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Abstract: Many neurological diseases and delineating pathological regions have been analyzed, and
the anatomical structure of the brain researched with the aid of magnetic resonance imaging (MRI). It
is important to identify patients with Alzheimer’s disease (AD) early so that preventative measures
can be taken. A detailed analysis of the tissue structures from segmented MRI leads to a more accurate
classification of specific brain disorders. Several segmentation methods to diagnose AD have been
proposed with varying complexity. Segmentation of the brain structure and classification of AD using
deep learning approaches has gained attention as it can provide effective results over a large set of data.
Hence, deep learning methods are now preferred over state-of-the-art machine learning methods. We
aim to provide an outline of current deep learning-based segmentation approaches for the quantitative
analysis of brain MRI for the diagnosis of AD. Here, we report how convolutional neural network
architectures are used to analyze the anatomical brain structure and diagnose AD, discuss how
brain MRI segmentation improves AD classification, describe the state-of-the-art approaches, and
summarize their results using publicly available datasets. Finally, we provide insight into current
issues and discuss possible future research directions in building a computer-aided diagnostic system
for AD.
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1. Introduction

Magnetic resonance imaging (MRI) is used to analyze the anatomical structures of the brain due to
its high spatial resolution and ability to contrast soft tissue. It is known that MRI is generally associated
with fewer health risks compared to other modalities like computed tomography (CT) and positron
emission tomography (PET) [1]. Over the past few decades, tremendous progress has been made in
assessing brain injuries and exploring brain anatomy with MRI [2]. Disorders such as Alzheimer’s
disease (AD) and multiple sclerosis [3] associated with the brain can be identified using MRI. Tissue
atrophy is a popular indicator that is used in diagnosing AD. The segmentation of brain MRI taken
at different times is also used to measure structural changes in the brain. Accurate detection and
classification of unhealthy tissue and its surrounding healthy structures are also important in the
diagnosis of conditions such as AD. A large amount of data is required for more accurate diagnoses.
However, it can be challenging for clinicians to analyze large and complex MRI datasets and to extract
important information manually. Moreover, due to various inter- or intra-operator variability issues [4],
manual analysis of brain MRI is time-consuming and vulnerable to errors. Hence, it is necessary
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to develop an automated segmentation method to provide accurate results with high confidence.
Computerized techniques for MRI segmentation, visualization, and registration have recently been
used on large scale datasets to assist clinicians in making qualitative diagnoses.

A number of clinical applications include brain MRI segmentation because it impacts the results
of the entire analysis process. A number of classical machine learning-based approaches have been
developed for the segmentation of brain tissue types such as gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF). Abnormal tissues of the brain in patients with AD can be segmented in
MRI [5]. However, the extraction of the imaging features for such segmentation requires elaborate
engineering techniques and specialized expertise.

The main objective of brain MRI segmentation is to divide the image into well-defined regions,
where each region consists of a set of pixels that share the same range of intensities, texture, or
neighborhood. Our review discusses the segmentation of these regions from brain images using deep
learning techniques. The segmentation of GM, WM, and CSF from brain MRI is challenging due to their
tissue intensities, non-uniformity (bias), noise artifacts, and partial volume effect. To overcome these
difficulties, several deep learning techniques for brain MRI segmentation have been developed and will
be reviewed. We also review various deep learning techniques for the early diagnosis of AD, which is
a type of dementia that can cause thinking, memory, and behavioral issues. For the MRI classification
of AD, significant patterns from raw data are considered, and these patterns are grouped into different
categories based on their characteristics. Significant advances in imaging technology have led to the
development of different applications of image segmentation and classification. Brain segmentation
plays an important role and can be a building block for AD diagnosis. Semantic segmentation
techniques with Freesurfer [6] can predict the volume of the brain from MRI scans of patients with
AD [7]. Unsupervised hierarchical segmentation methods for AD diagnosis can detect homogeneous
regions and separate them from coarse to finer levels, providing more flexibility for multi-level analysis
than single-level semantic segmentation [8,9]. Furthermore, precuneus atrophy and the hippocampus
are the most sensitive biological indicators of AD, particularly at an early stage [10]. The precuneus, an
area of the posteromedial cortex, has recently received significant attention in functional neuroimaging
studies. Precuneus atrophy observed in the AD group suggests that MRI volumetric assessment of
precuneus volume, in addition to the hippocampal volume, might be a useful radiological index for
the diagnosis of AD.

Figure 1 shows the boundaries of the left precuneus in the sagittal plane, and the entire
anterior-posterior extent of the hippocampus (including its head, body, and tail) outlined on coronal
MR images. These anatomical boundaries are used for volumetric measurements in the precuneus
and hippocampus.
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Figure 1. The regions of interest (outlined using yellow color) illustrating the boundaries of the left 
precuneus (a) in the sagittal plane and right hippocampus (b) head (c) body and (d) tail. 

Traditional machine learning approaches have relatively lower performance with larger 
amounts of input data. It can be challenging to detect brain abnormalities correctly and to find a 
solution for the automatic segmentation of brain structures. Such challenges mainly arise from the 
changes in settings for the acquisition of MRI scans, fluctuations in the appearance of pathology, 
normal anatomical variations in brain morphology, and imperfections in image acquisition. The 
limitations of traditional machine learning methods can be overcome by deep learning-based 
approaches. Moreover, deep learning can also be used to perform quantitative analysis of brain MRI 

Figure 1. The regions of interest (outlined using yellow color) illustrating the boundaries of the left
precuneus (a) in the sagittal plane and right hippocampus (b) head (c) body and (d) tail.

Traditional machine learning approaches have relatively lower performance with larger amounts
of input data. It can be challenging to detect brain abnormalities correctly and to find a solution for the
automatic segmentation of brain structures. Such challenges mainly arise from the changes in settings
for the acquisition of MRI scans, fluctuations in the appearance of pathology, normal anatomical
variations in brain morphology, and imperfections in image acquisition. The limitations of traditional
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machine learning methods can be overcome by deep learning-based approaches. Moreover, deep
learning can also be used to perform quantitative analysis of brain MRI through the self-learning of
features, by which new features can be recognized. Deep learning has been acquiring substantial
attention in various medical image analyses [11], such as computer-aided diagnosis of breast lesions [12],
pulmonary nodules [13], and histopathological diagnosis [14].

This paper aims to provide an outline of progressive deep learning methods in the area of MRI
segmentation of normal and abnormal (AD) brain tissue. Furthermore, we analyze existing problems
in the segmentation of brain MRI that can be overcome with deep learning. In summary, the main
objectives of this review are to:

• Provide an overview of the current deep learning approaches for brain MRI segmentation and
classification of AD.

• Identify the application challenges in the segmentation of brain structure MRI and classification
of AD.

• Show that MRI segmentation of the brain structure can improve the accuracy of diagnosing AD.

The rest of the paper is organized as follows. A brief overview of publicly available brain MRI
datasets, followed by a brain MRI analysis, is presented in Section 2. An overview of convolutional
neural networks (CNN) architecture, segmentation of brain structure MRI using deep learning, and how
segmentation improves the classification of AD are described in Section 3. The evaluation measures
for brain MRI segmentation is presented in Section 4. Finally, we conclude with a general discussion
and explore future directions in the field of brain MRI segmentation.

2. MRI Dataset for Brain Analysis

The data evaluation framework of three-dimension (3D) cross-sectional brain MRI is used to
classify patients with AD and to segment brain tissue types (CSF, GM, and WM). Publicly available
datasets such as open access series of imaging studies (OASIS) [15], Alzheimer’s disease neuroimaging
initiative (ADNI) [16], medical image computing and computer-assisted intervention (MICCAI) [17],
and internet brain segmentation repository (IBSR) [18] are popularly used for segmentation of brain
MRI and AD diagnosis. Table 1 shows the details of the OASIS, ADNI, IBSR, and MICCAI datasets.
The details of these datasets are described below and then followed by an analysis of brain MRI at
various stages.

Table 1. Details of the OASIS, ADNI, IBSR, and MICCAI datasets.

Dataset Class # of Subjects
Sex Age MMSE

# of MRI Scans
M F Mean Std Mean Std

OASIS
AD 100 41 59 76.76 7.11 24.32 4.16 100
HC 316 119 197 45.09 23.11 29.63 0.83 316

ADNI
AD 192 101 91 75.3 7.5 23.3 2.1 530
MCI 398 257 141 74.7 7.4 27.0 1.8 1126
HC 229 120 109 75.8 5.0 29.1 1.0 877

IBSR HC 18 14 4 71 - - - 18

MICCAI HC 35 - - - - - - 35

2.1. Public Dataset for Brain MRI

2.1.1. OASIS

The OASIS dataset [15] was created by Washington University, where the Alzheimer’s Disease
Research Centre manages a large amount of longitudinal and cross-sectional brain MRI data from
non-demented and demented subjects. The longitudinal dataset contains multiple scans of each subject
over a period of time, and the cross-sectional category includes the details of 416 subjects aged between
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18 and 96 years. The risk factor of AD can be measured with the clinical dementia rating (CDR) [19]
and mini-mental state examination (MMSE) [20]. The subjects are examined with risk factors as
non-demented for CDR 0, very mild dementia for CDR 0.5, mild dementia for CDR 1, and moderate
dementia for CDT 2, as indicated in [15].

2.1.2. ADNI

AD usually observed in elderly individuals can be diagnosed using the ADNI dataset [16], which
contains details of MRI scans for 843 subjects with scanner intensity fields ranging from 1.5 T to 3 T.
It is observed that patients with lower cognitive abilities including thinking and memory loss are
associated with mild cognitive impairment (MCI). They also have a high risk of transforming to AD or
any other types of dementia and are grouped separately from AD.

2.1.3. IBSR

The IBSR dataset [18] is used to evaluate and develop segmentation techniques for brain images.
This dataset provides manually guided expert segmentation results along with the MRI data. It consists
of 20 real T1-Weighted (T1-W) MRI with manually guided expert segmentation results, referred to
as the ground truth. In addition, each MRI volume contains around 60 coronal T1-W slices with a
3.1 mm resolution (slice gap between successive slices) and 18 cortical T1-W slices with a resolution of
1.5 mm. The subject volumes of this dataset have dimensions of 256 × 256 × 128 pixels and different
voxel spacings: 0.84 × 0.84 × 1.5 mm3 0.94 × 0.94 × 1.5 mm3, and 1.0 × 1.0 × 1.5 mm3. In addition,
Massachusetts General Hospital has provided manual segmentation of 32 noncortical structures.

2.1.4. MICCAI

The MICCAI-2012 dataset [17] consists of 35 T1-w MRI volumes and manual segmentation of
134 structures obtained from Neuromorphometrics, Inc., Scotts Valley, CA, USA. It is mainly used
for the segmentation of tissue, tumor, and structure. This dataset started with 80 real and synthetic
cases in 2012. The size of the training and testing data has increased over the years. The MICCAI 2012
challenge in multi-atlas labeling is used for sub-cortical structure segmentation.

2.2. Pre-Processing for Brain MRI Analysis

Figure 2 illustrates a typical pipeline for the segmentation stages of brain MRI analysis,
conventionally proposed in the literature from a top-level perspective. The overall pipeline consists
of four main stages, including pre-processing, data-preparation, segmentation, and post-processing.
Different pre-processing tasks are required after acquiring MRI so that the images can be used for
the segmentation of various tissue types of the brain. Figure 3 shows examples of brain MRI in
pre-processing. The pre-processing for MRI includes brain extraction, bias field correction, and
image registration.
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Brain extraction: Brain MRI shows tissue as well as parts of the head, eye, fat, spinal cord, and
skull [21]. Skull stripping to extract brain tissue from the non-brain tissue needs to be performed to
identify the voxels as brain or non-brain. The output of skull stripping can be a new image only with
brain voxels or a binary value assigning value 1 for brain voxels and value 0 for the rest of the tissue.
In general, brain voxels include the brain stem, CSF, GM, and WM of the cerebral cortex, subcortical
structures, and cerebellum, whereas non-brain voxels include the scalp, matter, eyes, bones, dura, skin,
muscles, and fat [22]. An example of an original T1-W brain MRI and corresponding skull stripped
output is shown in Figure 3a,b, respectively.

Bias field correction: Image contrast due to magnetic field inhomogeneity [23] can be fine-tuned
with the help of bias field correction. The bias field depends on the strength of the magnetic field and
is almost negligible when the MRI is performed at 0.5 T. However, when the magnetic field strength is
1.5 T, 3 T, or larger, it is considered as strong and can impact the analysis of the MRI. Figure 3c shows
the bias field, and Figure 3b,d shows the MRI before and after bias field correction, respectively.

Noise reduction: Noise reduction is the process of lowering locally variant Rician noise noticed in
MRI [23]. This is considered to be less critical for classification applications using deep learning [24].

Image registration: Image registration is mainly used to convert the alignment of the images from
spatial to common anatomical spaces [25] and has two types, inter- and intra-patient image registration.
The inter-patient image registration is used to standardize MRI onto standard stereotaxic spaces,
whereas intra-patient registration aids in aligning MRI of different sequences (T1- and T2-W images) to
obtain multi-channel characterization for each position within the brain. After pre-processing, data
preparation is performed with data augmentation or patch-based strategies from the input volumes.
Then, segmentation or classification according to the objective of the analysis is performed based on
input modalities and patch dimensions. Finally, the results obtained could be refined by choosing the
largest groups only or smoothing regions.

3. Review of Brain MRI Segmentation and Diagnosis

In this section, we provide a comprehensive literature review on the segmentation of the brain
structure and classification of brain MRI for diagnosing AD. Moreover, we briefly discuss CNN
architecture, followed by the segmentation of brain structures using deep learning techniques. Then,
the classification of AD using deep learning is presented. Finally, we discuss how the segmentation of
brain MRI improves the classification accuracy of MRI for AD.

3.1. Overview of CNN Architecture

Deep learning refers to neural networks with a deep number of layers (usually more than five) that
extract a hierarchy of features from raw input images. Traditional machine learning algorithms [26–30]
extract features manually, whereas deep learning extracts complex, high-level features from the images
and trains a large amount of data, thus resulting in greater accuracy. Owing to significantly increased
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GPU processing power, deep learning methods allow us to train a vast amount of imaging data and
increase accuracy despite variations in images.

Various applications such as image segmentation, genotype/phenotype detection, classification of
diseases, object detection, and speech recognition utilize different deep learning approaches. Some of
the popular deep learning algorithms include deep Boltzmann machines, CNNs, stacked auto-encoders,
and deep neural networks. CNNs are prominently used for image segmentation and classification.
Even though CNNs were first introduced in 1989 [31], they received more attention after observing
their excellent performance in the ImageNet [32] Competition in 2012 [33]. It is reported that, by
applying CNN on a dataset with millions of images with 1000 various classes, the error rate can be
reduced to half, compared to earlier best computing approaches [34]. CNN architecture is increasingly
complex, with a large number of layers, including neurons with millions of weights and a large
number of connections between different neurons, indicating that the computational complexity of
CNN architecture is high.

Figure 4 shows the basic block diagram of CNN, which consists of layers of convolution, pooling,
activation function, and fully connected layers with each layer performing specific functions. Input
images are convolved across the kernel by the convolutional layer to produce feature maps. In the
pooling layer, as the value transferred to the successive layer, the results obtained from preceding
convolutional layers are downsampled using the maximum or average of the specified neighborhood.
The most popular activation functions are the rectified linear unit (ReLU) [14] and the leaky ReLU [14],
which is a modification of ReLU. The ReLU transforms data nonlinearly by clipping off negative input
values to zero and passing positive input values as output. The results of the last CNN layer are
coupled to loss function (e.g., scores are normalized into a multinomial distribution over labels by
cross-entropy loss) to provide a forecast of the input data. Finally, network parameters are obtained by
decreasing the loss function between prediction and ground truth labels along with regularization
constraints. In addition, weights of the network are updated at each iteration (e.g., using stochastic
gradient descent) using backpropagation until the convergence.
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Table 2 shows various segmentation strategies using single-modality, multi-modality,
semantic-wise, patch-wise and cascaded using the CNN architecture. Single-modality refers to
a single source of information and is adaptable to different scenarios. In contrast, multi-modality
utilizes multi-source information and provides exact localization, highlighting any pathognomonic
changes and metabolic activity of the target tissue in the case of positron emission tomography (PET).
Semantic-wise approaches link each pixel of an image with its class label. Segmentation labels are
mapped with the input image so that it minimizes loss function. This allows segmentation maps
to be generated for any image size. The computational complexity of this method is much lower
than other approaches [34]. This principle in segmentation is used for most of the state-of-the-art
approaches [35–37], as will be described in Section 3.2. The patch-wise approach takes small patches
from high-resolution images. That is, the input images are split as a number of local patches and
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trained. This can result in better local information by predicting the information for an individual
patch. Moreover, the model can be trained with local details in patch-wise approaches but does require
higher computational complexity. Cascaded CNN is characterized by the first network, which provides
the first classification, and the second network receiving the outputs of the first network (as input) to
refine the classification. Cascaded CNN achieves competitive results in comparison with other CNN
approaches. Despite the success in segmentation performance using deep learning, there are also
several problems and limitations.

Table 2. Categorization of segmentation methods using CNN architecture on brain MRI.

Strategies Authors Description

Semantic-wise

Dong [38]
Brosch [39]
Shakeri [40]

Zhenglun [41]
Milletari [42]
Raghav [43]

The main objective of the semantic-wise segmentation is to link
each pixel of an image with its class label. It is called dense

prediction because every pixel is predicted from the whole input
image. Later, segmentation labels are mapped with the input

image in a way that minimizes the loss function.

Patch–wise

Kamnitsas [44]
Pereira [45]
Havaei [46]
Zhang [35]

Brebisson [36]
Moeskops [37]

Patch-wise segmentation handles high-resolution images, and
the input images are split as local patches. An N×N patch is

extracted from the input image. These patches are trained and
provide class labels to identify normal or abnormal brain images.

The design network consists of convolution layers, transfer
functions, pooling, and sub-sampling layers, and fully

connected layers.

Cascaded Dou [47]

The cascaded architecture types are used to combine two
different CNN architectures. The output of the first architecture

is fed into the second architecture to get classification results.
The first architecture is used to train the model with the initial

prediction of class labels, and later for fine-tuning.

Single-modality

Moeskops [37]
Brebisson [36]
Raghav [43]
Milletari [42]
Shakeri [40]

This type of modality refers to single-source information and is
adaptable to different scenarios. The single modality commonly
used in the public dataset for tissue-type segmentation in brain

MRI (mainly T1-W images).

Multi-modality
Zhang [35]
Chen [48]

Lyksborg [49]

Multi-source information can be used, and it might require a
larger number of parameters than using a single modality. The
advantage of using multi-modality is to gain valuable contrast
information. Furthermore, using multi-path configurations, the
imaging sequences can be processed in parallel (e.g., T1 and T2,

fluid-attenuated inversion recovery (FLAIR)).

Challenges in brain MRI analysis for segmentation and classification using deep learning:

• Deep learning used in big data analytics: The major challenge lies in the difficulty of obtaining a
large enough dataset to train and improve the accuracy of the model properly. Deep learning
faces difficulties in dealing with the volume (high-dimensional decision space, and a large number
of objectives), variety (modeling using heterogeneous data and knowledge transfer between
problems), variability (robustness over time and online knowledge acquisition) and veracity
(noisy fitness evaluations and surrogate-assisted optimization) of big data [50]. To overcome this
problem, the author in [51] suggested various optimization techniques such as global optimization,
which reuse the knowledge extracted from the vast amount of high dimensional, heterogeneous,
and noisy data. On the other hand, complex optimization techniques provide efficient solutions
by formulating new insights and methodologies for optimization problems that take advantage
of using deep learning approaches when dealing with big data problems. The traditional
machine learning approaches show better performance with less input data. As the amount of
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data increases beyond a certain critical point, the performance of traditional machine learning
approaches becomes steady, whereas deep learning approaches tend to increase [51]. Deep
learning architectures, such as deep neural networks, deep belief networks, and recurrent neural
networks, have been applied to research fields including medical image analysis, bioinformatics,
and computer vision, where they often produce impressive results, that are comparable to and
superior to human experts in some cases.

• Scalability of deep learning approaches: The scalability of deep learning needs to consider not
only accuracy but several other measures regarding computational resources. Scalability plays
a vital role in deep learning. As data expands in terms of variability, variety, veracity, and
volume, it becomes increasingly difficult to scale computing performance using enterprise-class
servers and storage in line with the increase. Scalability can be achieved by implementing deep
learning techniques on a high-performance computing (HPC) system (super-computing, cluster,
sometimes considered cloud computing), which offers immense potential for data-intensive
business computing [50]. The ability to generate data, which is important where data is not
available for learning the system (especially for computer vision tasks, such as inverse graphics).

• Multi-task, transfer learning, or multi-module learning: Learning simultaneously from several
domains or with various models is one of the significant challenges in deep learning. Currently,
one of the most significant limitations to transfer learning is the problem of negative transfer.
Transfer learning only works if the initial and target problems are similar enough for the first
round of training to be relevant. If the first round of training is too different, the model may
perform worse than if it had never been trained at all. There are no clear standards on what types
of training are sufficiently related, or how this should be measured.

3.2. Segmentation of Brain MRI Using Deep Learning

To perform a quantitative analysis of the brain tissue, and large-scale study of intracranial volume,
accurate automated segmentation of brain structures such as GM, WM, and CSF in MRI is crucial. The
traditional approaches used for the segmentation of brain tissues include the Atlas-based approach and
pattern recognition approach: Atlas-based approaches [52–55] match intensity information between
an atlas and target images. Atlas-based and registration are among the methods which are widely
used for human brain segmentation [56–58] but do not provide robust results for small and highly
variable structures like the hippocampus, due to limitations in registration and variability in reliable
ground truth data. In pattern recognition approaches [37,59,60], brain tissues are classified based on
the set of local intensity features. Recently, hippocampal atrophy has been proposed as a biomarker of
AD [61,62]. The hippocampus is a part of the brain’s limbic system surrounded by different kinds of
tissue. A number of studies have shown that a lower hippocampal volume is observed in patients
with AD [63,64]. Hence, MRI segmentation of the hippocampus could have practical value in clinical
applications [65]. However, segmentation for the hippocampus in MRI is challenging due to its small
size, partial volume effects, anatomical variability, low contrast, low signal-to-noise ratio, indistinct
boundary, and proximity to the Amygdaloid body. Furthermore, manual segmentation requires
time-consuming expert analysis. A recent study shows that segmenting the hippocampus, thresholding
or region growing using conventional methods do not achieve acceptable results [66]. Wang et al. [67]
proposed a region growing algorithm based on seed, which is simple and effective, yet fails to obtain
promising results because of the unclear edges of the hippocampus [68].

Table 3 shows the list of studies on the segmentation of brain tissues based on CNN and also the
type of public dataset used in the analysis. In addition, the summary of segmentation strategies with
their image dimension followed by classifiers used in the CNN architecture are described. Furthermore,
an overview of existing methods based on deep learning for the segmentation of brain tissues and
anatomical segmentation (e.g., the hippocampus) is summarized in Table 4.
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Table 3. The brain structure segmentation methods based on deep learning.

No. Authors Year Strategies Dimension Key Method Classifier Dataset

1 Zhang [35] 2015 Patch-wise 2D CNN Soft-max Clinical data
2 Brebisson [36] 2015 Patch-wise 2D/3D CNN Soft-max MICCAI 2012
3 Moeskops [37] 2016 Patch-wise 2D/3D CNN Soft-max NeoBrainS12
4 Bao [69] 2016 Patch-wise 2D CNN Soft-max IBSR/LPBA40
5 Dong [38] 2016 Semantic-wise 2D CNN Soft-max Clinical data
6 Shakeri [40] 2016 Semantic-wise 2D FCNN Soft-max IBSR data
7 Raghav [43] 2017 Semantic-wise 2D/3D M-Net + CNN Soft-max IBSR/ MICCAI 2012
8 Milletari [42] 2017 Semantic-wise 2D/3D Hough-CNN Soft-max MICCAI 2012
9 Dolz [70] 2018 Semantic-wise 3D CNN Soft-max IBSR/ABIDE

10 Wachinger [71] 2018 Patch-Based 3D CNN Soft-max MICCAI 2012
11 Zhenglun [41] 2018 Semantic-wise 2D Wavelet + CNN Soft-max Clinical data
12 Khagi [72] 2018 Semantic-wise 2D SegNet + CNN Soft-max OASIS Dataset

13 Bernal [73] 2019 Patch-Based 2D/3D FCNN Soft-max IBSR, MICCAI2012 &
iSeg2017

14 Jiong [74] 2019 Semantic-wise 2D U-net Soft-max MICCAI2017
15 Chen [75] 2019 Semantic-wise 2D LCMV - BrainWeb
16 Pengcheng [76] 2020 Semantic-wise 3D/4D Fuzzy C-mean - BLSA

Table 4. Overview of papers using deep learning techniques for the segmentation of brain MRI.

Authors Methods Application: Key Features

Zhang [35] CNN Tissue segmentation: multi-modal 2D segmentation for
isointense brain tissues using the deep CNN architecture.

Brebisson [36] CNN Anatomical segmentation: fusing multi-scale 2D patches with a
3D patch using a CNN.

Moeskops [37] CNN Tissue segmentation: CNN trained on multiple patches and
kernel sizes to extract information from each voxel.

Bao [69] CNN Anatomical segmentation: multi-scale late fusion CNN with a
random walker as a novel label consistency method.

Dong [38] CNN Tissue segmentation: FCN with a late fusion method on
different modalities.

Shakeri [40] FCNN Anatomical segmentation: FCN followed by Markov random
fields, whose topology corresponds to a volumetric grid.

Raghav [43] M-Net + CNN Tissue segmentation: the 3D contextual information of a given
slice is converted into a 2D slice using CNN.

Milletari [42] Hough-CNN Anatomical segmentation: Hough-voting to acquire mapping
from CNN features to full patch segmentations.

Dolz [70] CNN Anatomical segmentation: 3D CNN architecture for the
segmentation of subcortical MRI brain structure.

Wachinger [71] CNN Anatomical segmentation: neuroanatomy in T1-W MRI
segmentation using deep CNN.

Zhenglun [41] Wavelet + CNN
Tissue segmentation: pre-processing is performed with the

wavelet multi-scale transformation, and then, CNN is applied
for the segmentation of brain MRI.

Bernal [73] FCNN Tissue segmentation: the quantitative analysis of patch-based
FCNN.

Jiong [74] U-net Tissue segmentation: skip-connection U-net for WM hyper
intensities segmentation.

Chen [75] LCMV
Tissue segmentation: new iterative linearly constrained
minimum variance (LCMV) classification-based method

developed for hyperspectral classification.

Pengcheng [76] Fuzzy C-mean Tissue segmentation: fuzzy C-means framework to improve the
temporal consistency of adults’ brain tissue segmentation.



Sensors 2020, 20, 3243 10 of 28

Challenges in brain MRI segmentation:

• Large variations in brain anatomical structures due to phenotypes, age, gender, and disease. It
is difficult to apply one specific segmentation method to all phenotypic categories for reliable
performance [77].

• It is challenging to process cytoarchitectural variations, such as gyral folds, sulci depths, thin
tissue structures, and smooth boundaries between different tissues. This can result in confusing
categorical labeling for distinct tissue classes. This is difficult even for human experts.

• The low contrast of anatomical structure in T1, T2, and FLAIR modalities results in low
segmentation performances.

• Manual segmentation for brain MRI is laborious, subjective, and time-consuming, and requires
sophisticated knowledge of brain anatomy. Thus, it is difficult to obtain enough amount of ground
truth data for building a segmentation model.

• The noisy background in the ordinary image for segmentation is challenging because it is hard to
assign an accurate label to each pixel/voxel with learned features.

• The segmentation of the hippocampus, which is one of the most important biomarkers for AD,
is difficult due to its small size and volume [65], as well as its anatomical variability, partial
volume effects, low contrast, low signal-to-noise ratio, indistinct boundary and proximity to the
Amygdaloid body.

3.3. Brain MRI Classification of AD Diagnosis Using Deep Learning

The segmentation of brain MRI is carried out to eliminate unnecessary details and to locate
relevant objects from the processed images. The detailed analysis of the tissue structures from the
segmented MRI leads to a more precise classification of specific brain disorders such as AD. AD is more
common in elderly individuals, and it is considered to be a common form of dementia. Patients with
AD suffer from the degradation of cognitive abilities over time. In advanced cases, patients struggle
with activities of daily life, ultimately resulting in an inability to self-care. In this disease, nerve cells
and tissues of the human brain are affected. Initially, the frontal lobe of the cerebral cortex, which
helps in planning, thinking, and remembering, and the hippocampus, which plays a crucial role in
the development of new memories, can be affected. Although vulnerability to AD increases in those
over the age of 65 years, AD is not solely associated with old age [78]. A recent study [79] estimates
that more than 90 million people will have AD by 2050. Despite considerable research to discover
treatments for AD and halt or delay its progression, so far, there have not been promising results [80].

Table 5 summarizes the classification methods for the diagnosis of AD using CNN architectures
on the public datasets (OASIS and ADNI). Furthermore, considerable research efforts have been made
for the classification of AD. The applications and key features of the methods are described in Table 6.



Sensors 2020, 20, 3243 11 of 28

Table 5. Comparison of the state-of-the-art methods in the field of AD diagnosis.

No. Authors Year Content Modalities Key Method Classifier Data (Size)

1 Siqi [81] 2014 Full brain MRI Auto-encoder Soft-max ADNI (311)
2 Suk [82] 2015 Full brain MRI + PET CNN Soft-max ADNI (204)
3 Payan [83] 2015 Full brain MRI CNN Soft-max ADNI (755)

4 Andres [84] 2016 Gray matter MRI + PET Deep Belief
Network NN ADNI (818)

5 Hosseini [85] 2016 Full brain fMRI CNN Soft-max ADNI (210)
6 Saraf [86] 2016 Full brain fMRI CNN Soft-max ADNI (58)
7 Mingxia [87] 2017 Full brain MRI CNN Soft-max ADNI (821)
8 Aderghal [88] 2017 Hippocampus MRI + DTI CNN Soft-max ADNI (1026)
9 Shi [89] 2017 Full brain MRI + PET Auto-encoder Soft-max ADNI (207)
10 Korolev [90] 2017 Full brain MRI CNN Soft-max ADNI (821)
11 Jyoti [91] 2018 Full brain MRI CNN Soft-max OASIS (416)
12 Donghuan [92] 2018 Full brain MRI CNN Soft-max ADNI (626)
13 Khvostikov [93] 2018 Hippocampus MRI + DTI CNN Soft-max ADNI (214)
14 Aderghal [94] 2018 Hippocampus MRI + DTI CNN Soft-max ADNI (815)
15 Lian [95] 2018 Full brain MRI FCN Soft-max ADNI (821)
16 Liu [96] 2018 Full brain MRI + PET CNN Soft-max ADNI (397)

17 Lee [97] 2019 Full brain MRI CNN Alex-Net ADNI (843),
OASIS (416)

18 Feng [98] 2019 Full brain MRI + PET CNN Soft-max ADNI (397)
19 Mefraz [99] 2019 Full brain MRI Transfer learning Soft-max ADNI (50)
20 Ruoxuan [100] 2019 Hippocampus MRI CNN Soft-max ADNI (811)

21 Ahmed [101] 2019 Full brain MRI CNN Soft-max ADNI (352)
GARD (326)

22 Fung [102] 2020 Full brain MRI + PET CNN Adaboost ADNI (352)
23 Kam [103] 2020 Full brain MRI CNN Soft-max ADNI (352)
24 Shi [104] 2020 Full brain MRI + PET + CSF Machine learning Adaboost ADNI (202)

Table 6. Overview of existing methods using deep learning for the classification of AD.

Authors Methods Applications: Key Features

Siqi [81] Auto-encoder AD/HC classification: deep learning architecture contains sparse auto-encoders
and a softmax regression layer for the classification of AD

Suk [82] CNN AD/MCI/HC classification: neuroimaging modalities for latent hierarchical feature
representation from extracted patches using CNN

Payan [83] CNN AD/MCI/HC classification: 3D CNN pre-trained with sparse auto-encoders

Andres [84] Deep Belief
Network

AD/HC classification: automated anatomical labeling brain regions for the
construction of classification techniques using deep learning architecture

Hosseini [85] CNN AD/MCI/HC classification: 3D CNN pre-trained with a 3D convolutional
auto-encoder on MRI data

Saraf [86] CNN AD/HC classification: adapted Lenet-5 architecture on fMRI data

Mingxia [87] CNN AD/MCI/HC classification: landmark-based deep multi-instance learning
framework for brain disease diagnosis

Aderghal [88] CNN AD/HC classification: separate CNN base classifier to form an ensemble of CNNs,
each trained with a corresponding plane of MRI brain data

Shi [89] Auto-encoder AD/MCI/HC classification: multi-modal stacked deep polynomial networks with
an SVM classifier on top layer using MRI and PET

Korolev [90] CNN AD/MCI/HC classification: residual and plain CNNs for 3D brain MRI

Jyoti [91] CNN AD/HC classification: deep CNN model for resolving an imbalanced dataset to
identify AD and recognize the disease stages.

Donghuan [92] CNN AD/MCI classification: early diagnosis of AD by combing the multiple different
modalities using multiscale and multimodal deep neural networks.

Khvostikov [93] CNN AD/HC classification: multi-modality fusion on hippocampal ROI using CNN

Aderghal [94] CNN AD/HC classification: diffusion tensor imaging modality from MRI using the
transfer learning method

Lian [95] FCN
AD/MCI/HC classification: CNN to discriminate the local patches in the brain
MRI and multi-scale features are fused to construct hierarchical classification

models for the diagnosis of AD.

Liu [96] CNN AD/MCI/HC classification: CNN to learn multi-level and multimodal features of
MRI and PET brain images.
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Table 6. Cont.

Authors Methods Applications: Key Features

Lee [97] CNN AD/MCI/HC classification: data permutation scheme for the classification of AD
in MRI using deep CNN.

Feng [98] CNN

AD/MCI/HC classification: 3D-CNN designed to extract deep feature
representation from both MRI and PET. Fully stacked bidirectional long

short-term memory (FSBi-LSTM) applied to the hidden spatial information from
deep feature maps to improve the performance.

Mefraz [99] Transfer learning AD/MCI/HC classification: transfer learning with intelligent training data
selection for the prediction of AD and CNN pre-trained with VGG architecture.

Ruoxuan [100] CNN AD/MCI/HC classification: a new hippocampus analysis method combining the
global and local features of the hippocampus by 3D densely connected CNN.

Ahmed [101] CNN AD/HC classification: ensembles of patch-based classifiers for the diagnosis of AD.

Fung [102] CNN AD/MCI/HC classification: an ensemble of deep CNNs with multi-modality
images for the diagnosis of AD.

Kam [103] CNN AD/MCI/HC classification: CNN framework to simultaneously learn embedded
features from brain functional networks (BFNs).

Shi [104] Machine
Learning

AD/MCI/HC classification: MRI, PET, and CSF are used as multimodal data.
Coupled boosting and coupled metric ensemble scheme to model and learn an

informative feature projection form the different modalities.

Challenges in the diagnosis of AD:

• The automatic classification of AD is quite challenging due to the low contrast of the anatomical
structure in MRI. The presence of noisy or outlier pixels in MRI scans due to various scanning
conditions may also result in a reduction of the classification accuracy.

• The major challenge in AD is that it is difficult to make long-term tracking and investigation of
the patient’s pathology. Thus, it is not easy to track the transition of AD status. In the ADNI
dataset [16], there are only 152 transitions in total out of the entire dataset of 2731 MRIs. Due to
the lack of the MRIs in terms of tracking the transition of AD status, it is likely for the model to
overfit without generalizing distinctions between different stages of AD.

• It is well known that AD is not only diagnosed from clinical stages of brain MRI, but also occurs
through abnormal amyloid β peptide (Aβ) and tau (τ) protein activity around neurons and their
temporal relationship with the different phases of AD in different stages. The factors mentioned
above should be considered as multi-modal biomarkers as well as brain MRI. Thus, complexity
during the process of treating AD is due to diverse factors regulating its pathology.

• Data multimodality in the diagnosis of AD

X Since neuroimaging data (i.e., MRI or PET) and genetic data (single nucleotide
polymorphism (SNP)) have different data distributions, different numbers of features and
different levels of discriminative ability to AD diagnosis (e.g., SNP data in their raw form
are less effective in AD diagnosis), simple concatenation of the features from multimodality
data will result in an inaccurate prediction model [105,106] due to heterogeneity.

X High dimensionality issue: One neuroimage scan normally contains millions of voxels,
while the genetic data of a subject has thousands of AD-related SNPs.

3.4. The Segmentation of Brain MRI Improves the Classification of AD

It is known that AD is the major cause of dementia for most Caucasians [107]. An important
pathological characteristic of AD is diffuse brain atrophy, which includes atrophy of the cerebral
cortex, enlargement of the ventricles, and atrophy of the medial temporal lobe (MTL) structures such
as the hippocampus [108,109]. It is reported that AD pathology is associated with GM and WM
tissues, and it was discovered that abnormalities of these tissues are highly correlated with cognitive
decline [110–112]. To more clearly capture how AD evolves, neuropsychological and anatomical
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information from the patient needs to be examined at different transitional phases of the disease. From
these aspects, the populations suffering from MCI have a high chance of converting disease status
from MCI to AD. The results in [113,114] show that the risk among individuals converting from MCI
to AD is significantly increased as compared to normal individuals. Among various types of MCIs,
the amnesic form (aMCI) is commonly found in most individuals. As the highest annual incidence of
conversion from aMCI to AD is observed [113,114], aMCI is considered to be the prodromal phase
of AD. In previous studies [108,115–117], the atrophy of MTL structures, such as the hippocampus,
amygdala, and entorhinal and parahippocampal cortices, increases with progression of the disease.
Considerable research effort has focused on the segmentation of the hippocampus to evaluate the
volume or shape of the brain [109,118–130]. Cortical thickness and GM tissue maps [131] have also
been shown to have high predictive value in the diagnosis of AD [131]. In addition, studies on
group differences based on voxel-based morphometry (VBM) [132], deformation-based morphometry
(DBM) [133], or tensor-based morphometry (TBM) [134] were investigated. The VBM is a spatially
specific and unbiased method of analysis of MRI, showing the regional GM and WM volume at a voxel
scale [135]. This method has been applied to AD and MCI, reflecting patterns of GM irregularities that
are suitable for the clinical phase of the disease, and also predict the risk of conversion from MCI to
AD [136–138]. The presence and extent of WM atrophy are more problematic, and often other MRI
methods are used to analyze the presence of microscopic tissue impair in AD [139]. Furthermore,
the CSF and structural imaging markers are considered to be primary indicators amended to the
current diagnostic criteria of MCI and AD [116]. The CSF markers (Ab42, t-tau, and p-tau) with the
volumes of the hippocampus and lateral ventricles, can be combined for distinguishing between HC
and MCI, while the CSF Ab42 marker with the shape of the hippocampus and lateral ventricles is a
good combination for identifying MCI and AD [140]. Recently, deep learning approaches showed
better performance for the automatic segmentation of the hippocampus and classification of AD. The
deep CNN model is constructed to learn features of the 3D patches extracted based on the hippocampal
segmentation results for the classification task [141]. A multi-task deep learning (MDL) method was
proposed for joint hippocampal segmentation and clinical score regression using MRI scans [142].
Choi et al. [143] shown that deep CNN based biomarkers are strongly correlated with future cognitive
decline using PET.

The overall block diagram of the diagnosis of AD usually adopted in conventional methods
is depicted in Figure 5. The first stage is to acquire the slices from the MRI. This is followed by
data preparation with pre-processing, where non-relevant information is removed, and the data are
reoriented for more straightforward interpretation. Segmentation using deep learning is performed on
the pre-processed data to extract the attributes from brain MRI. Based on attributes such as surface area,
the center of gravity, average intensity, and standard deviation, the classifier predicts the output based
on prior knowledge using deep learning architecture and decides whether the patient is developing
AD or not.Sensors 2020, 20, 3243 15 of 31 

 

 
Figure 5. The overall block diagram of AD diagnosis. 

4. Evaluation Metrics for Brain MRI Segmentation 

In medical image analysis, validation and quantitative comparison are common problems of 
different segmentation methods. For validation, ground truth data is required for the comparison of 
segmented output. In a real scenario, there is not enough amount of ground truth data available for 
the assessment of acquired data in humans. Thus, the ground truth data of patients are manually 
generated by experts after the MRI acquisition. Although this is the only way to validate the real 
patient’s MRI data, this validation must be carefully considered because manual segmentation is 
prone to errors, highly subjective, and difficult to reproduce (even by the same expert) [144]. To 
overcome these limitations, several alternate validation methods with software simulation and 
phantoms have been proposed. Software simulation generates artificial images that simulate the 
process of real acquisition. Likewise, ground truth is known, and the various acquisition parameters, 
imaging artifacts can be managed and analyzed independently. This type of validation requires less 
effort and is more flexible to implement. However, the software simulation method does not consider 
all factors which might impact real image acquisition, and the images obtained for software 
simulation are only an approximate estimation of the real images. MRI scanners are used to produce 
phantom images that appear to be more realistic compared to the ones obtained from software 
simulations. However, phantom images are not flexible. Additionally, software simulations and 
phantom imaging results are expensive and time-consuming. To evaluate the overlap between the 
predicted brain MRI and the given ground truth image, various similarity measures were used [145].  

The most well-known evaluation measure is the Dice coefficient [146]. The quality of two binary 
label masks can be compared with this volume. Let us define that ܦ is the mask by the human 
evaluator and ܦொ  is the mask generated by a segmented algorithm, the Dice overlap is then 
evaluated as Equation (1). ܦ) ݁ܿ݅ܦ, (ொܦ  = ܦ|2 ∩ |ܦ||ொܦ  + หܦொห (1) 

where |. | represents the number of voxels. The overlap measure has values in the range of [0, 1], 
with 0 indicating no match between the two masks and 1 indicating that the two masks are identical. 
The Jaccard index [147] is also used as a similarity measure for the comparison of two binary label 
masks, and it is expressed as Equation (2). ܦ) ݔ݁݀݊ܫ ݀ݎܽܿܿܽܬ, (ொܦ  = ܦ| ∩ |ܦ||ொܦ  + หܦொห − ܦ| ∩  ொ| (2)ܦ

The ratio of true positives to the sum of true and false positives is known as the positive 
predicted value (PPV). It is also called as precision and expressed as Equation (3). ܸܲܲ(ܦ, (ொܦ  = ܦ| ∩ ܦொ|หܦ ∩ ொหܦ  + ܦ|  ∩  ொ| (3)ܦ

The ratio of true positives to the sum of true and false positives is known as the positive 
predicted value (PPV). It is also called as precision and expressed as Equation (3). The ratio of true 

Figure 5. The overall block diagram of AD diagnosis.



Sensors 2020, 20, 3243 14 of 28

4. Evaluation Metrics for Brain MRI Segmentation

In medical image analysis, validation and quantitative comparison are common problems of
different segmentation methods. For validation, ground truth data is required for the comparison of
segmented output. In a real scenario, there is not enough amount of ground truth data available for the
assessment of acquired data in humans. Thus, the ground truth data of patients are manually generated
by experts after the MRI acquisition. Although this is the only way to validate the real patient’s MRI
data, this validation must be carefully considered because manual segmentation is prone to errors,
highly subjective, and difficult to reproduce (even by the same expert) [144]. To overcome these
limitations, several alternate validation methods with software simulation and phantoms have been
proposed. Software simulation generates artificial images that simulate the process of real acquisition.
Likewise, ground truth is known, and the various acquisition parameters, imaging artifacts can be
managed and analyzed independently. This type of validation requires less effort and is more flexible
to implement. However, the software simulation method does not consider all factors which might
impact real image acquisition, and the images obtained for software simulation are only an approximate
estimation of the real images. MRI scanners are used to produce phantom images that appear to be
more realistic compared to the ones obtained from software simulations. However, phantom images
are not flexible. Additionally, software simulations and phantom imaging results are expensive and
time-consuming. To evaluate the overlap between the predicted brain MRI and the given ground truth
image, various similarity measures were used [145].

The most well-known evaluation measure is the Dice coefficient [146]. The quality of two binary
label masks can be compared with this volume. Let us define that DP is the mask by the human
evaluator and DQ is the mask generated by a segmented algorithm, the Dice overlap is then evaluated
as Equation (1).

Dice (DP, DQ) =
2
∣∣∣DP ∩DQ

∣∣∣
|DP|+

∣∣∣DQ
∣∣∣ (1)

where |.| represents the number of voxels. The overlap measure has values in the range of [0, 1], with 0
indicating no match between the two masks and 1 indicating that the two masks are identical. The
Jaccard index [147] is also used as a similarity measure for the comparison of two binary label masks,
and it is expressed as Equation (2).

Jaccard Index (DP, DQ) =

∣∣∣DP ∩DQ
∣∣∣

|DP|+
∣∣∣DQ

∣∣∣− ∣∣∣DP ∩DQ
∣∣∣ (2)

The ratio of true positives to the sum of true and false positives is known as the positive predicted
value (PPV). It is also called as precision and expressed as Equation (3).

PPV(DP, DQ) =

∣∣∣DP ∩DQ
∣∣∣∣∣∣DP ∩DQ

∣∣∣+ ∣∣∣Dc
P ∩DQ

∣∣∣ (3)

The ratio of true positives to the sum of true and false positives is known as the positive predicted
value (PPV). It is also called as precision and expressed as Equation (3). The ratio of true positives to the sum
of true positives and false negatives is known as the true positives rate and is calculated as Equation (4).

TPR(DP, DQ) =

∣∣∣DP ∩DQ
∣∣∣∣∣∣DP ∩DQ

∣∣∣+ ∣∣∣∣DP ∩Dc
Q

∣∣∣∣ (4)

The ratio of true positives to the sum of true positives and false negatives is known as the lesion
true positive rate (LTPR). Considering the list of lesions, LP, as the 18-connected components of DP

and similarly, LQ, as the 18-connected components of DQ. It is expressed as Equation (5).
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LTPR(DP, DQ) =

∣∣∣ LP ∩ LQ
∣∣∣∣∣∣ LP ∩ LQ

∣∣∣+ ∣∣∣∣ LP ∩ Lc
Q

∣∣∣∣ (5)

where
∣∣∣ LP ∩ LQ

∣∣∣ refers to the overlap between a connected component of DP and DQ. It is shown that
the human evaluator and segmentation algorithm have identical lesions. Furthermore, the lesion wise
ratio of false positives to the sum of false positives and true negatives is known as the lesion false
positive rate (LFPR), which can be expressed as Equation (6).

LFTR(DP, DQ) =

∣∣∣Lc
P ∩ LQ

∣∣∣∣∣∣Lc
P ∩ LQ

∣∣∣+ ∣∣∣∣Lc
P ∩ Lc

Q

∣∣∣∣ (6)

where Lc
R is the 18-connected components of Dc

P. The absolute difference in volume divided by the true
volume is called the absolute volume difference (AVD) and is expressed as Equation (7).

AVD(DP, DQ) =
Max

(
|DP|,

∣∣∣DQ
∣∣∣)−Min

(
|DP|,

∣∣∣DQ
∣∣∣)

|DP|
(7)

The average symmetric surface distance (ASSD) is the average of the distance (in millimeters)
from the lesions in DP to the nearest lesion identified in DQ plus the distance from the lesions in DP to
the nearest lesion identified in DQ. It is described as Equation (8).

ASSD (DP, DQ) =

∑
p∈ LP

d
(
r, LQ

)
+

∑
q∈ LQ

d(r, LP)

2
(8)

where d
(
r, LQ

)
is the distance from the lesion r in LP to the nearest lesion in LQ. The value of 0 refers

to DP and DQ being identical. The detail about similarity measures for validation and evaluation in
medical image analysis is found in [132]. Table 7 shows the summary of the validation measures of
brain segmentation and their mathematical formulation concerning the number of true positives (TP),
false positives (FP), and false-negative (FN) at voxel and lesion levels (TPL, FPL, and FNL).

Table 7. Summary of the validation measures of brain segmentation and their mathematical formula
regarding the number of true positives (TP), false positives and false-negative (FN) at voxel and lesion
levels (TPL, FPL, and FNL).

Metrics of Segmentation Quality Mathematical Description

True positive rate, TPR (Sensitivity) TPR = TP
TP+FN

Positive predictive rate, PPV (Precision) PPV = TP
TP+FP

Negative predictive rate, NPV TN
TN+FN

Dice similarity coefficient, DSC TPR = 2TP
2 TP+ FP +FN

Volume difference rate, VDR TPR = |FP−FN|
TP+FN

Lesion-wise true positive rate, LTPR LTPR = TPL
TPL+FNL

Lesion-wise positive predictive value, LPPV TPPV = TPL
TPL+FPL

Specificity TN
TN+FP

F1 score 2 TP
2 TP+ FP +FN

Accuracy TP+TN
TP+ TN + FP +FN

Balanced Accuracy (Sensitivity+Speci f icity)
2
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5. Discussion and Future Directions

Two-dimensional (2D) networks are used in most of the works, which are summarized in Table 3.
Table 8 displays information about the various architectures in relation to their performance. The best
generalization can be achieved with the help of optimized layers of architecture and choosing the
better hyper-parameters with advanced training procedures.

Table 8. Summary of results in the existing methods using deep learning approaches for brain structure
segmentation. (†: DSC, *: JI) (Unit: %).

Authors

MICCAI [17] OASIS [15] Clinical/IBSR [18]

DSC and JI DSC and JI DSC and JI

CSF GM WM CSF GM WM CSF GM WM

1 Zhang [35] - - - - - - 83.5 † 85.2 † 86.4 †

2 Brebisson [36] 72.5 † 72.5 † 72.5 † - - - - - -
3 Moeskops [37] 73.5 † 73.5 † 73.5 † - - - - - -
4 Bao [69] - - - - - - 82.2 † 85.0 † 82.2 †

5 Dong [38] - - - - - - 85.5 † 87.3 † 88.7 †
6 Zhenglun [41] - - - - - - 94.3 * 90.2 * 91.4 *

7 Khagi [72] - - - 72.2 †
73.0 *

74.6 †
74.0 *

81.9 †
85.0 * - - -

8 Shakeri [40] - - - - - - 82.4 † 82.4 † 82.4 †

9 Raghav [43] 74.3 † 74.3 † 74.3 † - - - 84.4 † 84.4 † 84.4 †

10 Milletari [42] - - - - - - 77.0 † 77.0 † 77.0 †

11 Dolz [70] - - - - - - 90.0 † 90.0 † 90.0 †

12 Wachinger [71] 90.6 † 90.6 † 90.6 † - - - - - -
13 Chen [75] - - - - - - 93.6 † 94.8 † 97.5 †

Table 8 shows the summary of the results in the reviewed paper using deep learning approaches
for brain structure segmentation results reported in the recent investigations in DSC and JI values
as evaluation metrics. Per the results in Table 8, Wachinger et al. [71] show better results in terms
of DSC compared to the other methods using the MICCAI dataset because the author introduced
explicit within-brain location information through Cartesian and spectral coordinates to help the
classifier to discriminate one class from another. Furthermore, Dolz et al. [70] implemented a 3D fully
convolution network architecture which was used to segment sub-cortical structures in the brain MRI
and the result outperforms other methods in terms of DSC in IBSR datasets. However, it is noted that
these results are not able to be accurately compared because these studies used different datasets and
experimental conditions.

It is necessary to have a universal architecture to provide a good representation of the underlying
input image without suffering from significant over-fitting to enable accurate comparison. In previous
studies on AD-related brain disease diagnosis, MRI-based computer-aided diagnosis methods [148]
usually contain three fundamental components, i.e., pre-determination of ROIs, extraction of imaging
features, and construction of classification models. Depending on the scales of the pre-defined ROIs in
MRI for subsequent feature extraction and classifier construction, these methods can be further divided
into three categories, i.e., voxel-level, region-level, and patch-level morphological pattern analysis
methods. Specifically, voxel-based methods [149,150] attempt to identify voxel-wise disease-associated
microstructures for AD classification. In contrast, region-based methods [87,142] extract quantitative
features from pre-segmented brain regions to construct classifiers for identifying patients from HCs.
To capture brain changes in local regions for the early diagnosis of AD, patch-based methods [128,129]
adopt an intermediate scale (between the voxel-level and region-level) of feature representations for
MRI to construct classifiers. Table 9 shows the summary of the various state-of-the-art methods for the
classification of AD vs. HC and pMCI (progressive MCI) vs. sMCI (stable MCI) on MRI datasets. In
contrast to the studies that only used MRI datasets of ADNI-1, Lian et al. [95] evaluated the method
on larger cohorts composed of 1,457 subjects from both ADNI-1 and ADNI-2. The authors used
a more challenging evaluation protocol (i.e., independent training and testing sets) and obtained
competitive classification performance, especially for pMCI vs. sMCI conversion prediction. The
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results in [85] outperform other methods in AD vs. HC classification because transfer learning can
be used to enhance generality of the features capturing the AD biomarkers with a three stacked 3D
convolutional autoencoder network, which is pre-trained on the ADNI datasets. The extracted features
are used as AD biomarkers in lower layers of a 3D CNN network. Similar performances were observed
in [109], where authors propose a combined use of AlexNet and the data permutation scheme, and it
outperforms other methods in AD classification owing to spatial correlation features generated by
using localized convolution kernels in CNN and more informative slice selection that trains AlexNet
more effectively.

Table 9. A brief review of the state-of-the-art methods for AD classification (AD vs. HC) and MCI
conversion prediction (pMCI vs. sMCI) using MRI data. (The best results obtained for different metrics
are highlighted in bold).

Authors Subjects
AD vs. HC pMCI vs. sMCI

ACC SEN SPE AUC ACC SEN SPE AUC

1 Siqi [81] 204HC + 180AD 0.79 0.83 0.87 0.78 - - - -

2 Suk [82] 101HC + 128sMCI +
76pMCI + 93AD 0.92 0.92 0.95 0.97 0.72 0.37 0.91 0.73

3 Korolev [90] 61HC + 77sMCI +
43pMCI + 50AD 0.80 - - 0.87 0.52 - - 0.52

4 Khvostikov [93] 58HC + 48AD 0.85 0.88 0.90 - - - - -

5 Lian [95] 429HC + 465sMCI +
205pMCI + 358AD 0.90 0.82 0.97 0.95 0.81 0.53 0.85 0.78

6 Mingxia [87] 229HC + 226sMCI +
167pMCI + 203AD 0.91 0.88 0.93 0.95 0.76 0.42 0.82 0.77

7 Andres [84] 68HC + 70AD 0.90 0.86 0.94 0.95 - - - -
8 Adherghal [84] 228HC + 188AD 0.85 0.84 0.87 - - - - -

9 Donghuan [92] 360HC + 409sMCI +
217pMCI - - - - 0.75 0.73 0.76 -

10 Shi [89] 52 NC + 56 sMCI + 43
pMCI + 51AD 0.95 0.94 0.96 0.96 0.75 0.63 0.85 0.72

11 Payan [83] 755 subjects (AD,
MCI, HC) 0.95 - - - - - - -

12 Hosseini [85] 70HC + 70AD 0.99 - 0.98 - - - - -

13 Lee [97] 843 subjects (AD,
MCI, HC) 0.98 0.96 0.97 - - - - -

14 Liu [96] 397 subjects (AD,
MCI, HC) 0.93 0.92 0.93 0.95 - - - -

15 Feng [98] 397 subjects (AD,
MCI, HC) 0.94 0.97 0.92 0.96 - - - -

16 Ruoxuan [100] 811 subjects (AD,
MCI, HC) 0.90 0.86 0.92 0.92 0.73 0.69 0.75 0.76

Evaluating the model on different datasets is one of the suggested practice methods. Some
works [37,43,151] have validated the models on three or more different public datasets and reported
the results. These kinds of practices can be used to make the model robust and can also be applied to a
dataset that consists of data from different imaging modalities and MRI scanners [152]. It is exceedingly
challenging to train deep CNNs with low-resolution MRI, and the need for a short prediction time
makes it impossible to train deep CNNs [115]. Therefore, training such networks can be performed by
designing a method with faster convolution. The computation speed of CNN was improved by using
FFT algorithms and fast matrix multiplication methods [153,154], yet the training algorithms of deep
CNNs can be improved using variants of SGD [155] and their parallelized implementations. It is expected
to improve the performance of deep CNNs with the high optimization method using emerging new
algorithms with less or no hyper-parameters, which constitute one of the major bottlenecks for most users.

One of the main contributors to the steep rise of deep learning has been the widespread availability
of GPU. GPU has parallel computing engines that perform with execution threads larger than central
processing units (CPUs). It is known that deep learning on GPUs is typically 10–30 times faster than
on CPUs [156]. Another driving force behind the popularity of deep learning methods is the wide
availability of open-source software packages. Deep learning libraries such as Caffe [157], PyTorch [158],
Tensorflow [159], and Theano [160] are most often used. Summaries of the hardware and software
requirements for brain MRI segmentation and classification of AD using deep learning approaches are
described in Table 10.
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Table 10. Summary of the hardware and software details required for the segmentation of brain MRI
and classification of AD using deep learning methods.

Author Dataset Scanner Hardware Software Training Time

Zhang [35] Clinical data 3T Siemens Tesla K20c GPU with 2496
cores

iBEAT toolbox
ITK-SNAP toolbox less than one day

Brebisson [36] MICCAI 2012 - NVIDIA Tesla K40 GPU
with 12 GB memory.

Python with
Theano framework -

Moeskops [37] NeoBrainS12 3T Philips Achieva -
BET toolbox

FMRIB software
library

-

Bao [69] IBSR
LPBA40 1.5 T GE - FLIRT toolbox -

Dong [38] Clinical data 3T Siemens -
Python with Caffe

framework
iBEAT toolbox

-

Raghav [43]

IBSR
MICCAI 2012

LPBA40
Hammers67n20

-
-

1.5 T GE
1 T Philips HPQ

NVIDIA K40 GPU, with 12
GB of RAM.

Python with Keras
packages

BET toolbox
-

Milletari [42] Clinical data -

Intel i7 quad-core
workstations with 32 GB of
RAM and Nvidia GTX 980

(4 GB -RAM).

Python with Caffe
framework -

Dolz [70] IBSR
ABIDE -

Intel(R) Core(TM) i7-6700 K
4.0 GHz CPU and NVIDIA
GeForce GTX 960 GPU with

2 GB of memory.

Python with
Theano framework
FreeSurfer 5.1 tool

Medical Interaction
Tool Kit

2 days and a half

Wachinger [71] MICCAI 2012 -
NVIDIA Tesla K40 and

TITAN X with 12 GB GPU
memory

Python with Caffe
framework

FreeSurfer tool

1 day(train)
1 h(test)

Bernal [73]
IBSR

MICCAI2012
iSeg2017

-

Ubuntu 16.04, with 128 GB
RAM and TITAN-X

PASCAL GPU with 8 GB
RAM

Python with Keras
packages -

Jiong [74] MICCAI2017 -
Ubuntu 16.04 with 32 GB

RAM and GTX 1080 Ti
GPUs.

Python with Keras
packages -

Chen [75] BrainWeb 1.5 T Siemens

Windows 7 computer with
CPU Intel R Xeon R E5-2620

v3 @ 2.40 GHz processor
and 32 GB RAM

- -

Pengcheng [76] BLSA - - FSL software
3D-Slicer -

Hosseini [85] ADNI 1.5 T Siemens Trio Amazon EC2 g 2.8 x large
with GPU GRID K520

Python with
Theano framework -

Saraf [86] ADNI 3T Siemens Trio NVIDIA GPU

Python with Caffe
framework
BET toolbox

FMRIB Software
Library v 5.0

-

Mingxia [87]
ADNI-1
ADNI-2
MIRIAD

1.5 T Siemens Trio
3 T Siemens Trio
1.5 T Signa GE

NVIDIA GTX TITAN 12 GB
GPU

MIPAV software
FSL software

27 h
<1 s (test)

Aderghal [88] ADNI 1.5 T Siemens Trio

Intel® Xeon® CPU E5-2680
v2 with 2.80 GHz and Tesla

K20Xm with 2496 CUDA
cores GPU

Python with Caffe
framework 2 h, 3 min

Jyoti [91] OASIS 1.5 T Siemens
Linux X86-64 with AMD A8

CPU, 16 GB RAM and
NVIDIA GeForce GTX 770

Python with
Tensorflow and

Keras library
-

Khvostikov [93] ADNI 1.5 T Siemens Trio

Intel Core i7-6700 HQ with
Nvidia GeForce

GTX 960 M and Intel Core
i7-7700 HQ CPU with
Nvidia GeForce GTX

1070 GPU

Python with
Tensorflow
framework

BET toolbox

-
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Table 10. Cont.

Author Dataset Scanner Hardware Software Training Time

Lian [95] ADNI-1
ADNI-2

1.5 T Siemens Trio
3 T Siemens Trio

NVIDIA GTX TITAN 12 GB
GPU

Python with Keras
packages -

Liu [96] ADNI 1.5 T Siemens Trio GPU NVIDIA GTX1080.
Python with

Theano framework
and Keras packages

Lee [97] ADNI
OASIS

1.5 T Siemens Trio
1.5 T Siemens Nvidia GTX 1080Ti GPU - -

Feng [98] ADNI 1.5 T Siemens Trio Windows with NVIDIA
TITA- Xt GPU

MIPAV Software
Keras library with

Tensorflow as
backend

-

Ruoxuan [100] ADNI 1.5 T Siemens Trio
Ubuntu14.04-x64/ GPU of

NVIDIA GeForce GTX 1080
Ti

FreeSurfer tool
Keras library with

Tensorflow as
backend

-

Ahmed [101] ADNI
GARD 1.5 T Siemens Trio

Intel(R) Xeon (R) CPU
E5-1607 v4 @ 3.10 GHz, 32
GB RAM NVIDIA Quadro

M4000

Keras library with
Tensorflow as

backend
-

Fung [102] ADNI 1.5 T Siemens Trio

Desktop PC equipped with
Intel Core i7, 8 GB memory

and GPU with 16 G
NVIDIA P100× 8

Ubuntu 16.04,
Keras library with

Tensorflow
MATLAB 2014b

with SPM

-

According to recent research, deep learning is promising for the analysis of brain MRI and can
overcome the issues associated with the earlier state-of-the-art machine learning algorithms. Brain
MRI analysis using computer-aided techniques has been challenging because of its complex structure,
irregular appearance, imperfect image acquisition, non-standardized MR scales, imaging protocol
variations, and presence of pathology. Hence, more generic methods using deep learning are preferable
to manage these vulnerabilities.

Even though deep learning techniques in brain MRI analysis have great potential, there are
still some limitations. It does not display competitive results on relatively small datasets, whereas
it outperforms other methods on large datasets like ImageNet [161]. Several studies have shown
that most of the methods consistently achieve better results when the size of the training datasets
is increased [162,163]. There has been an increasing demand for large-scale datasets so that deep
learning techniques can be used more efficaciously. It is challenging to acquire a large amount of
brain MRI data due to legal and privacy issues. Therefore, it is necessary to develop a deep learning
method using many different brain MRI datasets. One solution is to augment the data from the existing
dataset. For this, random transformations such as translation, flipping, deformation, and rotation
called data augmentation can be applied to the original data to increase the size of the dataset and are
applied in deep learning methods. Many studies have shown that data augmentation leads to benefits
that introduce random variations to the original data and reduce overfitting [33,150]. Furthermore,
supervised learning techniques construct predictive models by learning from a large number of training
examples, where each training example has a label indicating its ground-truth output. Although
current techniques have achieved great success, it is difficult to get strong supervision information like
fully ground truth labels due to the high cost of data labeling in many applications. In circumstances in
which there are difficulties in obtaining large brain MRI datasets with ground truth annotations, deep
learning techniques should work with weak supervision, which can be trained on small datasets. Deep
weakly-supervised learning models can be a solution to identify diseases in brain MRI without the
need for a large number of ground truth annotations. These models allow us to simultaneously classify
brain MRI, yielding pixel-wise localization scores, thereby identifying the corresponding regions of
interests (ROIs). Transfer learning could be used to share well-performing deep learning models,
which are trained on normal and pathological brain MRI data, among the brain imaging research
community. The generalization ability of these models could then be improved across datasets with
less effort required.
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6. Conclusions

In medical imaging, the advancement of computational intelligence, deep learning, and
computer-aided detection has attracted much attention in brain segmentation and AD diagnosis.
Although deep learning methods have a high impact on the quantitative analysis of brain MRI, there is
still difficulty in finding a robust, generic method. Pre-processing initialization and post-processing
can affect the performance of deep learning techniques. Here, we reviewed the-state-of-the-art studies
of brain structure and classification of brain MRI for the diagnosis of AD. Moreover, we discussed how
brain structure segmentation improves the classification performance of AD. The segmentation for
brain MRI helps to facilitate the interpretation and classification of AD. Brain MRI segmentation can be
challenging work due to the images having a noisy background, partial volume effect, and low contrast.
Furthermore, the automatic classification of AD is quite challenging due to the low contrast of the
anatomical structure in MRI. To overcome these difficulties, various methods for segmentation have
been proposed, with varying complexity. These methods have resulted in more accurate results in the
past few decades. The segmentation of the brain structure and classification of AD using deep learning
approaches has gained attention due to the ability to provide efficacious results over a large-scale data
set as well as to learn and make decisions on its own.
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