
sensors

Article

Estimating Human Wrist Stiffness during
a Tooling Task

Gia-Hoang Phan 1,†, Clint Hansen 2,*,†, , Paolo Tommasino 1, Aamani Budhota 1,
Dhanya Menoth Mohan 1, Asif Hussain 1, Etienne Burdet 1,3 and Domenico Campolo 1

1 Robotics Research Center, School of Mechanical and Aerospace Engineering, Nanyang Technological
University, Singapore 639798, Singapore; GIAHOANG001@e.ntu.edu.sg (G.-H.P.);
PAOLO001@e.ntu.edu.sg (P.T.); BUDH0002@e.ntu.edu.sg (A.B.); dhanya.mohan@ku.ac.ae (D.M.M.);
ahussain@articares.com (A.H.); e.burdet@imperial.ac.uk (E.B.); D.CAMPOLO@ntu.edu.sg (D.C.)

2 Neurogeriatrics Kiel, Department of Neurology, University Hospital of Kiel, 24105 Kiel, Germany
3 Department of Bioengineering, Imperial College, London SW7 2BY, UK
* Correspondence: c.hansen@neurologie.uni-kiel.de
† These authors contributed equally to this work.

Received: 4 May 2020; Accepted: 27 May 2020; Published: 8 June 2020
����������
�������

Abstract: In this work, we propose a practical approach to estimate human joint stiffness during
tooling tasks for the purpose of programming a robot by demonstration. More specifically, we estimate
the stiffness along the wrist radial-ulnar deviation while a human operator performs flexion-extension
movements during a polishing task. The joint stiffness information allows to transfer skills from
expert human operators to industrial robots. A typical hand-held, abrasive tool used by humans
during finishing tasks was instrumented at the handle (through which both robots and humans are
attached to the tool) to assess the 3D force/torque interactions between operator and tool during
finishing task, as well as the 3D kinematics of the tool itself. Building upon stochastic methods
for human arm impedance estimation, the novelty of our approach is that we rely on the natural
variability taking place during the multi-passes task itself to estimate (neuro-)mechanical impedance
during motion. Our apparatus (hand-held, finishing tool instrumented with motion capture and
multi-axis force/torque sensors) and algorithms (for filtering and impedance estimation) were first
tested on an impedance-controlled industrial robot carrying out the finishing task of interest, where
the impedance could be pre-programmed. We were able to accurately estimate impedance in this
case. The same apparatus and algorithms were then applied to the same task performed by a human
operators. The stiffness values of the human operator, at different force level, correlated positively
with the muscular activity, measured during the same task.

Keywords: instrumented tool; tool-workpiece interaction; human joint stiffness

1. Introduction

From a robotic perspective, one of the most interesting features of humans is their proficiency to
operate a variety of tools in order to interact with and adapt to an often unpredictable environment.
For example, artisans can skilfully use scalpels, hammers and grinders to carve, bend or polish different
types of materials and geometries. While humans can cope with tooling tasks seemingly effortless
and can flexibly adapt their motor strategies to different mechanical and geometrical constraints [1–3],
for conventional industrial robots these type of tasks remain challenging.

Tooling an object with a robot is challenging for several reasons: (i) the mechanical properties of
the tooled object are usually unknown; (ii) when tooling an object, its surface may deform or wear out
and therefore the robot controller can no longer rely on the original CAD model and must continuously
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adapt to changes of the surface geometry; (iii) friction and surface irregularities may result in large
forces and to instability, especially for high gain feedback controllers typically adopted in industrial
manipulators [4,5]. Conventional approaches based on model-development, robot programming and
fine-tuning (with possibly several iterations of these steps) are often not suitable to recent high-mix
low-volume manufacturing trends. For example, the process of programming a robot with a teaching
pendant (as industrial practice) is exceedingly time-consuming, especially given the relatively short
life-time of modern products.

One possibility is to move beyond traditional robot programming and make use of teaching by
demonstration [6]. This is not only a way to speed up the process but it also allows to capture tacit
knowledge of an experienced operator in a more natural way [7]. The tacit knowledge we aim at
capturing in this work is the level of biomechanical stiffness displayed by the operator during contact
tasks. As explained below, the novelty of our approach is in the exploitation of the natural variability
of the task as a means to evaluate stiffness via regressive methods, as opposed to using ad-hoc robotic
devices to generate disturbances, e.g., [1–3,8].

Hybrid position/force control is often implemented for tooling tasks such as polishing whereby
a position controller is used to align the tool with the relevant geometric features of the surface
under tooling while a force controller applies desired forces in specific directions with respect to the
surface [9]. Hybrid position/force control approaches, however, may fail in presence of unstable
contact tasks such as drilling and carving and human operators are still required to carry out these
so-called finesse finishing tasks.

What mechanisms allow humans to perform such tasks? Several behavioural studies have shown
that the success of humans to cope with unstable and unpredictable environments resides in their
capability to adapt the endpoint mechanical impedance to the environmental conditions [2,10–12].
These studies have led to novel bioinspired controllers mimicking the impedance characteristics of
human operators performing contact tasks [4,5,13–16].

In this paper we focus on learning by demonstration, in particular on the estimation of human
wrist stiffness during tooling tasks, specifically in the case of hand-held tools. When a human operator
performs a tooling task, typically the entire posture of arm/torso is involved, accounting for more
than a dozen degrees of freedom (dof). However, within a learning by demonstration framework, one
is ultimately interested in mapping a human demonstration onto an industrial robot, typically with
much fewer degrees of freedom. Not to be robot-specific, in this paper will focus on tasks such as
polishing of relatively short and straight edges, which can be accomplished by most robots, with at
least 2 dof. This gives rise to what in imitation learning is known as correspondence problem [17],
i.e., mapping motions from a demonstrator to a learner when these two agents are kinematically
dissimilar. In addition to this problem, different demonstrators might have different ways to perform
the same task, with varying emphasis on motion of distal and proximal joints depending, for example,
on their specific stature, age and musculature (hand-held power tools can be quite heavy). To guide
the operator, we make use of an arm-rest, so that the task will be accomplished mainly through the
operator’s wrist motions.

Mechanical impedance is a mathematical operator which predicts the force generated by a system
in response to an imposed motion [18]. Impedance operators are typically defined for linear systems but
can also be generalized to nonlinear systems once the system is linearized and under the assumption
of ‘small perturbations’. When an external perturbation displaces the hand, a restoring force brings
it back to the initial position [19,20] or to the undisturbed trajectory [21–23]. It is also possible to
estimate stiffness from a single movement [24] however we chose a dynamic tooling-task and apply
regression methods.

By linearizing the system behaviour around a given equilibrium point or trajectory, the impedance
can be decomposed into: stiffness, the resistance to a change in position; damping, the resistance to a
change in velocity; and inertia, the resistance to a change in acceleration. For multiple-joint systems,
such as a human arm, this process must be generalized to account for geometric factors, and the
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multi-dimensionality of interaction dynamics and kinematics [25–29]. In humans, while inertia due to
the masses of bones and muscles cannot be controlled (for any given posture), stiffness and damping
are due to the viscoelastic behaviour of muscles, tendons and ligaments and to reflexes, influenced by
the motor commands [30].

In studies involving humans, the source of perturbation is usually a robotic manipulator whose
end-effector is directly connected to the anatomical part of interest, such as the subject’s hand [8,19,20,31].
Perturbations can be applied around an equilibrium configuration in static posture or during the undisturbed
trajectory during movement. Several techniques have been proposed for the estimation of the hand
impedance during movements. In this case, one of the main challenge, is the correct estimation of the
unperturbed hand trajectory that is used to linearize the system dynamic [23].

A first approach to multi-joint hand impedance identification was based on displacement or force
perturbations along different directions of the transverse plane [19,20]. By recording the restoring
force and the hand kinematic following the perturbations, linear least square method was commonly
employed to identify the parameters of the hand mechanical impedance. Due to noise in the force
measurement and error in the movement prediction [23], such an approach usually requires several
experimental trials (each for every direction of perturbations).

An alternative approach was proposed by Perreault et al. whereby a stochastic force [32] or
position [33] perturbation (rather than a single displacement [23] or force pulse [22]) was used. Potential
advantages of this method include: (i) the entire stiffness field could in principle be swept during a
single or fewer trials (ii) due to the stochastic nature, this kind of perturbation is less likely to evoke
voluntary responses and hence alter the quality of the estimation. While the stochastic perturbation
method was initially developed based on the assumption that the system of the arm controlled by the
nervous system is a linear time invariant system, thus restricting its use to estimation of impedance in
static postures, recent works have developed extensions to estimation in movements e.g., [34].

To our knowledge, all methods to estimate impedance in the literature were using a robot or a
dedicated computer-controlled module [35,36] to disturb movement or force, which restricts these
methods to laboratory settings. However, these settings have different dynamics than the ecological
scenarios we would be interested in investigating in order to understand how humans control
movements and interactions in real-life situations. Here, we thus propose to rely on disturbances
which naturally arise during tooling tasks [37]. Building upon stochastic perturbation methods to
assess impedance, we will use perturbations caused by the interaction of a tool with the environment
in order to identify the mechanical impedance in real-life scenarios.

The task of interest in this paper is polishing, a multi-pass process, typically performed by human
operators via hand-held power-tools as illustrated in Figure 1. For one of such hand-held power-tools,
we designed a custom handle which allows to capture (via multi-axis force/torque sensors) the 3D
interaction dynamics between the tool and the operator. To capture the pose of the tool in 3D space,
we used optical motion tracking with trackers affixed to the power-tool. The principle of this hand-held
power-tool is described in [38]. The activity level of forearm/wrist muscles deemed relevant to the
task and was consequently also monitored using surface electromyography (EMG).

The method for extracting impedance values during contact is first tested with an
impedance-controlled industrial robot, deployed to perform a polishing task with a specific value of
pre-set impedance. The same polishing task is then tested with a human operator using the power-tool.
Data from this experiment are analysed and the impedance values are shown to positively correlate
with the muscle activity of the forearm. In the following, Section 2 describes the method of joint
stiffness assessment and its validation on an industrial impedance-controlled robot. Section 3 describes
the protocols and experiments conducted on a human subject, data analysis and results.
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Figure 1. (a) Polishing tool’s description. Example of finishing task with a hand-held tool. (b) Schematic
and naming conventions for the instrumented tool shown in (c).

2. Setup, Methods and Robotic Validation

We consider tooling tasks which involve non-negligible contact forces, such as grinding or
polishing. More specifically, we assume that the tooling operation is conducted by means of a power
hand-held tool rigidly attached to distal end of a wrist joint. Our technique to estimate stiffness using
this tool will be tested and validated on a robotic wrist in this section. As the goal is to estimate the
stiffness of a worker’s wrist when holding this tool, the coordinates definition will follow the anatomy
of a human wrist.

2.1. Instrumented Tool: 3D Kinematics, Force and Torque Estimation

To measure 3D kinematics of the rigid tool, the tool was equipped with a redundant number of
optical markers ensuring that at least three markers are always visible during operation. We consider a
hand-held power tools operated with a single handle so that the interaction dynamics can be estimated
using a single load cell capable of sensing 3D forces and 3D torques placed between the handle and the
tool. For power tools, the spindle is usually the most heavy component and for some hand-held tools
such as the Dremel 4000, it can be decoupled from the tool-bit via a flexible shaft, so that the user does
not need to withstand the weight of the spindle during manual operations, as shown in Figure 1a).

In general, data relative to tool pose (3D positions and 3D orientations of a rigid body) and to
interaction forces and torques [39] are acquired with respect to different reference frames, depending
on the type of sensors (optical motion trackers and loadcells) and their placement. With reference
to Figure 1b, for human/robot joint impedance analysis we shall refer all measurements to an
anatomically relevant frame {W}, rigidly attached to the human/robot forearm and centred in
the wrist. In this paper, we shall consider a simplified kinematic model of the human wrist, which we
assume to be a spherical joint with 3 degrees of freedom (dof) expressed as a vector q = [qRU qFE qPS]T ,
with the joint angles qRU , qFE, and qPS corresponding to radio ulnar-deviation (RU), flexion-extension
(FE), and pronation-supination (PS), respectively. Despite this simplification of assuming a spherical
joint, we shall still follow an anatomically correct sequence of rotations for the wrist joints (as in [40])
whereby PS is the most proximal joint and RU is the most distal. Defining the ‘zero’ configuration
(q = [0 0 0]T) as the anatomically neutral position of the hand (i.e., the hand is aligned with the forearm,
see [40] for details) the joint angles vector q can be derived from a 3× 3 rotation matrix R, defined as
the rotation of hand from its the neutral position. Following [40], the joint angles can be derived from
R as:

q =

 qRU

qFE

qPS

 =

 atan2(R1,3, R1,1)

arcsin(−R1,2)

atan2(−R3,2, R2,2)

 (1)

where Ri,j represents the entry at the i-th row and j-th column of the matrix R.
The 3D force (FL) and torque (TL) measurements are directly provided by the loadcell in

coordinates relative to its intrinsic loadcell frame {L} and conveniently merged into a 6D wrench
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vector WL := [FL TL]T , accounts for the interaction between the tool-bit and the work-piece, but is
corrupted by the effects of the flexible shaft and of the gravity on the tool. In order to determine
torques in the wrist joint, the wrench WL needs to be transformed into wrist coordinates WW . Taking
into account the constant rotation R0 and displacement ∆L between loadcell and hand (from loadcell
to hand coordinates), the hand rotation R (from hand to wrist coordinates, as shown in Figure 2),
the wrench transformation can be computed as [9]

WW =

[
FW

TW

]
=

[
R R0 0

R R0[∆
L×] R R0

]
WL (2)

where [∆L×] is the anti-symmetric matrix associated (To any vector a ∈ R3, can associate a
skew-symmetric matrix [a×] defined such that [a×] b = a × b, for any vector b ∈ R3 [9].) with
the vector ∆L.

L

∆
R0

∆

RR0
R

L

R0

H

W W
H

a) b)

L Loadcell

Hand

Wrist

H

W

Figure 2. Neutral configuration of the hand. (a) Hand in neutral position; (b) Hand movement
expressed by rotation R.

Finally, the anatomical joint torques can then be extracted from the wrench as TRU

TFE

TPS

 := TW =

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

WW (3)

2.2. Compliant Robots: Impedance-Controlled Joints

In contrast to conventional robotic manipulators that are typically stiff and position-controlled,
modern service and industrial robots embed high-bandwidth current servos and/or joint-torque
sensors allowing force/impedance control strategies. Several impedance/force control approaches
have been proposed in the last two decades and the reader is referred to [41] for the literature on
this subject. In this work, we shall refer to the impedance-control schemes available for commercial
manipulators such as the KUKA lightweight robot [42].

The impedance-controlled robot used in this work was programmed in operative (or Cartesian)
mode. In this modality, a Cartesian frame of reference is defined at the wrist of the robot, as shown
in Figure 3. The six degrees of freedom (dof) of this Cartesian frame formed of 3D translations and
3D rotations will hereafter be referred to as ‘joints’. Furthermore, as the rotations of the Cartesian
frame will be used to mimic the wrist rotations of the human operator, we shall denote these axes
as radial-ulnar deviation (RU), flexion-extension (FE), and pronation-supination (PS), as indicated in
Figure 3.

Using the subscript J to denote different joints (i.e., J ≡ RU, FE, or PS), we shall consider an
impedance-control mode with overlaid (i.e., superimposed) torques. Specifically, we shall assume that
each robotic joint J is controlled according to

T J = T J
0 + kJ

(
qJ − qJ

0

)
+ bJ q̇J J ≡ RU, FE, or PS (4)
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where kJ is the joint stiffness and bJ joint damping, qJ
0 is the desired trajectory, qJ is the actual trajectory,

q̇J denotes the velocity, T J
0 is the overlaid torque and T J is the commanded joint torque. This scheme,

also shown in Figure 3, assumes that the robotic platform is force-controlled [43], i.e., forces at each
joints are commanded based on the readings from encoders. The joint position qJ is measured via
encoders and a control torque T J is computed via Equation (4) and then commanded to the joint
actuator. To ensure stability, the control torque T J should be updated (1 kHz) to respond to changes in
joint angle qJ , e.g., fast vibrations. Parameters such as T J

0 , qJ
0, kJ , bJ are meant to be input commands

modulated at a much slower rate, e.g., comparable to human motions.
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qFE

D
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Motion Capture_
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Figure 3. Method to estimate a robot stiffness and damping during polishing while moving sinusoidally.
The top left corner shows a diagram of a torque-controlled robotic joint.

Also illustrated in Figure 3, the interaction torque of the instrumented tool is measured at 1 kHz
by an ATI mini 40 loadcell and its position at 100 Hz by motion capture (VZ4000, Poenix Technologies
Inc.), spatial resolution 0.015 mm at 1.2 m distance. The anatomical joint torque and angle can then
be determined using Equations (1) and (3). The rate of torque is downsampled to 100 Hz to match
the frequency of the motion capture. The digital downsampling was accomplished using the Matlab
function downsample. We reduced the sampling frequency of 1000 Hz to 100 Hz by keeping the first
sample and then every 10th sample after the first. Finally, stiffness and damping of the KUKA robot
are determined from the joint torque and angle, using the Equation (6) which will be presented later in
this section. Importantly, the stiffness kJ and damping bJ are assumed to be constant during a trial.
This is certainly true for the robot experiment below but it is important to note that impedance can
change during movement of a human operator.

2.3. Robotic Impedance Estimation during Tooling Tasks

Although robots generally provide access to joint angles qJ and commanded torques T J , here we
shall solely rely on measurements derived from motion capture systems and external loadcells, via
Equations (1) and (3), as these will be the only source of information for experiments performed by
humans. Furthermore, in this paper, we focus on the RU-axis so on the measurements TRU

0 , kRU ,
and qRU

0 as per Equation (4). We tested the estimation process illustrated in Figure 3 on the KUKA
lightweight robot, which was controlled in impedance to perform a tooling task kinematically similar
to the human task described in next section. This task mainly involves a periodic, slow and self-paced
oscillating motion about the FE-axis while maintaining a constant torque about the RU-axis. We focus
here on estimating impedance only along the RU-axis.
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To this end, the robot was programmed to be rotationally compliant (with rotational stiffness
10 Nm/rad and damping 1.9 Nm s/rad) along the FE- and RU-axis, as shown in Figure 3, while
maintaining maximum stiffness along the remaining dof (i.e., 300 Nm/rad rotational stiffness along
the PS-axis and 5000 N/m translational stiffness in all directions). With reference to Equation (4),
the following desired trajectories qJ

0 (J = FE, RU) and overlaid torques T J
0 (J = FE, RU) where

pre-programmed for the FE- and RU-axes:

FE-axis


TFE

0 = 0 Nm

qFE
0 =

π

6
sin(3t) rad

kFE = 10 Nm/rad
bFE = 1.9 Nms/rad

RU-axis


TRU

0 = 0.5 Nm
qRU

0 = 0 rad
kRU = 10 Nm/rad
bRU = 1.9 Nms/rad

(5)

The sinusoidal motion imposed to qFE
0 in Equation (5) takes approximately 2 s for a whole

period. In order to obtain 10 repetitions for statistical analysis, we performed the experiments for
approximately 20 s, during which joint positions qFE

i , qRU
i where sampled from Equation (1) at 100 Hz

and joint torques TFE
i , TRU

i where computed from Equation (3).
Considering a sequence measurements qRU

i and TRU
i , at each time sample ti, Equation (4) can be

rewritten as: [
TRU

i

]
= TRU

avg +
[

qRU
i q̇RU

i

] [ k̂
b̂

]
(6)

where to regress the impedance (formed of stiffness k̂ and damping b̂ ), or as[
TRU

i

]
= TRU

avg +
[

qRU
i

]
k̂′ (7)

where to estimate only stiffness k̂′. In these equations the scalar TRU
avg represents the average torque

TRU
i over one period of time, which accounts for both the constant torque TRU

0 and the factor kRUqRU
0 .

The terms in square brackets represent matrices of measurements.
To assess the goodness of regression, the measured torques were compared with the estimated

viscoelastic T̂RU and purely-elastic T̂′RU torques, as predicted from Equations (6) and (7), respectively,
defined as follows:

T̂RU = TRU
avg + k̂ qRU + b̂ q̇RU (8)

T̂′RU = TRU
avg + k̂′qRU (9)

where qRU and q̇RU are the actually measured kinematics. TRU
avg , k̂, b̂ and k̂

′
are regressed from

Equations (6) and (7). As reported in Figure 4, when fitting only with an elastic model Equation (7),
the regression returned a value of k̂′ = 10.34 Nm/rad. When fitting with the viscoelastic model in
Equation (6), the regression returned a stiffness k̂ = 10.28 Nm/rad and a damping b̂ = 2.02 Nm.s/rad.
In both cases, the stiffness and impedance estimates are accurate within 2% with respect to the
pre-programmed k = 10 Nm/rad and b = 1.9 Nm.s/rad, as in Equation (5) for the RU-axis.

It should be noted that the same data acquisition system (in particular the same instrumented
tool in Figure 1), algorithm and also a similar protocol as the one pre-programmed for the robot will
be used to perform experiments with the human operator, so the same accuracy is expected in the
estimation of impedance.
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Figure 4. Result of impedance identification during the validation experiment with a robot. (a)
Measured torque TRU vs. estimated torque T̂RU . (b) Estimated torque T̂′RU using an elastic model. (c)
Estimated torque T̂RU with visco-elastic model.

3. Estimation of Human Operators’ Joint Stiffness During Tooling Tasks

In this section we use the instrumented tool to estimate wrist kinematics and contact forces during
a tooling task performed by a human operator. In addition, recording of muscle activity will enable us
to study whether the identified impedance has properties expected from muscle physiology.

3.1. Experiments and Setup

As shown in Figure 5, a the human operator was seated in front of the workpiece (the metal
square plate used for the robot experiment) while grasping the tool’s handle with their right hand.
The operator’s forearm was supported against gravity to reduce fatigue and was strapped to the
support frame to confine the task to the wrist. The forearm height was adjusted to ensure that the tool’s
tip was in contact with the workpiece at the beginning of the experiment. This initial configuration
was set as neutral reference configuration qPS = qFE = qRU ≡ 0 rad.

Instrumented

tool

EMG

Infra-red

Markers
Work-piece

Wrist position

Fy

x

y

( TRU ; qRU )

b)

qFE

W

a)

Figure 5. Human operator performing a polishing task. (a) Actual experimental setup. (b) Naming
conventions. Please see online content for a video representation of the task including the visual feedback.

The operator was instructed to move the tool periodically left-and-right across the horizontal
workpiece surface shown in Figure 5b at self-paced speed while keeping a desired interaction force
Fy > 0. No instruction was given regarding the speed and/or the range of horizontal movement.
The tool tip rotated with a constant angular velocity of 15,000 rpm during the entire duration of
the experiment.

We assume that the horizontal movement is mainly due to wrist flexion-extension and that the
operator plans a constant reference trajectory qRU

0 (t) = 0 rad for the RUD joint, therefore focus on the
estimation of RUD wrist stiffness. During the experiment, surface electromyography (EMG) was used
to monitor the activation of muscles representing the control of the wrist RUD rotation: extensor carpi
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radialis longus (ECR), extensor carpi ulnaris (ECU), flexor carpi radialis (FCR), and the flexor carpi
ulnaris FCU [44]. EMG activity was collected with the BIOPAC MP150 Data Acquisition and Analysis
System at 1 kHz. The raw EMG signal was pre-amplified with a gain value of G = 1000 and band-pass
filtered between 10–500 Hz. This signal was rectified, low-pass filtered (using a 4th order Butterworth
filter with 20 Hz cut-off frequency [45]) to yield the EMG envelope, which was normalized with respect
to the maximum activity displayed by the muscle during a maximum voluntary contraction (MVC)
task performed before starting with the experiment (Figure 6). The mean normalised envelope was
used as a measure of muscular effort and its contribution to the task.
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Figure 6. Steps of EMG pre-processing illustrated on for an ECR muscle of the operator.

3.2. Impedance and Muscle Effort Dependence on Force

One healthy operator (male, 29 years old, right-handed) conducted the experiment. A trial
consisted of 10 forth and back rotational extension-flexion movements. Four conditions were tested
corresponding to increasing levels of desired contact force:3N, 5N, 7N, 9N. For each condition,
the operator was asked to perform 12 trials consecutively. To enable the subject to apply a nearly
constant level of force on the plate during movement, visual feedback was given to the subject
consisting of a bar displaying the error between the applied force and the desired level of contact
force. The subject was instructed to keep the error as small as possible for the whole duration of
the experiment.

Figure 7 shows the result for the flexion-extension task experiment, the estimated stiffness k̂
′RU

of the subject wrist from Equation (7) for the applied force of 3N, 5N, 7N, 9N is: 5.10 Nm/rad,
6.07 Nm/rad, 7.87 Nm/rad, and 10.28 Nm/rad, respectively. Using the Equation (6) presented above,
the estimated torque from the estimated stiffness and damping is shown in Figure 8. As shown in
Figure 9, the wrist stiffness of the subject increases in a roughly linear manner with the applied force
for both methods of regression.

In Figure 10 it can be observed that the mean muscle activity increases with the desired force level
to be maintained, in a similar way as stiffness, as can be expected from the muscle physiology [30,46].
Among the wrist extensors and flexors, the ECR and FCR that are responsible for radial deviation
show relatively higher activity as these muscles are used to hold the tool against the workpiece.
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Figure 7. Results of the flexion-extension task. (a) The stiffness estimation is given from
Equation (7). (b) The measured angle given from the motion capture. (c) The measured torque
by the instrumented tool.
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Figure 8. Estimation of wrist visco-elasticity during wrist-flexion-extension task.
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four levels of applied forces: 3N, 5N, 7N, and 9N, respectively. (a) Estimated scalar stiffness k̂

′RU from
Equation (7) . (b,c) Estimated scalar stiffness k̂RU and damping b̂RU from Equation (6).
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Figure 10. Muscular effort increases with the applied force for the (a) ECRL: Extensor Carpi Radials
Longus, (b) ECU: Extensor Carpi Ulnaris, (c) FCR: Flexor Carpi Radialis, (d) FCU: Flexor Carpi Ulnaris.
Values are shown as percentage of the maximum voluntary contraction (MVC).

4. Conclusions and Discussion

In this work, we propose an instrumented tool and a regressive algorithm to estimate stiffness
during multi-passes tooling tasks. The novelty of our approach is that the perturbations (required
to estimate stiffness) originate from the intrinsic variability of the task itself rather than from a
dedicated system as in all previous works which, specifically for this reason, are not easily applicable
to real-life scenarios.

The task is a simplified version of an actual tooling task. Although the forearm is vertically
supported to reduce fatigue, see Figure 5, the wrist is free to move so that RUD motions of the wrist
induce a vertical motion of the tool, while FE motions of the wrist induce a horizontal motion of
the tool. The operator is required to perform a series of FE motions (bottom plot in Figure 6) while
maintaining a constant vertical force. Relatively ample motions (≈±0.1 rad) along the FE axis induce
much smaller still significant (for the purpose of estimating RUD stiffness) motions along the RUD
(≈±0.03 rad, as in Figure 8) as well as subsequent variations of the RUD torque, ultimately responsible
for the vertical force imposed during the tooling task. Our regression detects exactly this variability,
which occurs at a very low frequency (it takes more than one second for a full FE sweep, see bottom
plot in Figure 6), i.e., we estimate quasi-static stiffness.

For validation purposes, the same method was used with an impedance-controlled robot used
to carry out a similar task and verify that our data analysis and regressions could correctly predict
the pre-programmed robot impedance. We were able to accurately predict the pre-programmed robot
impedance providing confidence that the estimated values impedance parameters are correct when
measuring human operators. The electromyographic activation correlated positively with the four
different levels of exerted force (or RU torque), as expected from physiology.

Our method is meant to provide a practical approach to estimate human stiffness during tooling
tasks for the purpose of programming a robot by demonstration. A clear limitation of our work
is that we assumed a constant impedance for the human throughout the motion. This is clearly
an oversimplification, partly justified by a relatively constrained range of flexion-extension motion
(±45 deg for the FE axis) and the relatively constrained exerted forces (3–9 N). One possibility to
overcome this limitation is to ensure repetitive motions and regress impedance at different postures by
averaging along ensembles, rather than along time, as recently suggested by Ludvig and Perreault [34].
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However, in many applications the robot impedance would require a single value input, therefore we
feel that our approximation is acceptable.

Another limitation of our work is that we only focus on the RU joint, for which a constant angle
and torque was maintained throughout the task. While the intended periodic motion along the FE axis
(for this task) for robots is pre-programmed and therefore known, humans cannot easily estimate it.
Currently, we only focused on the stationary axis (RU, for the given task) but continue to investigate
the possibility to filter out the voluntary, self-paced motion. If successful, this will allow extending the
stiffness identification for other motions.
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