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Abstract: The proliferation of mobile devices such as smartphones and tablets with embedded
sensors and communication features has led to the introduction of a novel sensing paradigm called
mobile crowd sensing. Despite its opportunities and advantages over traditional wireless sensor
networks, mobile crowd sensing still faces security and privacy issues, among other challenges.
Specifically, the security and privacy of sensitive location information of users remain lingering issues,
considering the “on” and “off” state of global positioning system sensor in smartphones. To address
this problem, this paper proposes “SenseCrypt”, a framework that automatically annotates and
signcrypts sensitive location information of mobile crowd sensing users. The framework relies on
K-means algorithm and a certificateless aggregate signcryption scheme (CLASC). It incorporates
spatial coding as the data compression technique and message query telemetry transport as the
messaging protocol. Results presented in this paper show that the proposed framework incurs low
computational cost and communication overhead. Also, the framework is robust against privileged
insider attack, replay and forgery attacks. Confidentiality, integrity and non-repudiation are security
services offered by the proposed framework.

Keywords: Internet of Things; mobile crowd sensing; security and privacy; data annotation;
signcryption; data compression; message queuing telemetry transport protocol

1. Introduction

The Internet of Things (IoT) is a dynamic and global network infrastructure for linking together
the physical and virtual world, using standard and interoperable communication protocols [1].
The IoT uses well-known technologies such as wireless sensor networks (WSNs) and radio frequency
identification (RFID). A recent IoT trend is mobile crowd sensing, where carriers (known as a “crowd”)
of sensing and computing devices such as smartphones, tablets and wearable devices acquire and
share essential data for various applications [2]. Mobile Crowd Sensing (MCS) has revolutionized the
IoT to become a vital sensing mechanism. The advancement in mobile technology has been key to the
advantages of MCS over traditional sensing technologies (such as WSNs). Firstly, the availability of
affordable smartphones with integrated sensors has enabled the development of several landmark
applications. Furthermore, the programmability of smartphones supports novel sensing applications
such as the sharing of user’s real-time activity with friends on social networks. Secondly, apart from
sensing, mobile devices like smartphones have computing and communication features which allow
programmers to deploy third-party applications. Thirdly, the availability of application stores by
phone vendors allow sensing application developers to ship out novel applications at large-scale.
Such large-scale sensing was not possible with previous sensing technologies like wireless sensing
networks (WSNs). Fourthly, developers can offload mobile services to backend servers, thereby ensuring
additional computing resources that aid advanced features in sensing applications [3]. An example
of such sensing applications is feedback and persuasion apps. Sensing applications can be broadly
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classified into people-centric and environment-centric sensing. People-centric sensing focuses on
collecting human-related data at different scales to record users’ activities (e.g., daily routines),
health records and analyze behaviours (e.g., gait) [4]. Personal, group and community sensing are
categories of this sensing type. Environment-centric sensing, on the other hand, collects data about
the environment (e.g., noise and air pollution) [5]. Smartphone sensors such as accelerometers,
gyroscopes, magnetometers and GPS recievers aid the development of novel applications across several
domains such as transportation [6], healthcare [7], social networks [8], safety [9], and environmental
monitoring [10], thereby expanding the applicability of mobile crowd sensing. Despite its benefits,
MCS still faces challenges that include security and privacy [11–13]; quality and reliability of sensed
data [14]; incentivization of participants [15]. Other issues in MCS are energy consumption of mobile
sensing devices [16]; and sensor data annotation [17–21].

Security and privacy are pressing issues in MCS, raising concerns about the collection and usage
of personal data. In MCS, sensitive information of users such as their identity and location information
are vulnerable to privacy attacks [22]. An adversary can intercept MCS traffic and capture the sensitive
information of users contained in sensor data. For example, GPS sensor readings can be used by
an adversary to obtain personal information about MCS participants, such as their daily routes to
work and their home location. With knowledge of the possible vulnerability of their sensitive data,
MCS users are mostly reluctant to participate in sensing tasks.

Some frameworks have been proposed to address security and privacy issues in MCS.
These frameworks include PRISM, proposed by Das [23]; AnonySense, proposed by Shin [24]
and PEPSI, proposed by De Cristofaro and Soriente [25]. These frameworks, however, overlook the
security of sensitive location information of participants. To tackle this issue, Liu [26] proposed a
security framework called Invisible Hand, which uses economic models to secure location information
of MCS users. Nevertheless, the proposed framework, while protecting location information of users
does not consider the peculiarity of GPS signals, considering the “on” and “off” state of GPS sensors in
mobile devices. The lack of an appropriate automatic annotation mechanism for sensitive location
data at the sensing layer of MCS undermines the effective security of such data.

Encryption and digital signature schemes are significant cryptographic primitives used in
many applications. Signcryption ensures signing and encryption in one logical step. It incurs
low computational cost and communication overhead compared to the sign-then-encrypt
technique. Signcryption guarantees confidentiality, integrity, authenticity and non-repudiation.
Nevertheless, drawbacks with signcryption include, transfer of a large amount of information
and its verification complexity. A remedy to these drawbacks is the aggregate signcryption scheme,
which aggregates signcrypted messages, hence reducing the amount of transferred information between
communicating entities. This approach minimizes the computational complexity and communication
overheads associated with signcryption schemes. Application areas of aggregate signcryption include
online banking, online polling, and traffic management. Specifically, certificateless aggregate
signcryption (CLASC) have been employed in e-auction [27] and vehicular crowdsensing [28].
However, computational complexity and communication overheads still exist with CLASC schemes
due to the implementation approach used.

In this paper, we show that a novel implementation approach involving spatial coding compression
and the integration of MQTT can enhance the CLASC scheme proposed by Basudan, Lin [28] in
terms of computation and communication overheads. To this end, this paper proposes a framework
called “SenseCrypt”, that automatically labels sensor data either as non-sensitive or sensitive data.
The framework also signcrypts data labelled as sensitive data. The framework, which is an extension
of our previous work in [21], employs K-means algorithm for the annotation of sensitive location
information and a certificateless aggregate signcryption scheme for data security.

The contributions of this paper are threefold:

1. To propose an annotation model that labels sensor data into non-sensitive (does not contain
location readings) or sensitive (contains location readings) clusters.
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2. To secure sensitive location data in MCS using an efficient CLASC scheme that incurs low
computational cost and communication overheads.

3. To evaluate the performance of the proposed framework against known attacks in mobile
crowd sensing.

The rest of this paper is structured as follows: Section 2 presents a review of related works on
some security and privacy techniques and frameworks in MCS. In Section 3, we present our proposed
SenseCrypt framework that incorporates data annotation and sensitive data signcryption. Furthermore,
the dataset used to develop the models in the framework are also discussed in this section. The results
from the evaluation of the framework are shown and discussed in Section 4. The section also presents
the performance and security analysis of the proposed framework. Section 5 concludes the paper and
highlights our future work.

2. Literature Review

Anonymity-based approaches and cryptographic methods are commonly used to ensure security
and privacy in mobile crowd sensing [29]. Existing security and privacy solutions that employ these
techniques are presented in this section.

2.1. Anonymity-Based Techniques in MCS

Anonymity-based methods presented in this subsection include K-anonymity, cloaking, pseudonymity,
and differential privacy.

2.1.1. K-Anonymity

K-anonymity in MCS is an anonymisation technique that removes unique details in the information
of K participants by adding similar information from other participants [30]. Consequently, K-anonymity
is ensured in the generated information if the data for each participant cannot be identified from at least
K-1 other participants [31]. This privacy approach is implemented in Privacy-Preserving Reputation
System (PPRS), which was proposed by Huang [32]. The system comprises of participants, a trusted
third party and an application server as entities. The system employs K-anonymity on participant’s
location and time data by normalising them with similar data of other participants. The trusted third
party in the framework ensures the security and privacy of participants’ data and guarantees data
trustworthiness. However, K-anonymity is still vulnerable to homogeneity attacks. These attacks
exploit the monotony of certain features to identify users from the set of k participant [4].

2.1.2. Cloaking

Cloaking is a technique that replaces actual data with their corresponding anonymised versions
to avoid unique identification of the real data [32]. A common cloaking technique is spatial cloaking.
In spatial cloaking approaches, sensitive information is blurred in a cloaked zone, thereby maintaining
users’ privacy. Spatial cloaking employs generalisation, transformations, or fake locations to hide the
actual location of participants. A spatial cloaking technique is used by Ghinita [33]. The authors segment
spaces into a set of regions, then employ a specific probability distribution to select participants in each
region to broadcast their precise location. Also, Kazemi and Shahabi [34] employ a peer-to-peer spatial
cloaking technique to cloak users’ location when querying MCS servers. Nonetheless, major issues with
this technique are that a single point of failure is possible. Secondly, to enforce cloaking, users must
continuously forward their locations to the anonymiser, which introduces bottlenecks and delays.

2.1.3. Pseudonymization

Pseudonyms are used to preserve the anonymity of MCS participants by substituting their
identities with aliases. In [35], the authors proposed a scheme that uses multiple pseudonyms for
individual users and reputation values are sent between various pseudonyms owned by the same user.
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A trusted server is integrated into the scheme to coordinate the transfer of reputation scores between
several pseudonyms. Ma [36] proposed a pseudonym-based anonymous identity authentication
mechanism for MCS. It uses pseudonym construction rules to encrypt the real names of MCS users.
The security mechanism is a hybridisation of public key infrastructure (PKI) and combined public
key (CPK) technology to address the large-scale key management issue. The identity authentication
mechanism proposed by the authors consists of an application server, a certificate authority database,
and a key management centre (KMC). The key management centre employs elliptic curve cryptography
(ECC), which sets an m× h order to the secretive seed key (SSK) of integer vector

(
ri j

)
. It then computes

a public key vector
(
ri jG

)
=

(
xi j, yi j

)
to obtain a public seed key (PSK) matrix. G in the scheme is the

base point of the elliptic curve, while x and y are the public key parameters. The security scheme
then publishes PSK, while keeping SSK private. However, pseudonyms must be complemented by
other security mechanisms to effectively secure location information of participants, which makes it a
non-trivial approach [4].

2.1.4. Differential Privacy

A general issue with cloaking techniques is its ineffectiveness when an attacker has prior
knowledge of the user’s location distribution [37]. Differential privacy [38] is employed in the location
privacy-preserving framework proposed by Wang [39] as a solution to the abovementioned problem.
The framework integrates location obfuscation and data adjustment to achieve secure privacy. Real-life
traffic monitoring and temperature datasets were used to evaluate the proposed scheme. Results show
that the proposed scheme evenly distributes obfuscation and improves the inference accuracy of
the obfuscated data. Furthermore, Wang [40] employed differential privacy into task allocation
to ensure the security of location privacy irrespective of adversaries’ prior knowledge of the data.
With the scheme, participants can obfuscate their reported locations without the aid of any third-party.
A summary of some proposed security schemes that adopt the anonymity approach is presented in
Table 1.

Table 1. A summary of anonymity-based schemes in MCS.

Anonymity-Based Approaches

Authors/[Reference] Techniques Remarks

[31,32] K-anonymity
Vulnerable to homogeneity attacks, which exploits the
monotony of some features to identify users from the set of K
participants.

[33,34] Cloaking An attacker may know users’ location a priori, hence
revealing his location.

[35,36] Pseudonymization Users’ identities can still be linked from inferred information.

[38,39] Differential Privacy Noise added to sensor data reduces data quality.

Anonymity-based techniques are trivial and implementable in MCS. Nevertheless, users’
information can still be linked to their identities, resulting in the de-anonymisation of users [32].
In works proposed by Liu [26] and Zhang [41], the authors showed that malicious entities can infer
important information of participants even when participants anonymously sense and process data.
With this, even anonymised participants are still vulnerable to location-based inference attacks and
tracing attacks [42].

2.2. Cryptographic-Based Techniques in MCS

Cryptography is another approach that can be used to achieve security and privacy in MCS by
encrypting sensed data at the sender’s side, then transmitting the encrypted data to the application
server [30]. Cryptographic techniques ensure that sensitive information of participants remains
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undisclosed to unauthorised parties. It is a technique that maintains data confidentiality, integrity,
authentication and non-repudiation. Cryptographic primitives guarantee security without adding noise
to sensor data, thus maintaining its original quality [42]. Some of these primitives are presented below.

2.2.1. Homomorphic Encryption

Several studies have proposed homomorphic encryption as an effective technique in securing
sensitive data in MCS. A cloud-enabled privacy-preserving truth discovery (PPTD) framework
was proposed by Miao [42]. The PPTD framework ensures effective privacy and high accuracy.
The framework employs homomorphic encryption to transmit encrypted sensor readings to the cloud
server. After that, users’ encrypted weights are updated by the cloud server without decrypting them,
then sends the results to each user. However, the proposed scheme is non-trivial as it incurs significant
computation and communication overhead due to the use of fully homomorphic encryption. To improve
on their earlier proposed PPTD framework, [43] proposed a novel lightweight privacy-preserving truth
discovery framework. The framework employs additive homomorphic encryption to secure sensor
data of participants in MCS. Encryption is not directly applied on data, somewhat random numbers
are used instead, and the encrypted data is moved to the cloud. A data requester and participating
workers are the two components in the proposed framework. A secure system in mobile crowd sensing
that utilises both additive homomorphic encryption with garbled circuits was presented by Zheng [44].
Garbled circuits are used to construct the encryption protocol by enabling S0 holding Epk1(a) and
Epk1(b) to get Epk1(a/b), without disclosing a, b (where a and b are fractional integers). In this case,
pk1 is the public key of S1. The goal is for S1 to generate a garbled circuit for the secure division,
while S0 evaluates the garbled circuit and finally gets the division result in the encrypted form using
Epk1(a) and Epk1(b) as inputs. S0 and S1 are the sensors in the proposed scheme. Homomorphic
encryption schemes offer confidentiality, integrity and privacy as security services, but authentication
and non-repudiation are not provided. Also, the technique is computational expensive to implement
on MCS devices.

2.2.2. Certificateless Aggregate Signcryption

Certificateless public key cryptography (CLPKC) is an intermediate between the traditional public
key cryptography (PKC) and ID-based cryptography (ID-PKC) [45]. On the one hand, a certificate
authority is required in traditional PKC to generate and manage keys of users, which introduces the
certificate management problem. On the other hand, in ID-PKC, the generation of private keys of users
based on their identities is done by a trusted key generator. This approach, however, leads to the key
escrow problem. CLPKC offers a solution to the mentioned problems. Though CLPKC requires a key
generation centre (KGC) for the generation of partial private keys of users, the final private keys are
chosen by the users and cannot be accessed by the KGC. The final private keys of users are obtained
from the combination of the partial keys generated by the KGC and the secret information selected by
the users [27]. Also, the KGC computes the public key of the users using its public parameters with
other information, which are secretly kept and published by the user.

Signcryption [46] is a cryptographic primitive that incurs lower computational cost and
communication overhead than the sign-then-encrypt technique. In 2008, Barbosa and Farshim [47]
proposed the first certificateless signcryption (CLASC) scheme. However, Selvi [48]} proved that
Barbosa’s scheme was forgeable. A different CLSC scheme proposed by Liu [49] was shown to be
insecure by Weng [50] and Miao [51].

Aggregate signcryption was first conceptualised by Selvi [48], and the authors defined an adequate
security model for identity-based aggregate signcryption schemes. They also proposed examples that
seem secure in the random oracle model. A security model for certificateless aggregate signcryption
schemes (CLASC) was proposed by Eslami and Pakniat [27]. The scheme was proven to be secure in
the random oracle model under the gap Bilinear Diffie-Hellman and Computational Diffie-Hellman
Intractability assumptions. Basudan [28] proposed another CLASC scheme which enhanced the
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pairings required by aggregate signature verifications and unsigncryption. The authors used the
scheme to develop a privacy-preserving protocol for the improvement of security in data transmission
of vehicular crowd sensing. The secure data is used in road surface condition monitoring. The authors
showed that their proposed scheme ensures confidentiality, integrity, mutual authentication, privacy
and anonymity. However, their scheme still requires implementation enhancement for optimal
performance when adopted in generic frameworks. Some proposed cryptographic-based schemes and
techniques in MCS and the IoT are summarized in Table 2.

Table 2. A Summary of Cryptographic-based Security Schemes in MCS.

Cryptographic -Based Approaches

Authors/[Reference] Techniques Remarks

[42–44] Homomorphic encryption
• Non-trivial (i.e., incurs a high

computational and communicational cost).
• Non-repudiation is not offered.

[27,28] Certificateless Aggregate
Signcryption (CLASC)

• Requires enhancement for optimal
performance when implemented in a
generic framework.

This paper addresses the problems above by presenting a security framework that signcrypts
sensitive location information of MCS users using an efficient CLASC scheme. Hence, ensuring data
confidentiality, integrity, authentication and non-repudiation.

3. Methods

In this section, first, we present the architecture of the proposed framework and discuss
the interaction between the different modules. We then divulge the implementation process of
the framework.

3.1. Architecture of the Proposed Framework

The proposed framework is an enhancement of the typical MCS architecture proposed by
Christin [4]. Figure 1 illustrates our system architecture. At the core, our framework consists of two
entities: the data annotation and data signcryption modules, which are implemented as a client-server
model. The SenseCrypt framework interacts seamlessly with existing MCS stakeholders: sensing
administrators, the participants and the end-users:

1. Sensing administrators: they are members of an organization (profit/nonprofit), research groups,
individuals who initiate sensing tasks. They design, implement, deploy, manage and maintain
MCS applications (using MCS application servers). They set up the application server to acquire,
store, and process raw sensor data from participants.

2. Participants: download and install sensing applications on their smartphones and participate in
sensing tasks. They collect people-centric or environment-centric data during sensing activities.
At a personal scale, these participants may capture data to improve their health conditions or
track their sport experiences. Meanwhile, at a community scale, they may upload data to help
other users by reporting road and/or traffic conditions. Most times, this information contains
sensitive data of participants. Such information requires adequate security against attacks and
unauthorized access.
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3. End-users: access the data collected by participants based on their needs and preferences.
Sensing administrators, participants and other users are all regarded as end-users. End-users
visualize processed data by querying MCS application servers which are run by the
sensing administrators.
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Figure 1. A system diagram of our SenseCrypt framework and its interactions with the standard
MCS architecture.

The data annotation module consists of smartphones with integrated accelerometer, gyroscope,
magnetometer and GPS sensors as presented in Figure 1. During sensing activities, unlabelled data
from these sensors are automatically labelled either as non-sensitive or sensitive data by the framework.
This process is achieved using the K-means algorithm. All sensor data labelled as sensitive (raw sensor
data containing location readings) are compressed then signcrypted using the spatial coding scheme
and certificateless aggregate signcryption scheme, respectively. The signcrypted sensitive data is
forwarded to the aggregators for aggregation. On the other hand, the MQTT broker handles all
published “topics” in the framework and manages communication between publishers and subscribers.
Meanwhile, the MCS server is a multi-threaded server system. New threads are used for incoming
connections from MCS participants (referred to as mobile clients in later sections of this paper).

Figure 2 presents the implementation processes of the framework. The process starts with data
collection (publicly available dataset) and ends with data decompression. Data signcryption starts
after sensitive data have been labelled and validated. It is worthy of note that the data of interest
in the framework is contained in the sensitive data cluster denoted as ASD (annotated sensitive
data). The ASD is then compressed into ASD*. The compressed annotated sensitive data ASD*
is then signcrypted to obtain SCSD (signcrypted sensitive data) and forwarded to the aggregators.
After aggregation, SCSDagr is generated and sent to subscribed topics running on the MQTT broker.
The MCS application server receives and unsigncrypts SCSDagr to obtain the compressed annotated
sensitive data (ASD*). As a final step, the ASD* is decompressed to get the annotated sensitive
data ASD.
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3.2. Sensor Data Annotation

Processes in the sensor data annotation module include data collection (dataset), pre-processing
and data clustering.

3.2.1. Dataset

The dataset presented by Freedman [52] was used for the evaluation of the proposed framework.
The real-world dataset is a collection of unlabelled motion and location readings of twenty participants
acquired over six months. There are 3112 instances and 36 attributes in the dataset. After feature
selection and extraction, 11 relevant attributes were obtained including accelerometer (Ax, Ay, Az),
gyroscope (Gx, Gy, Gz), magnetometer (Mx, My, Mz) and GPS (latitude, longitude). Table 3 presents
the extracted features and their description. The availability/unavailability of GPS data in terms of
outdoor and indoor movements of users captured in the dataset makes it appropriate for the framework.
Since the first task of the framework is to model the fluctuations of GPS sensor and automatically label
any sensor reading containing location data as sensitive, otherwise non-sensitive, dataset presented by
Freedman [52] meets this purpose.

Furthermore, data normalization was performed as a pre-processing process since the data range
of some features in the dataset is enormous, and such dimensions determine the variance of the
distance. The Min-Max normalisation method was used to ensure that all the data values come under
the range of (0,1).
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Table 3. Extracted Features for Automatic Annotation.

S/N Features Description

1. Ax Accelerometer X-axis
(
m/s2

)
2. Ay Accelerometer Y-axis

(
m/s2

)
3. Az Accelerometer Z-axis

(
m/s2

)
4. Gx Gyroscope X-axis

(
m/s2

)
5. Gy Gyroscope Y-axis

(
m/s2

)
6. Gz Gyroscope Z-axis

(
m/s2

)
7. Mx Magnetometer X-axis (T)
8. My Magnetometer Y-axis (T)
9. Mz Magnetometer Z-axis (T)

10. Lat Location (Latitude)
11. Long Location (Longitude)

3.2.2. K-Means Clustering

The K-means algorithm is an unsupervised learning algorithm commonly used in tackling
clustering problems in sensor networks due to its simple implementation and linear-complexity [53].
It separates data into different groups (referred to as clusters). With K-means clustering, cluster centres
(C) are stochastically initialized to K from points in a given data to ensure uniqueness of all centroids
(i.e., ∀ centroids Ci and C j, Ci , C j). For the K-means to function, three parameters must be provided by
the user, which are: number of clusters K, cluster initialisation and the distance metric [54]. The K-means
algorithm can be formally represented as follows:

Let D = {d1, . . . , dn} be the data (sensor data), µq =
∑

dεCq

(
d
∣∣∣nq

)
be the centroid of the cluster Cq

and let K be the cluster number (1 ≤ q ≤ K). Then the objective function of the K-means clustering
algorithm is the sum of squared error (SSE) as follows:

Sk =
K∑

q=1

∑
dεCq

‖ d− µq ‖
2 (1)

where µq is the mean of the cluster Cq containing data points {d1, . . . , dn} and d is a high dimension
set of observations. The aim here is to minimize the objective function for a fixed number of clusters.
The K-means algorithm used to run the pre-processed dataset, distinctly grouped sensor data into
groups. The clustering model from the K-means algorithm, which was implemented in Python runs on
the smartphone. The model was used to annotate sensor data within the dataset into non-sensitive and
sensitive clusters. This process is performed on the client-side (smartphone) before the compression
and encryption of location data (data in the sensitive cluster).

3.3. Sensitive Data Signcryption

The data signcryption module of the proposed SenseCrypt framework employs the certificateless
aggregate signcryption scheme. This subsection presents the CLASC scheme and its implementation
in the system model.

3.3.1. Preliminaries of the Certificateless Aggregate Signcryption (CLASC)

This subsection first provides an overview of the bilinear pairing definition, which is adopted in
the CLASC scheme for the proposed SenseCrypt framework.

Bilinear Maps: Let G1 be an additive group of large prime order q, and G2 be a multiplicative group
of similar large prime order. Then let G1 be generated by P. With this, an admissible bilinear pairing
ẽ : G1 ×G1 → G2 is a map that has the following properties:
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1. Bilinearity: For all P, Q ∈ G1 and a, b ∈ Z∗q, then ẽ(aP, bQ) = ẽ(P, Q)ab

2. Computability: An algorithm that computes ẽ(P, Q) for P, Q ∈ G1 is efficient. ẽ : G1 ×G1 → G2 ,
which is an admissible bilinear pairing can be run using the modified Weil/Tate pairing over
elliptic curves [55].

3. Nondegeneracy: ẽ :(P, Q) , 1G2 where the identity element of a group G1 is represented with 1G2 .

Definition of bilinear Parameter Generator: A bilinear parameter generator Gen is a probabilistic
algorithm that accepts input k as a security parameter and generates as outputs a 5-tuple (G1, G2, ẽ, P, q),
where G1.G2 are two groups with order q, ẽ is a non-degenerated and trivial bilinear map, P ∈ G1 is a
generator and q is a k-bit prime number.

The components of CLASC are defined based on initial theories proposed by Lu and Xie [56] and
Eslami and Pakniat [27]. These components are: a Key Generator Centre (KGC), an aggregating set of
IDi of n users with identity of {IDi}

n
i=1; recipient(s) represented with the identity IDR with an aggregate

signcryption generator. Therefore, the following seven probabilistic polynomial time algorithms [28]
defines the CLASC scheme of the SenseCrypt framework:

1. Setup: An algorithm that accepts k input as a security parameter, outputs SysParams as system
parameters and a master key s, an associated master public key Ypub. The KCG then implements
the algorithm and publishes SysParams and securely stores the key.

2. Partial-Private-Key-Extract: Given the system parameters SysParams, s and identity IDi of an
identity i. A partial private key Fpart is generated by the algorithm and forwarded by the KGC to
the legitimate user i.

3. User-Key-Generate: Each user implements this algorithm and accepts inputs SysParams and IDi
(user’s identity). The output from this algorithm is a randomly selected secret value gi with an
associated public key Xi. The public key is generated and published by the user.

4. Signcrypt: Each user IDi which is a member of the aggregated set of n users {IDi}
n
i=1 runs this

algorithm. ∆ is accepted as the state information together with SysParams. All the users must
employ similar but distinct state information in the signcryption algorithm. A message mi,
user’s identity IDi must be used by all users with the associated public key Xi and a private
key pair

(
gi, Fpart

)
, IDR (receiver’s identity) and with the associated public key XR. With this,

the ciphertext Ci is generated.
5. Aggregate: The aggregate signcryption generator runs this algorithm and accepts the following

inputs: an aggregating set of IDi of n users’ {IDi}
n
i=1, ∆ (state information), each sender’s identity

IDi with the associated public key Xi and Ci (cipher generated from the message mi). Next, the state
information ∆, with the associated public key XR and the receiver’s identity IDR are applied to
the message to generate a cipher. The output is an aggregated ciphertext C on messages {mi}

n
i=1.

6. Aggregate-verify: The receiver IDR runs this algorithm by accepting as input an aggregating set of
n users {IDi}

n
i=1, the sender’s user identity IDi state information ∆, an aggregated ciphertext C

and the associated public key Xi. The algorithm only returns true if the aggregate signcryption is
legitimate, else it returns false.

7. Aggregate-Unsigncrypt: This algorithm is run by IDR (the receiver) and accepts as input an

aggregated ciphertext C, the receiver’s entire private key
(
gR, Fpart(R)

)
, receiver’s identity IDq,

the senders’ identities {IDi}
n
i=1, public key XR with their corresponding public keys {Xi}

n
i=1 and

the state information ∆. The algorithm then returns a set of n plaintexts {mi}
n
i=1.

3.3.2. The CLASC Scheme

This subsection presents the CLASC scheme of the SenseCrypt framework. Table 4 shows the
mathematical notations used in the CLASC scheme.
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Table 4. Mathematical Notations I.

Symbols Description

G1 Additive Group
{mi}

n
i Aggregated Ciphertext C on Messages

SCSDagr Aggregated Signcrypted Sensitive Data
ASD Annotated Sensitive Data
` Bit-length of plaintext
Ci Ciphertext

ASD∗ Compressed ASD
⊕ Exclusive OR
P Group Generator
H Hash function
ha Hashed message
s Master private key

Ypub Master public key
ASR MCS Application Server
mi Message

MCi Mobile Client user
G2 Multiplicative Group
ẽ Non-degenerated Bilinear map
q Prime order
r Random number

IDR Receiver
IDq Receiver’s identity(

Fpart(R)

)
Receiver’s Partial private key(

gR, Fpart(R)

)
Receiver’s private key

XR Receiver’s Public key
gi Secret value
k Security parameter

IDi Sender
Fpart Sender’s Partial private key(

gi, Fpart
)

Sender’s private key
Xi Sender’s Public keys

SCSDi Signcrypted Sensitive Data
(Ti, Wi, βi) Signcryption parameters in the ciphertext

∆ State information
Qi User’s Pseudonym

ẽ : G1 ×G1 → G2 Bilinear map
{IDi}

n
i Users’ identity

3.3.3. System Model

We present an efficient implementation approach for the CLASC scheme proposed by Basudan [28].
The scheme is designed to ensure the signing and encryption of annotated sensitive data (ASD) in
one logical step. The components of the model are shown in Figure 3. The key generator centre
(KGC) is a trusted third party entity that only generates a partial private key for mobile clients (MC),
aggregators (AG) and the MCS application server (AS) but does not have access to their final private
keys, hence, cannot access sensor data transmitted between them. Implementing this eliminates the
key escrow problem and ensures that sensitive location information of MCS users remains private.

On the other hand, (MC) are users that employ smartphones to collect sensor data which contain
their sensitive location information. Data compression is performed on annotated sensitive data (ASD)
before signing and encryption. After signing and encryption of the ASD, the signed ciphertext is
forwarded to the aggregator (AG) using their respective partial private keys. The (AG) aggregates
signed ciphertexts then forwards the aggregated ciphertexts to the MQTT broker as subscribed “topics”.
The MCS application server (AS) receives the aggregated ciphertexts from the MQTT broker via its
published topics.
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The (AS) then verifies, unsigncrypts the aggregated ciphertexts using his associated private key.
The CLASC scheme implemented in the SenseCrypt framework comprises of the following steps:
(i) system setup; (ii) data compression; (iii) annotated sensitive data signcryption; (iv) signcrypted
sensitive data aggregation; (v) efficient data transfer; (vi) receive signcrypted sensitive data.

System Setup

First, the key generator centre (KGC) registers both the mobile client (MC), the aggregator (AG)
and the MCS application server (AS). Then generates partial private keys Fpart;Fpart(R) and public keys
key Xi; XR for MCi, AG j and ASR, respectively. Next, the KGC generates the bilinear parameters
(G1, G2, ẽ, P, q), given the security parameter k, and performs this by executing Gen(k). Then, the KGC
chooses at random s ∈ Z∗q as its master secret key and computes the master public key Ypub = sY.
Furthermore, four secure hash functions are selected by the CU: H1 : {0, 1}∗ → Z∗q, H2 : {0, 1}∗ → {0, 1}`

where ` is the bit-length of plaintexts, H3 : {0, 1}∗ → G1 and H4 : Z∗q → G1 [28]. At this point, the system

parameters SysParams,
(
G1, G2, ẽ, P, q, Ypub, H1, H2, H3, H4

)
are available to the registered users MCi,

AG j and ASR. The entire setup process for MCi AG j and ASR is shown as follows:

1. A mobile client MCi can arbitrarily select gi ∈ Z∗q as its secret value, then computes its partial
public key MCi(a) = giP.

2. To preserve privacy, MCi can pseudonymize its identity by randomly selecting Qi.

3. MCi forwards its identity and partial public key
(
MCi, MCi(a)

)
to the KGC for registration.

4. The KGC arbitrarily chooses gi ∈ Z∗q and computes a different partial public key for MC:
MCi(b) = giP.

5. KGC calculates the partial private key Fparti = gi + s ∗Qi, where Qi = H1(MCi), this registers
MCi with the partial public key MCi(a).

6. Fparti is transmitted securely to MCi. In the public key database, the entire public key (MCi(a), MCi(b))
is stored by the KGC.
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7. MCi gets the partial private key Fparti and adds it with its secret value gi to generate its entire

private key
(
gi, Fparti

)
.

8. MCi checks the correctness of the partial private key giP = MCi(b) + YpubH1(MCi).

Data Compression

Annotated sensitive data (ASD) to be signcrypted are first compressed by the sender using the
spatial coding scheme [57]. Compressing the ASD minimizes the number of messages to be signcrypted.
After annotation of sensitive location data, the mobile client (MC) compresses the ASD in such a way
that loss of data precision is minimized. Therefore, computation overhead which is mostly experienced
with signcryption of sensor data from sensing devices, is reduced. Using spatial compression, a ratio
γ, 0 ≤ γ < 1 is defined as the sensor data reduction in size, which is relative to the initial uncompressed
sensitive data from each mobile client. Spatial coding [57] is an efficient and effective compression
technique on continuous reading, such as those acquired by smartphones. It also defines accurately the
alphabets of sensor readings, which minimizes data loss during compression. These features of spatial
coding justify why it has been adopted for the compression of ASD in the framework. Mathematically,
spatial coding can be represented as follows:

γ = 1−
compressed size

uncompressed size
(2)

Each mobile client (MC) compresses ASD based on their spatial correlation. The spatial
compression involves two steps: the client compression (executed on the smartphone by the participant),
and the decompression (at the MCS application server).

Annotated Sensitive Data (ASD) Signcryption

This process is carried out by the mobile client MCi with the pseudonym Qi. The framework
identifies annotated sensitive data, compressed using spatial coding as (ASD*). The certificateless
signcryption algorithm is then applied on the ASD* to obtain the signcrypted sensitive data (SCSDi)
using the following steps:

1. MCi randomly chooses r ∈ Z∗q and generates Ti = rP,

2. Computes Zb = rPWrb,

3. Computes Za = r
(
PWra + YpubQi

)
,

4. Computes ha = H2(IDR||Pkra||PWrb||Γ||Ti||Zb||Za),
5. Computes Wi = ha ⊕ASD∗i and computes hb = H3(IDR||Kra||Krb|Γ||Ti||Wi|Qi.

∣∣∣∣∣∣MCi(b)

∣∣∣∣∣∣MCi(a)

6. Computes hc = H4(Γ),
7. Computes βi = Fpartihc + rhb + gihc.

The ciphertext Ci = (Ti, Wi, βi) is appended to sensor data in the form of a signcrypted sensitive
Data, which is: SCSDi = (Qi, Signcrypt(SensitiveDatai)). The ciphertext Ci = Signcrypt(SensitiveData)
⇒ (Ti, Wi, βi) is forwarded to the aggregate server (AG).

Signcrypted Sensitive Data (SCSD) Aggregation

On successful signcryption of annotated sensitive data, the MCi forwards the ciphertext SCSDi to
the aggregators (also called aggregate servers). The aggregate servers are distributed systems with high
computational capabilities. These servers aggregate all the ciphertexts from multiple mobile clients.
The property provided by the proposed framework allows for numerous aggregations of {SCSDi}

n
i ,

which further reduces the computational cost [28]. The distributed aggregate servers perform {SCSDi}
n
i

aggregation and {SCSDi}
n
i batch verification operations each time an SCSDi is received as shown below:
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A. SCSD Aggregation

Aggregate SCSD is employed to aggregate several {SCSDi}
n
i into a single SCSD, that is, {SCSDi}

n
i=1.

For sensitive data SensitiveDatai, given {SCSDi}
n
i , SCSDi = (Qi, Signcrypt(Datai)) by mobile clients

MC1, . . . , MCn, it is possible to get SCSDagr(Qi, . . .Qn, Signcrypt(SensitiveDatai)
i
1 . . . Signcrypt

(
Data)n

i

)
.

An aggregate signcryption generator returns the algorithm below:

1. The algorithm collects single ciphertext Ci = (Ti, Wi, βi)
n
i=1 generated by {MCi}

n
i with the

pseudonym (Qi)
n
i=1 to a receiver IDR with similar state information ∆.

2. Aggregates several signatures by computing signagr
n∑

i=1
βi.

3. Outputs aggregated ciphertexts SCSDagr = (
(
Qi)

n
i=1, T1 . . .Tn, W1 . . .Wn, Sigagr

)
.

B. SCSD Batch Verification

In this step, all the ciphertexts from {MCi}
n
i users are verified concurrently using the batch

verification algorithm. Based on the signature aggregation sigagr, the sensor datasets {SCSDi}
n
i=1 and

the associated public keys (MCi(b), MCi(a))
n
j=1

for all the MCi and the receiver’s identity IDR and

its corresponding public key (Xkra, XWrb) using similar state information ∆. The batch verification
algorithm verifies the signature through the following process:

1. hb = H3(IDR||Yra||Yrb||∆||Ti||Qi||MCi(b)

∣∣∣∣∣∣MCi(a)), for i = 1, . . . , n

2. hc = H4(∆),

The signature aggregation Sigagr is accepted if:

ẽ
(
sigagr, P

)
= ẽ

 n∑
i=1

(
MCi(b) + YpubQi, hc

) = ẽ

 n∑
i=1

Ti, hb

̃e

 n∑
i=1

MCi(a), hc


If the batch verification process is true, then the aggregator accepts the SCSDs. In this case,

the SCSDagr will be sent to the unsigncryption step. The SCSDagr is forwarded to the MQTT broker
as subscribed topics that are published by the (ASR). The efficient transfer process of the SCSDagr is
discussed next.

Since the MCS server does not offer acknowledgement, and participants do no retransmission
of sensor data, communication overhead is reduced to its minimum. It so happens because data is
only sent once when using level 0 QoS, which is adopted in the proposed framework. MQTT uses a
password and a username to secure the connection between devices, which makes it less robust to
attacks. More so, all MQTT communication is transmitted in plaintext. As stated in SHODAN [58], a lot
of IoT devices that use MQTT transfer data to each other without employing an encryption protocol.
Hence, data are unprotected during transfer. On the other hand, to employ an encryption protocol
with MQTT, the encryption protocol requires independent implementation under MQTT [59]. As such,
the proposed framework transmits only signcrypted data from participants to the MCS servers, hence,
ensuring the security of sensitive data.

Efficient Data Transfer Using MQTT Protocol

In the SenseCrypt framework, the transfer of the aggregated sensitive data
(
SCSDagr

)
from

aggregators to the MCS application server (ASR) is implemented using the MQTT protocol. MQTT,
which is based on the publish/subscribe model, incurs less communication overhead and ensures
scalability [60]. These properties of the MQTT protocol are leveraged in the SenseCrypt framework.
The framework runs a topic-based system, where messages (sensing tasks) are published to topics
by the MCS application server. Mobile clients and aggregators subscribe to these topics, as shown
in Figure 4. However, in the framework only aggregated signcrypted sensitive data SCSDagr are
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forwarded to the MQTT broker by the aggregators. The mobile clients subscribe to sensing tasks but
forward ciphertexts {SCSDi}

n
i to the aggregator for aggregation and verification. The MQTT broker

handles the addition and removal of aggregators and mobile clients (subscribers) from the system and
well as performing filtering of forwarded messages (SCSDagr).
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Since the MCS server does not offer acknowledgement, and aggregators do not retransmit SCSDagr,
communication overhead is reduced to its minimum. It so happens because data is only sent once
when using level 0 QoS (Quality of Service), which is used in the proposed framework. MQTT uses a
password and a username to secure the connection between devices, which makes it less robust to
attacks. More so, all MQTT communication is transmitted in plaintext. As stated in SHODAN [58], a lot
of IoT devices that use MQTT transfer data to each other without employing an encryption protocol.
Hence, data are unprotected during transfer. On the other hand, to employ an encryption protocol
with MQTT, the encryption protocol requires independent implementation under MQTT [59]. As such,
in the proposed framework, aggregators forward signcrypted data SCSDagr from mobile clients to the
broker, hence, ensuring the security of sensitive location data of users.

Receive Signcrypted Sensitive Data (SCSD)

When the MCS application server receives a message SCSDagr, from aggregators via the MQTT
broker, it first runs the aggregate-verify algorithm. If the algorithm outputs true, then it implements
the next step, which is the aggregate-unsigncrypt. If false, then the SCSDagr, is discarded. This process
ensures that MCS application servers process only valid signcrypted sensor data from mobile clients
that have been aggregated by the aggregators. The SCSDi (Signcrypted Sensitive Data) is decrypted
using the following steps:

1. Zb = srTi, Za = FpartTi

2. ha = H2(ASR||Pkra||PWrb||Γ||TiZb

∣∣∣∣∣∣∣∣Za).

3. SensitiveData′i = Wi ⊕ ha.

On completion of the decryption process, decompression is initiated. The decompression is
carried out by the MCS server. Notably, the MCS server decompresses compressed sensitive data after
the unsigncrypt process. Recall that a mobile client (MCi) compressed annotated data into an array D
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which was a k× k matrix M =
(
ai, j

)
k× k, such that, each element ai, j stores the value i, j, as discussed

earlier in the compression phase. Now to decompress data, the MCS server recovers the associated
array D to a two-dimensional matrix which contains M̂ =

(
bi, j

)
k× k Next, the inverse 2D-DCT technique

is employed to transform M̂ to a new matrix M̂′ =
(
ai, j

)
k× k. The approach employed in the proposed

SenseCrypt framework minimizes remarkably the number of transmitted data from mobile clients
to the MCS application server. Realizing computational reduction is because sensitive sensor data
with high data correlations have been compressed. After data decompression, the actual ASD can be
obtained from the ASD*.

4. Results and Discussion

This section presents the results from the automatic annotation and signcryption of sensitive
location information of MCS users by the proposed SenseCrypt framework.

4.1. Performance Evaluation of the Clustering Model

For accurate clustering analysis, measuring the distance of objects in the dataset is an
important task. There are several types of proximity measures that best fit different types of data.
Nevertheless, Euclidean distance and Manhattan distance are mostly used for high dimensional data.
In this paper, the K-means algorithm was implemented using the Euclidean distance metric. It is a
significant metric for identifying the similarity and dissimilarity of generated clusters. It does this
by calculating the root of squares between a pair of objects in a dataset. We performed the clustering
analysis on 2 to 10 clusters and calculated the average silhouette coefficient against the clustering
members. As presented in Table 5, the average silhouette is largest at a value of 0.81, that is when
K = 2, hence the choice of K in the proposed framework. Furthermore, all the clusters are above the
average, indicating that data from motion and location sensors in smartphones can be grouped into
non-sensitive and sensitive groups. However, the average silhouette decreases slightly as the cluster
value increases. Figure 5 shows the clustered data objects from the dataset. As can be seen from
the silhouette plot, the non-sensitive data cluster (black colour) contains more data objects than the
sensitive data cluster (green colour) based on the thickness of the plots. The clustering results justify
the fact that some MCS sensing activities can be performed using only motion sensors since most
users prefer to turn off their GPS sensor to preserve battery and/or their privacy. Thus affecting the
availability of real-time location data.

The computational complexity of the K-means algorithm used in the framework for each iteration
is O(i ∗ n), where n is the number of features in the dataset and i is the value signifying the amount of
information from the preceding iterations, which is constant. The number of iterations is 50 and the
scale is from 2 to 10. Meanwhile, i was set to 8 and n (number of features) is higher than i (information),
which means that the complexity is O(n).

Table 5. Data points in generated clusters.

Value of K Silhouette Analysis Score

2 0.81468
3 0.72697
4 0.74805
5 0.66491
6 0.62944
7 0.59680
8 0.59756
9 0.53191

10 0.53458
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4.2. Performance Evaluation of the CLASC Scheme

In this subsection, we evaluate the performance of the CLASC scheme employed in the proposed
SenseCrypt framework. We compare our CLASC scheme with schemes proposed by Eslami and
Pakniat [27] and Basudan, Lin [28] using computation cost and communication overhead as evaluation
metrics. The following parameters are used to measure the scheme’s efficiency:

Tp: computation time of one pairing operation.
Tm: computation time of a scalar multiplication point in G1.
Te: computation time of one exponentiation in G2.

The CLASC scheme in the proposed framework allows each MCi to signcrypt sensitive data at
any given time. However, mobile clients cannot aggregate signcrypted data, unlike the aggregator
that can aggregate multiple signcrypted sensitive data. The effective compression technique adopted
in the framework further reduces the size of the sensitive data to be signcrypted. The signcryption
algorithm required four multiplication operations in G1 for the successful signing and encryption
in the framework. A single pairing operation was required for the unsigncrypt process by the MCS
application server (ASR). Table 6 compares pairing time, scalar multiplication time and exponentiation
time of the signcryption and unsigncryption processes of our scheme with schemes proposed by
Eslami and Pakniat [27] and Basudan, Lin [28]. The comparison can also be visualized in Figure 6.
Aggregate verification of the signature and unsigncrypt processes required two scalar multiplication
operations. On the other hand, the receiver of the aggregated ciphertext SCSDagr verifies the aggregated
signatures in a single step and can verify multiple signatures published in different topics. The number
of aggregate signatures can scale based on the scalability property on the MQTT protocol.

Table 6. Comparison of cryptographic operations with other CLASC schemes.

Signcrypt

Schemes Tp Tm Te

[27] 2 4 0
[28] 0 6 0

Proposed SenseCrypt 2 4 0

UnSigncrypt

Schemes Tp Tm Te

[27] 3 3 0
[28] 4 2 0

Proposed SenseCrypt 1 2 0
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The communication overhead of the proposed scheme is derived from the length of the aggregated
ciphertext SCSDagr which is the compressed annotated sensitive data ASD∗. The MQTT broker in the
framework forwards the aggregated ciphertext to the MCS server. Since two parts of each ciphertext
Ci is required for decryption by the MCS server (ASR); the communication overhead of the CLASC
scheme is a non-constant value. To this end, there exist n + 1 elements in G1 for the security of the
aggregated data SCSDagr. Table 7 compares the computational cost and the communication overhead
of the schemes discussed above.

Table 7. Analysis of computational and communication overhead.

Reference Computational Cost Computational Overhead

[27] 5Tp + 6Tm (n + 1)|G1|+ n|m|
[28] 4Tp + 8Tm (n + 1)|G1|+ n|m|

Proposed SenseCrypt 3Tp + 6Tm (n + 1)|G1|+ n|m|

Similar to the evaluation method used by Basudan [28], we employed an MNT curve [61] and the
Weil/Tate pairing ẽ : G1 ×G1 → G2 curve, where q = 160-bit and the degree of curve is 6. To obtain
the running time of the cryptographic operations, the scheme was implemented on an Intel Core i7
(TM), 2.90 GHz dual-core machine (simulating operations of the ASR). Results from the cryptographic
operations are presented in Table 8. The running time of our proposed scheme is compared with that
of Basudan [28] in Figure 7.

Table 8. Time of Cryptographic Operations in SenseCrypt Framework.

Operations Running Time Descriptions

Tp 2.02 ms The time for one pairing operation
Tm 0.1 ms The time for a scalar point multiplication operation

4.3. Security Analysis

In this subsection, we analyze the security of the proposed SenseCrypt framework against some
known attacks in mobile crowd sensing.



Sensors 2020, 20, 3280 19 of 23

Sensors 2020, 20, x FOR PEER REVIEW 19 of 24 

 

Table 8. Time of Cryptographic Operations in SenseCrypt Framework. 

Operations Running Time Descriptions ܶ 2.02 ms The time for one pairing operation ܶ 0.1 ms The time for a scalar point multiplication operation 

 
Figure 7. Evaluation of the running time of cryptographic operations. 

4.3. Security Analysis 

In this subsection, we analyze the security of the proposed SenseCrypt framework against some 
known attacks in mobile crowd sensing. 

4.3.1. Resilience to Privileged Insider Attack 

In the proposed framework, the MCS client ܥܯ forwards his/her signcrypted sensitive data ܵܦܵܥ  to the aggregator. The ܵܦܵܥ  is the ciphertext ܥ =  ( ܶ, ܹߚ), pseudonymized as ܵܦܵܥ = (ܳ,   from disclosureܥܯ The pseudonym ܳ preserves the identity of .((ܽݐܽܦ݁ݒ݅ݐ݅ݏ݊݁ܵ)ݐݕݎܿ݊݃݅ܵ
to the aggregator, MQTT broker and the MCS application server (ܵܣோ). The ܳ  of ܥܯ  derived 
from a one-way hash function ܪଶ(ܥܯ) protects the identity of ܥܯ from insider attack since the 
aggregator or (ܵܣோ) does not know the secret value ݃ chosen by ܥܯ. 
4.3.2. Resilience to Replay Attack 

Timestamps are used to avoid replay attacks in the SenseCrypt framework. Specifically, a 
timestamp mechanism is employed to ensure the freshness of each published message in the 
framework. An adversary , cannot replay the sent ܵܦܵܥ  to the MCS application server ܵܣோ, 
since an ephemeral session key is used for the transfer of ܵܦܵܥ. Additionally, the authentication 
message between the ܥܯ, aggregator and ܵܣோ are protected. Hence, replay attacks cannot succeed 
in the proposed framework. 

4.3.3. Resilience to Forgery Attacks 

The first scenario deals with forgery attacks on mobile client ܥܯ. In this case, an adversary  may eavesdrop or intercept the message transmitted from ܥܯ in the framework. Then if  sends 
a forged message to the KGC (Key Generator Centre), the KGC extracts the value of [݇] with the 
secret ܲݎ ܹ  then computes the hash [ℎ]. The KGC then verifies the legitimacy of the user by 
checking whether ℎ = ܲ)ݎ]  ܹ + ܻ௨ܳ)]. However, without the knowledge of the correct secret,  cannot compute the valid value [ݎ]. Hence, the framework is secure against ܥܯ forgery attack. 

Figure 7. Evaluation of the running time of cryptographic operations.

4.3.1. Resilience to Privileged Insider Attack

In the proposed framework, the MCS client MCi forwards his/her signcrypted sensitive
data SCSDi to the aggregator. The SCSDi is the ciphertext Ci = (Ti, Wiβi), pseudonymized as
SCSDi = (Qi, Signcrypt(SensitiveData)). The pseudonym Qi preserves the identity of MCi from
disclosure to the aggregator, MQTT broker and the MCS application server (ASR). The Qi of MCi
derived from a one-way hash function H2(MCi) protects the identity of MCi from insider attack since
the aggregator or (ASR) does not know the secret value gi chosen by MCi.

4.3.2. Resilience to Replay Attack

Timestamps are used to avoid replay attacks in the SenseCrypt framework. Specifically,
a timestamp mechanism is employed to ensure the freshness of each published message in the
framework. An adversary A, cannot replay the sent SCSDagr to the MCS application server ASR,
since an ephemeral session key is used for the transfer of SCSDagr. Additionally, the authentication
message between the MCi, aggregator and ASR are protected. Hence, replay attacks cannot succeed in
the proposed framework.

4.3.3. Resilience to Forgery Attacks

The first scenario deals with forgery attacks on mobile client MCi. In this case, an adversary A may
eavesdrop or intercept the message transmitted from MCi in the framework. Then if A sends a forged
message to the KGC (Key Generator Centre), the KGC extracts the value of [k] with the secret rPWrb
then computes the hash [ha]. The KGC then verifies the legitimacy of the user by checking whether
ha =

[
r
(
PWra + YpubQi

)]
. However, without the knowledge of the correct secret, A cannot compute the

valid value [r]. Hence, the framework is secure against MCi forgery attack.
The second scenario is the KGC forgery attack. The message sent from the KGC to the mobile

client MCi and MCS application server ASR is protected by the hash mechanism (SHA-256), using the
computed key [Fpart = gi + s ∗Qi]. The adversary A cannot forge the message [mi] without knowing
[Fpart]. Additionally, without knowing the partial private key, an adversary A cannot forge a valid
value [

(
Fpart = gi

)
], which is verifiable by either the mobile client MCi or MCS application server ASR.

Hence the proposed framework is secure against KGC forgery attack.

4.3.4. User Anonymity and Unlinkability

Users’ identity and location are two major privacy issues of concern for MCS participants.
The participant’s real identity is vital in obtaining his/her behaviour. Hence, the participant’s identity
and related information must be protected from unauthorized parties. In the proposed framework,
the identity of the mobile client MCi is never published over the network, the pseudonym Qi is used
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instead. This technique makes it impossible for an adversary to reveal the identity of participants
from intercepted messages. Since [Qi] is unlinkable, outsiders or even other participants lack the
knowledge of who is communicating with the aggregator or MCS application server at any given
time. Hence, the proposed framework prevents identity disclosure and preserves participants’ privacy.
Correspondingly, signcrypting the location data of participants SCSDi, ensures that only the MCS
server ASR with the corresponding private key can unsigncrypt and obtain the plaintext information
(sensitive location data) of participants.

4.3.5. Confidentiality and Integrity of Sensitive Location Data

Signcryption of sensitive location data by the mobile client MCi generates a ciphertext
Ci = (Ti, Wi, βi). In this case, Ti, Wi satisfy the encryption properties of the CLASC scheme and
βi performs signing, all in one step. ASR is the only entity that can unsigncrypt SCSDi (signcrypted
sensitive data) through the computation of Ti, Wi, βi. With this in place, confidentiality is achieved
even if an active man-in-the-middle attacker eavesdrops on transmitted sensor data. SCSDi remains
undisclosed and cannot be modified, hence ensuring the integrity of sensitive data.

5. Conclusions

In this paper, we propose a framework that annotates sensor data and signcrypts sensitive
location data of mobile crowd sensing participants. The annotation module of the framework
employs the K-means algorithm for the labelling of data from multiple smartphone sensors
(accelerometer, gyroscope, magnetometer and GPS) into non-sensitive and sensitive clusters. The data
signcryption module leverages the signing and encryption properties of the certificateless aggregation
signcryption scheme (CLASC) to secure sensitive location data of MCS participants. The paper also
puts forward a novel implementation technique that uses efficient data compression technique and
MQTT protocol to minimize the computational cost and communication overhead associated with
CLASC schemes. Results show that the CLASC scheme implemented in the proposed framework is
efficient and robust against attacks such as privilege insider attack, forgery and replay attacks while
ensuring confidentiality, integrity and privacy. Presently, the framework only handles location data as
sensitive data of interest. As future work, the framework can be extended to incorporate more sensors
and annotate other sensitive data in mobile crowd sensing.
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