EEG-Brain Activity Monitoring and Predictive Analysis of Signals Using Artificial Neural Networks
Abstract
:1. Introduction
1.1. Aim of the Work
1.2. State-of-the-Art
1.3. Contribution
2. Materials and Methods
- Approximations (a (n)) are the components at high scales and low frequencies;
- Details (d (n)) are components at low levels and high rates.
- x (n)—signal (0.1–60 Hz), respective for patient with seizure x (n)—signal (0.1–120 Hz);
- h(n)—low-pass filter (LPF);
- g (n)—high-pass filter (HPF);
- d (n)—the signal of the detail produced by HPF, e.g., d1, 1, d2, 1, d3, 1, d4, 1;
- a (n)—the signal produced by LPF, is a rough approximation, e.g., a1, 1, a2, 1, a3, 1, a4, 1;
- ↓2—down sampling by two.
3. Biomedical Signal Selection
4. Results Based on Predictive Analysis of the Signals Using Artificial Neural Networks
- Input units represented by the values of the EEG matrix for patients with epilepsy seizures.
- Outputs are represented by the values of the EEG matrix for patients who do not have seizures.
- J is the Jacobian matrix containing the derivatives of the error function concerning weights (w) and biases (b);
- JT is the transposed Jacobian matrix;
- e is the vector of errors.
- input data (matrix 13 × 5120 samples);
- hidden layer with n neurons, n ∈ {10, 50, 100, 150};
- output (target) data (matrix 13 × 5120 samples);
- train set (70% of samples) that is used to provide an independent measure of network performance during and after training;
- test set (15% of samples) that is used during training, and the network is adjusted according to its error;
- validation set (15% of samples) is used to measure network generalization, and to halt training when generalization stops improving.
- ε is the error;
- wj is synaptic weight;
- x is the input matrix;
- M is the model order;
- T denotes matrix transposition (Equations (4) and (5)).
- is the vector of observed values;
- is the vector of predicted values.
5. Discussion
5.1. Biomedical Signals Covariance Analysis
- between EEG1 and EEG3 is a negative covariance; this means that they are not in a linear dependence (Equation (9)). Because the correlation coefficient is negative (Equation (10)), it follows that EEG1 and EEG3 are in an inverse proportionality relationship.
- between EEG2 and EEG4 is a negative covariance, which means that EEG2 and EEG4 are not in a linear dependence (Equation (11)). Because the correlation coefficient is negative (Equation (12)), it follows that EEG1 and EEG3 are in an inverse proportionality relationship.
- between EEG1 and EEG4 is a positive covariance, which means that EEG1 and EEG4 are in a linear dependence (Equation (13)), and because the correlation coefficient is positive (Equation (14)), it follows that EEG1 and EEG4 are in a direct proportionality relationship.
- between EEG1 and EEG2 is a negative covariance (Equation (15)), which means that EEG1 and EEG2 are not in a linear dependence, and because the correlation coefficient is negative (Equation (16)), it follows that EEG1 and EEG2 are in an inverse proportionality relationship.
- between EEG2 and EEG3 is a positive covariance, which means that EEG2 and EEG3 are in a linear dependence (Equation (17)), and because the correlation coefficient is positive (Equation (18)), it follows that EEG1 and EEG4 are in a direct proportionality relationship.
- between EEG3 and EEG4 is a negative covariance (Equation (19)), which means that EEG3 and EEG4 are not in a linear dependence, and because the correlation coefficient is negative (Equation (20)), it follows that EEG3 and EEG4 are in an inverse proportionality relationship.
5.2. Comparative Analysis
5.3. Limitation and Future Scope
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hammad, M.; Pławiak, P.; Wang, K.; Acharya, U.R. ResNet-Attention model for human authentication using ECG signals. Expert Syst. 2020, e12547. [Google Scholar] [CrossRef]
- Tuncer, T.; Ertam, F.; Dogan, S.; Aydemir, E.; Pławiak, P. Ensemble residual network-based gender and activity recognition method with signals. J. Supercomput. 2020, 76, 2119–2138. [Google Scholar] [CrossRef]
- Pławiak, P.; Acharya, U.R. Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Neural Comput. Appl. 2019, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Tuncer, T.; Dogan, S.; Pławiak, P.; Acharya, U.R. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl. Based Syst. 2019, 186, 104923. [Google Scholar] [CrossRef]
- Plawiak, P.; Tadeusiewicz, R. Approximation of phenol concentration using novel hybrid computational intelligence methods. Int. J. Appl. Math. Comput. Sci. 2014, 24, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Kandala, R.N.; Dhuli, R.; Pławiak, P.; Naik, G.R.; Moeinzadeh, H.; Gargiulo, G.D.; Gunnam, S. Towards Real-Time Heartbeat Classification: Evaluation of Nonlinear Morphological Features and Voting Method. Sensors 2019, 19, 5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqatawneh, A.; Alhalaseh, R.; Hassanat, A.; Abbadi, M. Statistical-Hypothesis-Aided Tests for Epilepsy Classification. Computers 2019, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Chenane, K.; Touati, Y.; Boubchir, L.; Daachi, B. Neural Net-Based Approach to EEG Signal Acquisition and Classification. BCI Appl. Comput. 2019, 8, 87. [Google Scholar]
- Borghini, G.; Aricò, P.; Di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Correlation and similarity between cerebral and non-cerebral electrical activity for user’s states assessment. Sensors 2019, 19, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usami, K.; Matsumoto, R.; Sawamoto, N.; Murakami, H.; Inouchi, M.; Fumuro, T.; Shimotake, A.; Kato, T.; Mima, T.; Shirozu, H.; et al. Epileptic network of hypothalamic hamartoma: An EEG-fMRI study. Epilepsy Res. 2016, 125, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Übeyli, E.D.; Cvetkovic, D.; Cosic, I. AR spectral analysis technique for human PPG, ECG and EEG signals. J. Med. Syst. 2008, 32, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Bonita, J.D.; Ambolode, L.C.C.; Rosenberg, B.M.; Cellucci, C.J.; Watanabe, T.A.A.; Rapp, P.; Albano, A.M. Time domain measures of inter-channel EEG correlations: A comparison of linear, nonparametric and nonlinear measures. Cogn. Neurodyn. 2013, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirowski, P.; Madhavan, D.; LeCun, Y.; Kuzniecky, R. Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 2009, 120, 1927–1940. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmann, L.; Freestone, D.R.; Lai, A.; Burkitt, A.N.; Fuller, K.; Grayden, D.B.; Seiderer, L.; Vogrin, S.; Mareels, I.; Cook, M.J. Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons. Epilepsy Res. 2010, 91, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, H.; Rothwell, J.C.; Deuschl, G.; Eisen, A.; EMG-EEG Correlation. Recommendations for the practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology. Electroenceph Clin Neurophysiol. Electroenceph. Clin. Neurophysiol. Suppl. 1999, 52, 269–274. [Google Scholar]
- Williamson, J.R.; Bliss, D.W.; Browne, D.W.; Narayanan, J.T. Seizure prediction using EEG spatiotemporal correlation structure. Epilepsy Behav. 2012, 25, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Rai, J.K.; Tewari, R.P. Multivariate EEG signal analysis for early prediction of epileptic seizure. In Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), Chandigarh, India, 21–22 December 2015. [Google Scholar]
- Teixeira, C.; Direito, B.; Bandarabadi, M.; Le Van Quyen, M.; Valderrama, M.; Schelter, B.; Schulze-Bonhage, A.; Navarro, V.; Sales, F.; Dourado, A. Epileptic seizure predictors based on computational intelligence techniques: A comparative study with 278 patients. Comput. Methods Programs Biomed. 2014, 114, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, M. Neural imaginaries and clinical epistemology: Rhetorically mapping the adolescent brain in the clinical encounter. Soc. Sci. Med. 2014, 143, 304–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandarabadi, M.; Teixeira, C.; Rasekhi, J.; Dourado, A. Epileptic seizure prediction using relative spectral power features. Clin. Neurophysiol. 2015, 126, 237–248. [Google Scholar] [CrossRef]
- Smith, S.J.M. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005, 76, ii2–ii7. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.P.; Oliveira, P.; Rodrigues, G.; Leitao, B.; Dourado, A. Epileptic seizure classification using neural networks with 14 features. In Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Budapest, Hungary, 3–5 September 2008; Springer: Berlin, Germany. [Google Scholar]
- Damayanti, A.; Pratiwi, A.B. Epilepsy detection on EEG data using backpropagation, firefly algorithm, and simulated annealing. In Proceedings of the 2nd International Conference on Science and Technology-Computer (ICST), Yogyakarta, Indonesia, 27–28 October 2016. [Google Scholar]
- Aldabbagh, A.M.; Alshebeili, S.A.; Alotaiby, T.N.; Abd-Elsamie, F.E. Low computational complexity EEG epilepsy data classification algorithm for patients with intractable seizures. In Proceedings of the 2015 2nd International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 30–31 March 2015. [Google Scholar]
- Harikumar, R.; Shanmugam, A.; Rajan, P. VLSI Synthesis of Heterogeneous and SIRM Fuzzy System for Classification of Diabetic Epilepsy Risk Levels. In Proceedings of the 2008 Cairo International Biomedical Engineering Conference, Cairo, Egypt, 18–20 December 2008. [Google Scholar]
- Quintero-Rincón, A.; Prendes, J.; Pereyra, M.; Batatia, H.; Risk, M. Multivariate Bayesian classification of epilepsy EEG signals. In Proceedings of the IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Bordeaux, France, 11–12 July 2016. [Google Scholar]
- Despre Electroencefalografie. Ce Diagnostice Poate Descoperi? Available online: http://www.unicare.ro/blog/despre-electroencefalografie-ce-diagnostice-poate-descoperi.htm (accessed on 15 December 2017).
- Kreuzer, M. EEG based monitoring of general anesthesia: Taking the next steps. Front. Comput. Neurosci. 2017, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Jameson, L.C.; Sloan, T.B. Using EEG to monitor anesthesia drug effects during surgery. J. Clin. Monit. 2006, 20, 445–472. [Google Scholar] [CrossRef]
- Takeda, Y.; Inoue, Y.; Tottori, T.; Mihara, T. Acute psychosis during intracranial EEG monitoring: Close relationship between psychotic symptoms and discharges in amygdala. Epilepsia 2001, 42, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Gandelman-Marton, R.; Kimiagar, I.; Itzhaki, A.; Klein, C.; Theitler, J.; Rabey, J.M. Electroencephalography findings in adult patients with West Nile virus—associated meningitis and meningoencephalitis. Clin. Infect. Dis. 2003, 37, 1573–1578. [Google Scholar] [CrossRef]
- Yi, G.-S.; Jiang, W.; Bin, D.; Xi-Le, W. Complexity of resting-state EEG activity in the patients with early-stage Parkinson’s disease. Cogn. Neurodyn. 2017, 2, 147–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauwels, J.; Francois, V.; Andrzej, C. Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing? Curr. Alzheimer Res. 2010, 7, 487–505. [Google Scholar] [CrossRef] [Green Version]
- Melissant, C.; Alexander, Y.; Edward, E.F.; Cornelis, J.S. A method for detection of Alzheimer’s disease using ICA-enhanced EEG measurements. Artif. Intell. Med. 2005, 33, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef]
- Deng, B.; Li, L.; Shunan, L.; Ruofan, W.; Haitao, Y.; Jiang, W.; Xile, W. Complexity extraction of electroencephalograms in Alzheimer’s disease with weighted-permutation entropy. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 043105. [Google Scholar] [CrossRef]
- Bonanni, L.; Astrid, T.; Pietro, T.; Bernardo, P.; Sara, V.; Marco, O. EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up. Brain 2008, 131, 690–705. [Google Scholar] [CrossRef]
- Kumar, S.S.P.; Ajitha, L. Early detection of epilepsy using EEG signals. In Proceedings of the International Conference on Control, Instrumentation, Communication, and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 1509–1514. [Google Scholar]
- Ahmad, M.Z.; Saeed, M.; Saleem, S.; Kamboh, A.M. Seizure detection using EEG: A survey of different techniques. In Proceedings of the International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 18–19 October 2016; pp. 1–6. [Google Scholar]
- Al-Omar, S.; Kamali, W.; Khalil, M.; Daher, A. Classification of EEG signals to detect epilepsy problems. In Proceedings of the 2nd International Conference on Advances in Biomedical Engineering, Tripoli, Lebanon, 11–13 September 2013; pp. 5–8. [Google Scholar]
- Sun, Z.; Wang, G.; Li, K.; Zhang, Z.; Bao, G. Cerebral functional connectivity analysis based on scalp EEG in epilepsy patients. In Proceedings of the 7th International Conference on Biomedical Engineering and Informatics, Dalian, China, 14–16 October 2014; pp. 283–287. [Google Scholar]
- David, A.S.; Ruth, A.G. Neuropsychological study of motor neuron disease. Psychosomatics 1986, 27, 441–445. [Google Scholar] [CrossRef]
- Lesný, I. Study in Different Forms of Cerebral Palsy. Dev. Med. Child Neurol. 2008, 5, 593–602. [Google Scholar] [CrossRef]
- Screens, Tests and Evaluations. Available online: http://www.cerebralpalsy.org/about-cerebral-palsy/diagnosis/evaluations (accessed on 15 December 2017).
- Şenbil, N.; Birkan, S.; Ömer, F.A.; Yahya, K.Y.G. Epileptic and non-epileptic cerebral palsy: EEG and cranial imaging findings. Brain Dev. 2002, 24, 166–169. [Google Scholar] [CrossRef]
- Anderson, J.L.; Stewart, I.H.; Rae, C.; Morley, J.W. Brain function in Duchenne muscular dystrophy. Brain 2002, 125, 4–13. [Google Scholar] [CrossRef]
- Electroencephalogram (EEG). Available online: https://www.nhs.uk/conditions/electroencephalogram (accessed on 12 February 2020).
- Chen, D.; Wan, S.; Xiang, J.; Bao, F.S. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG. PLoS ONE 2017, 12, e0173138. [Google Scholar] [CrossRef] [Green Version]
- Terzano, M.G.; Parrino, L.; Smerieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2002, 3, 187–199. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.; Moody, G.B.; Peng, C.K.; Stanley, H. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulations 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Mingai, L.; Shuoda, G.; Guoyu, Z.; Yanjun, S.; Jinfu, Y. Removing ocular artifacts from mixed EEG signals with FastKICA and DWT. J. Intell. Fuzzy Syst. 2015, 28, 2851–2861. [Google Scholar] [CrossRef]
- Real-Time Meditation Feedback. Available online: http://www.choosemuse.com (accessed on 20 April 2018).
- Faust, O.; Acharya, R.U.; Adeli, H.; Adeli, A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 2015, 26, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Kucewicz, M.T.; Cimbalnik, J.; Matsumoto, J.Y.; Brinkmann, B.H.; Hu, W.; Worrell, G.A. Gamma oscillations precede interictal epileptiform spikes in the seizure onset zone. Neurology 2015, 84, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Al-Qazzaz, N.K.; Hamid Bin Mohd Ali, S.; Ahmad, S.A.; Islam, M.S.; Escudero, J. Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task. Sensors 2015, 15, 29015–29035. [Google Scholar] [CrossRef] [PubMed]
- Haddad, T.; Ben-Hamida, N.; Talbi, L.; Lakhssassi, A.; Aouini, S. Temporal epilepsy seizures monitoring and prediction using cross-correlation and chaos theory. Healthc. Technol. Lett. 2014, 1, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orosco, L.; Correa, A.G.; Diez, P.F.; Laciar, E. Patient non-specific algorithm for seizures detection in scalp EEG. Comput. Boil. Med. 2016, 71, 128–134. [Google Scholar] [CrossRef]
- Graps, A. An introduction to wavelets. IEEE Comput. Sci. Eng. 1995, 2, 50–61. [Google Scholar] [CrossRef]
- Fergus, P.; Hussain, A.; Hignett, D.; Al-Jumeily, D.; Abdel-Aziz, K.; Hamdan, H. A machine learning system for automated whole-brain seizure detection. Appl. Comput. Inform. 2016, 12, 70–89. [Google Scholar] [CrossRef] [Green Version]
- Subasi, A.; Ercelebi, E. Classification of EEG signals using neural network and logistic regression. Comput. Methods Programs Biomed. 2005, 78, 87–99. [Google Scholar] [CrossRef]
- Ramgopal, S.; Thomé-Souza, S.; Jackson, M.; Kadish, N.E.; Fernández, I.S.; Klehm, J.; Bosl, W.; Reinsberger, C.; Schachter, S.; Loddenkemper, T. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 2014, 37, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, J.; Beniczky, S.; Johansen, P.; Sidenius, P.; Fuglsang-Frederiksen, A. Detection of epileptic seizures with a modified heart rate variability algorithm based on Lorenz plot. Seizure 2015, 24, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Osorio, I.; Manly, B.F.J. Probability of detection of clinical seizures using heart rate changes. Seizure 2015, 30, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Stefanidou, M.; Carlson, C.; Friedman, D. The relationship between seizure onset zone and ictal tachycardia: An intracranial EEG study. Clin. Neurophysiol. 2015, 126, 2255–2260. [Google Scholar] [CrossRef]
- Vandecasteele, K.; De Cooman, T.; Gu, Y.; Cleeren, E.; Claes, K.; Van Paesschen, W.; Van Huffel, S.; Hunyadi, B. Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment. Sensors 2017, 17, 2338. [Google Scholar] [CrossRef]
- Seidenberg, M.; Pulsipher, D.; Hermann, B. Association of epilepsy and comorbid conditions. Future Neurol. 2009, 4, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Pellock, J.M. Understanding co-morbidities affecting children with epilepsy. Neurology 2004, 62, S17–S23. [Google Scholar] [CrossRef]
- Zaccara, G. Neurological comorbidity and epilepsy: Implications for treatment. Acta Neurol. Scand. 2009, 120, 1–15. [Google Scholar] [CrossRef]
- Zhou, M.; Tian, C.; Cao, R.; Wang, B.; Niu, Y.; Hu, T.; Guo, H.; Xiang, J. Epileptic Seizure Detection Based on EEG Signals and CNN. Front. Aging Neurosci. 2018, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Shoeb, A.H.; Guttag, J.V. Application of machine learning to epileptic seizure detection. In Proceedings of the International Conference on Machine Learning (Haifa), Haifa, Israel, 21–24 June 2010; pp. 975–982. [Google Scholar]
- Patnaik, L.; Manyam, O.K. Epileptic EEG detection using neural networks and post-classification. Comput. Methods Programs Biomed. 2008, 91, 100–109. [Google Scholar] [CrossRef]
- Ebrahimpour, R.; Babakhan, K.; Arani, S.A.A.A.; Masoudnia, S. Epileptic seizure detection using a neural network ensemble method and wavelet transform. Neural Netw. World 2012, 22, 291. [Google Scholar] [CrossRef] [Green Version]
- Akareddy, S.M.; Kulkarni, P. EEG signal classification for Epilepsy Seizure Detection using Improved Approximate Entropy. Int. J. Public Health Sci. (IJPHS) 2013, 2. [Google Scholar] [CrossRef]
- Ullah, I.; Hussain, M.; Qazi, E.-U.-H.; Abualsamh, H.A. An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Syst. Appl. 2018, 107, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Boil. Med. 2018, 100, 270–278. [Google Scholar] [CrossRef]
- Acharya, U.R.; Yanti, R.; Swapna, G.; Sree, V.S.; Martis, R.J.; Suri, J.S. Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2012, 227, 234–244. [Google Scholar] [CrossRef]
- Machado, F.; Sales, F.; Santos, C.; Dourado, A.; Teixeira, C. A knowledge discovery methodology from EEG data for cyclic alternating pattern detection. Biomed. Eng. Online 2018, 17, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, S.; Afghah, F.; Acharya, U.R. SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PLoS ONE 2019, 14, e0216456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perslev, M.; Jensen, M.; Darkner, S.; Jennum, P.; Igel, C. U-time: A fully convolutional network for time series segmentation applied to sleep staging. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS 2019), Vancouve, BC, Canada, 8–14 December 2019. [Google Scholar]
- Maria, A.R. Correlation Analysis of Biomedical Signals for Predictive Modeling. Master’s Thesis, Politehnica University of Bucharest, București, Romania, 2019. [Google Scholar]
Neurons No. | Input Data [Samples EEG3] | Output (Target) Data [Samples EEG1] | Train Set [Samples] | Test Set [Samples] | Validation Set [Samples] |
---|---|---|---|---|---|
10 | Matrix 13 × 5120 | Matrix 13 × 5120 | 3584 | 768 | 768 |
50 | Matrix 13 × 5120 | Matrix 13 × 5120 | 3584 | 768 | 768 |
100 | Matrix 13 × 5120 | Matrix 13 × 5120 | 3584 | 768 | 768 |
150 | Matrix 13 × 5120 | Matrix 13 × 5120 | 3584 | 768 | 768 |
Neurons No. | R Training | R Validation | R Test | Processing Time [s] |
---|---|---|---|---|
10 | 0.57316 | 0.63855 | 0.49103 | 42 |
50 | 0.65267 | 0.60571 | 0.60182 | 745 |
100 | 0.85089 | 0.74129 | 0.82255 | 913 |
150 | 0.81819 | 0.77345 | 0.67324 | 2784 |
Literature | Features Extraction Method | Learning Machine Method | Validation | Classification Accuracy |
---|---|---|---|---|
[69] | ||||
Method 1 | - | Convolutional neural network (CNN) with 3 layers | 6-fold cross validation | 83.8–95% |
[70] | ||||
Method 2 | spectral and spatial features | SVM | - | 96% |
[71] | ||||
Method 3 | wavelet transform for decomposition | ANN and genetic algorithm | - | - |
[72] | ||||
Method 4 | wavelet transform for decomposition | negative correlation learning (NCL) and a mixture of experts (ME) | 25% of the train set was randomly selected for the validation set | 96.92% |
[73] | ||||
Method 5 | Multi-wavelet Transform | ANN | - | 90% |
[74] | ||||
Method 6 | - | pyramidal one-dimensional CNN (P-1D-CNN) | 10-fold cross validation | 99.1% |
[75] | ||||
Method 7 | - | 13-layer CNN | 10-fold cross-validation | 88.67% |
[76] | ||||
Method 8 | DWT | SVM | 96% | |
[77] | ||||
Method 9 | Minimum redundancy maximum relevance (mRMR), Principal component analysis (PCA) | SVM, k-nearest neighbors (k-NN), and discriminant analysis | Leave-one-out cross-validation | 51% (SVM) 80% (k-nn with mRMR) |
[78] | ||||
Method 10 | - | CNN | 20-fold and 10-fold cross-validation | 84.26% |
[79] | ||||
Method 11 | - | U-Time—convolutional encoder-decoder network | 5-fold cross-validation | - |
Our work | DWT | ANN | 15% of the samples were selected for the validation set | 91.1% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aileni, R.M.; Pasca, S.; Florescu, A. EEG-Brain Activity Monitoring and Predictive Analysis of Signals Using Artificial Neural Networks. Sensors 2020, 20, 3346. https://doi.org/10.3390/s20123346
Aileni RM, Pasca S, Florescu A. EEG-Brain Activity Monitoring and Predictive Analysis of Signals Using Artificial Neural Networks. Sensors. 2020; 20(12):3346. https://doi.org/10.3390/s20123346
Chicago/Turabian StyleAileni, Raluca Maria, Sever Pasca, and Adriana Florescu. 2020. "EEG-Brain Activity Monitoring and Predictive Analysis of Signals Using Artificial Neural Networks" Sensors 20, no. 12: 3346. https://doi.org/10.3390/s20123346
APA StyleAileni, R. M., Pasca, S., & Florescu, A. (2020). EEG-Brain Activity Monitoring and Predictive Analysis of Signals Using Artificial Neural Networks. Sensors, 20(12), 3346. https://doi.org/10.3390/s20123346