and βmax were derived from experimental
gas-exchange and chlorophyll “a” fluorescence measurement performed in the growth chamber
experiment. These parameters were therefore differentiated for the nominal and off-nominal scenarios
and for green and red lettuce cultivars, since these cultivars showed different behaviors under the
same growth conditions. Afterwards, these parameters were calibrated by minimizing the RMSE with
respect to the measured DTR values. Table 2 presents the complete list of model parameters, including:
parameters defined by the experimental setting (E), those set according to literature data (L1 and L2),
those calibrated by means of the CQY experiments (C1), and those calibrated by means of the DTR
measurements during the chamber growth experiments (C2).
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Table 2. Parameters used to validate the modified MEC model.

Parameter Definition Value Source

H Photoperiod (hours) 12 E
PPFD Photosynthetic photon flux 315 E
BCF Biomass carbon fraction 0.4 L1

XFRT Fraction of DCG allocated to edible biomass 0.95 L1
OPF Oxygen production fraction (mol O2) (mol C)−1 1.08 L1
gA Aerodynamic conductance for water vapor transfer 2.5 L2
tD Red lettuce initial time of development (days) 8 C1
tMi Initial time of maturity (days) 16 C1
tM Time of harvesting (days) 23 C1

αmin

G-N 0.007 C2
R-N 0.007 C2

G-ON 0.003 C2
R-ON 0.003 C2

αmax

G-N 0.017 C2
R-N 0.021 C2

G-ON 0.010 C2
R-ON 0.011 C2

βmin

G-N 0 C2
R-N 0.022 C2

G-ON 0.049 C2
R-ON 0.036 C2

βmax

G-N 0.045 C2
R-N 0.028 C2

G-ON 0.056 C2
R-ON 0.060 C2

In the source column: C1 = calibrated with CQY experiments as illustrated in Section 2.3, C2 = calibrated with
chamber growth experiment as illustrated in Section 2.4; E = experimental setting, L1 from [15], and L2 from [13].

3.2. Model Performance

From our results, it is evident how DTR, TEB, gS, and PN followed similar trends in green- and
red-leaf lettuce cultivars grown under both nominal and off-nominal conditions, but with different
absolute values and magnitude of changes during the cultivation cycles.

Figure 4 shows the observed and predicted DTR values after model calibrations. The irregular
pattern of DTR with time, is due to high sensitivity of DTR to slight perturbations in VPD levels
during the diurnal hours of experiment. This sensitivity was higher under off-nominal conditions.
Indeed, the model was able to reproduce the observed DTR under nominal conditions better than
under off-nominal conditions. As reported in Table 3, under nominal conditions, predicted DTR
BIAS was almost null, while RMSE was 0.09 L m−2 and 0.10 L m−2 for green- and red- leaf lettuce,
respectively, i.e., less than 20% of the average DTR observed during the entire experiment. Under
off-nominal condition, DTR BIAS was still low (max 0.04 L m−2 for red-leaf lettuce) but the RMSE
increased to 0.21 L m−2 for the green lettuce and to 0.35 for the red lettuce. These RMSE values were
still acceptable, since they are below the 30% of the observed DTR. The linear correlation between
observed and predicted DTR was almost always high (larger than 0.70), except for the R-ON scenario
which exhibited a linear correlation equal to 0.56. However, the RPD values varied from 5.10 to 6.40 for
nominal conditions and 5.25 to 5.34 for off-nominal conditions. Being always higher than 5, the RPD
overall indicates a good quality of the model predictions.

The calibrated model was validated with the observed total edible biomass (TEB), representative
of the lettuce daily growth. Total edible biomass was also influenced by VPD conditions: plants under
nominal condition developed more biomass than those grown under off-nominal scenarios, both in
green- and red-leaf lettuce cultivars (Figure 5). The temporal evolution of TEB was more regular
and less sensitive to the perturbations of the experimental settings. The TEB predictions curves fully
reflected what was expected by lettuce grown under those different VPD conditions, showing an almost



Sensors 2020, 20, 3110 11 of 19

linear increment in biomass till the time of harvesting (Figure 5). Furthermore, the predicted growth
curves accurately simulated the lettuce biomass accumulation. In Table 4, BIAS, RMSE, r and RPD for
the TEB are reported. The linear correlation coefficient (r) was always close to 1, BIAS varied in the
range 0.19–1.11 under nominal conditions, and 0.12–0.40 under off-nominal conditions, whereas RMSE
and RPD values varied in the range 4.46–6.87 and 4.87–5.00 under nominal conditions and 2.98–3.60
and 4.88–4.96 under off-nominal conditions, indicating a good reliability of model predictions. Overall,
the results showed that the TEB prediction errors were always below 10%.
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Table 3. BIAS, root mean square error (RMSE), linear correlation (r) and ratio of performance to
deviation (RPD) for Daily Transpiration Rate (DTR) of green- (G) and red-leaf (R) lettuce cultivars
grown under nominal (N) and off-nominal (ON) conditions.

BIAS (L m−2) RMSE (L m−2) r RPD

G-N 0.001 0.09 0.95 5.10
G-ON −0.012 0.21 0.71 5.25
R-N 0.000 0.10 0.74 6.40

R-ON −0.040 0.35 0.56 5.34

Table 4. BIAS, root mean square error (RMSE), linear correlation (r) and ratio of performance to
deviation (RPD) for Total Edible Biomass (TEB) of green- (G) and red-leaf (R) lettuce cultivars grown
under nominal (N) and off-nominal (ON) conditions.

BIAS (g m−2) RMSE (g m−2) r RPD

G-N 0.19 4.46 0.99 4.87
G-ON −0.12 2.98 0.99 4.88
R-N 1.11 6.87 0.99 5.00

R-ON 0.40 3.60 0.98 4.96
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Figure 6 shows the box-plot distribution of the stomatal conductance (gS) as well as of the net 
photosynthesis (PN). Stomatal conductance and PN were significantly higher under nominal 
conditions compared to off-nominal, in both butterhead cultivars. Unfortunately, these data are only 
available for the 23rd DAT, when leaf gas-exchange analyses were performed. As illustrated in Table 
5, gS relative BIAS (rBIAS) was equal to 39% and −0.1% in green- and red-leaf lettuce, respectively; PN 

relative BIAS (rBIAS) was instead equal to 34.1% and −10.7%. Under off nominal conditions, the 
predicted gS and PN were much less accurate: rBIAS for gS was 68.2% and 48.6% for green- and red-

Figure 5. Theoretical (line) and experimental (dots) profiles of TEB (Total edible biomass) for green- (G)
(a) and red-leaf (R) (b) plants under nominal (N) and off-nominal (ON) scenarios; model simulations
(line) and experimental data (dots) are reported.

Figure 6 shows the box-plot distribution of the stomatal conductance (gS) as well as of the net
photosynthesis (PN). Stomatal conductance and PN were significantly higher under nominal conditions
compared to off-nominal, in both butterhead cultivars. Unfortunately, these data are only available for
the 23rd DAT, when leaf gas-exchange analyses were performed. As illustrated in Table 5, gS relative
BIAS (rBIAS) was equal to 39% and −0.1% in green- and red-leaf lettuce, respectively; PN relative
BIAS (rBIAS) was instead equal to 34.1% and −10.7%. Under off nominal conditions, the predicted gS

and PN were much less accurate: rBIAS for gS was 68.2% and 48.6% for green- and red-leaf lettuce
respectively, while rBIAS for PN was 75.9% and 70.9%. These larger overestimations of gS and PN

testifies the limit of some empirical formulations (e.g., Equation (10)) adopted by the MEC model to
reproduce the impact of off-nominal conditions on the stomatal conductance.
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Table 5. Relative BIAS (rBIAS) and model predictions of stomatal conductance (gs) and net
photosynthesis (PN), for green- (G) and red-leaf (R) lettuce cultivars grown under nominal (N)
and off-nominal (ON) conditions. All data are referred to 23 DAT.

DAT rBIAS gs
Predicted gs

(mol m−2 s−1) rBIAS PN
Predicted PN

(µmol CO2 m−2 s−1)

G-N 23 39.4% 0.26 34.1% 9.80
G-ON 23 68.2% 0.13 75.9% 10.38
R-N 23 −0.1% 0.21 −10.7% 7.79

R-ON 23 48.6% 0.13 70.9% 11.12

4. Discussion and Conclusions

The proposed version of the MEC model, validated against experimental data on green- and
red-leaf lettuce cultivars, grown under both nominal (low VPD) and off-nominal (high VPD) scenarios,
proved to be reliable in predicting crop growth and transpiration rate. All previous versions of the MEC
model considered CQY and CUE to be constant during plant growth [12,24,26,27]. This assumption for
CQY and CUE constant behavior is not consistent with recent literature in which contrasting results on
the topic are reported. For instance, in rice, Xu et al. (2019) [39] observed a decline in photosynthetic
rate, dark respiration and quantum yield according to leaf aging. In the latter study, both parameters
rapidly increased to a maximum around 15 days, to linearly decline as a response to plant aging.
Similar findings were also reported in a study on Rhododendron maximum L., were the decline of CQY
during leaf aging was exacerbated by the exposure to high light intensity [42].

The issue is even more complex for CUE, since the carbon use efficiency has been less characterized
for horticultural plants and little information exists for lettuce under different environmental
conditions [31]. Although many models still rely on a fixed value of CUE set around 0.5 [43,44], this
topic has been questioned and more studies contrasting this theory have been reported. For example,
Winzeler et al. (1976) [45] showed that CUE of barley increased during the early phases of the growing
cycle, while a decrease was reported during the second half of the cultivation period. In forest
species, Amthor (2000) [46] showed that CUE is reported to vary sharply with aging, within and
among different species and environmental conditions, due to different respiratory needs for growth
and maintenance [37,46]. Indeed, it should be noted that CUE represents how efficiently a plant
incorporates carbon into biomass and can be defined as follows:

CUE = DCG/PG = (PN − RD)/(PN + RN) (16)

where RD and RN are the daylight and night respiration, respectively.
Thus, a constant CUE would indicate that plants always present a constant positive respiration

rate and that changes in photosynthetic activity would determine limited variations in growth and
respiration, both these scenarios being quite unlikely [36]. Many studies have found that changes in
the respiration rate during the plant growth cycle are species/cultivar-specific and maintain similar
trends as net photosynthesis [38,39,47]. Furthermore, the situation can be different for the same plant
species under different environmental conditions. Plant growth under near-optimal conditions have
been reported to have smaller changes in CUE than plant grown under limited conditions, because
the relative growth rate, higher under optimal conditions, would minimize the effect of maintenance
respiration coefficients on the carbon use efficiency [36].

Given these uncertainties in the determination of CUE and the observed variability for CQY,
in the present study, we suggested a modified version of the MEC model structure, by aggregating the
variables A, CUE, CQY into two variables (α and β) and by assuming for these two variables the same
temporal patterns observed for CQY till maturity, under the assumption of physiological similarity.
Thus, the number of model parameters to be calibrated was reduced to four. The calibration was
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performed against the DTR data, while the remaining TEB gs and PN experimental data were used
for validation.

In the present study, we proved that in lettuce a temporal pattern exists in CQY changing during
plant aging. Furthermore, our findings highlighted differences between green- and red-leaf lettuce
plants. More specifically, a first stage of stationary CQY was observed just for the red ‘Salanova’ lettuce.
This period could be attributed to the time required by this red-pigmented cultivar to adapt to the
new environmental condition after transplanting. Indeed, green and red Salanova lettuce, although
belonging to the same species, have been proven to have a different behavior even under the same
environmental conditions. For instance, under both nominal and off-nominal conditions, red-leaf
lettuce exhibited highest values of net photosynthesis, stomatal conductance, as well as a higher value
of edible biomass [13].

Therefore, it was interesting to observe that all leaves of both green and red lettuce plants,
notwithstanding the position inside the canopy level (top, medium, bottom), exhibited the same
timing for CQY variation, except for the initial time of development (tD). The time tD in red lettuce
corresponds with the time of canopy closure (tA), which was also observed to be equal to eight days for
both green and red Salanova. Thus, it is feasible that the red cultivar requires an initial time interval
for adapting after the transplant. However, red plants completely recover from their initial “delay” by
reaching CQYMAX at time tMi = 16 days, as it occurs for green-leaf lettuces, also showing the highest
values of net photosynthesis, stomatal conductance and edible biomass, overall suggesting a better
physiological performance [48].

In our study, the experimental data and particularly TEB, gs and PN assumed the highest values
under nominal condition, as a result of the lower evaporative demand. Under a high VPD (dry air),
the evaporative demand increases, and plants try to counteract dehydration by closing their stomata,
thus decreasing photosynthetic rates and stomatal conductance [5,49,50]. Indeed, under high VPD
conditions, transpiration rates were enhanced, and a plant might lose water from tissues with negative
consequences on the whole plant–hydraulic system. Thus, these plants require more water to reach the
field-capacity, compared to those grown under nominal-conditions. Generally, the cultivation of crops
under high VPD results in yield drop-off [51] and often in quality loss [52–55], which are considered
major problems for crop production.

This calibrated model was able to reproduce the observed transpiration and biomass growth,
under both nominal and off-nominal conditions. This capability of prediction could represent an
added value for the cultivation management in CEA because it may allow the prediction of any yield
loss, consequent to sudden changes in the microenvironment. Furthermore, the reliability in the
model prediction concerning the daily transpiration rates could allow the set-up of a precise irrigation
schedule, according to changes in the environmental condition, similarly to what is done in other
agricultural sectors, by developing decision support systems (DSS) based on the optimal combination
of sensors and prediction models [56].

However, the model tended to overestimate stomatal conductance and photosynthesis under
off-nominal conditions. A feasible technical explanation to these overestimations is that the empirical
model was initially calibrated only for nominal conditions and that a “big leaf” approach is used to
calibrate the model equations. A plant, especially when grown in a sub-optimal environment,
triggers a cascade of biological processes leading to the development of leaves with different
anatomical traits (especially those linked with conductance and hydraulics), thus influencing plant
photosynthetic performance and the whole physiological behavior [57–60]. Therefore, in this specific
case, overestimation of stomatal conductance and photosynthesis, while maintaining comparable
values of transpiration under off-nominal conditions compared to nominal ones, can be explained by
the lack of consideration of structural plasticity (e.g., mesophyll density and vein distribution) which
can differentially establish the limits of different physiological processes [5]. In light of the above
results, by applying this implemented version of the model to cultivation trials, it was possible to
simulate variations in environmental parameters which can be due to sensor failure, power loss, and
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other problems related to environmental control. The present modified version of the MEC model can
simulate crop growth, photosynthesis, and transpiration over a different range of environments and
is therefore suitable to be implemented in decision support systems (DSS) for forecasting variations
triggered by anomalies in the environmental control. However, the model still has a “big-leaf” approach
and can therefore overestimate some processes happening at the crop morpho-physiological level.
To increase the functionality of the model, a further step could be to modify the relation used to
calculate gs and PN by considering morpho-physiological modifications that would affect plant gas
exchanges under off-nominal conditions.
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Abbreviations

ALSs Advanced life support systems
AMAX Maximum fraction of PPFD absorbed by the canopy
BCF Biomass carbon fraction
BIAS Average difference between prediction and observation
BLSSs Bioregenerative life support systems
CEA Controlled environment agriculture
CGR Crop growth rate (g m−2 d−1)
CO2 Carbon dioxide (ppm)
CQY Canopy quantum yield
CUE Carbon use efficiency
DCG Daily carbon gain (mol C m−2 d−1)
DLI Daily light integral
DOP Daily oxygen production (mol O2 m−2 d−1)
DTR Daily canopy transpiration (mm d−1)
gA Aerodynamic conductance (mol m−2 s−1)
gc Canopy conductance (mol m−2 s−1)
gs stomatal conductance (mol m−2 s−1)
H Photoperiod
IoT Internet of things
MEC Energy cascade model
MWc Carbon molecular weight (12 g mol−1)
MWW Water molecular weight (18 g mol−1)
O2 Oxygen (ppm)
PATM Atmospheric pressure (kPa)
PG Gross photosynthesis (µmol CO2 m−2 s−1)
PN Net photosynthesis (µmol CO2 m−2 s−1)
PPFD Photosynthetic photon flux density (µmol photon m−2 s−1)
PSII Photosystem II
RD Day respiration (µmol m−2 s−1)
RH Relative humidity (%)
RMSE Root mean square error
RN Night respiration (µmol m−2 s−1)
SPAC Soil-plant-atmosphere-continuum
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T Temperature (◦C)
tA Time at canopy closure
tD Initial time of development
tE Onset of edible biomass
TEB Total edible biomass (g m−2)
tM Time of harvesting
tMi Initial time of maturity
tQ Time of the onset of senescence
TS Time of senescence
VPD Vapour pressure deficit (kPa)
XRTF Partitioning coefficient for the edible biomass
ρW Water density (100 g L−1)
α product of A, CQY and CUE
β product of A and CQY
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