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Abstract: In order to enhance weak signals in strong noise background, a weak signal enhancement
method based on EMDNN (neural network-assisted empirical mode decomposition) is proposed.
This method combines CEEMD (complementary ensemble empirical mode decomposition),
GAN (generative adversarial networks) and LSTM (long short-term memory), it enhances the efficiency
of selecting effective natural mode components in empirical mode decomposition, thus the SNR
(signal-noise ratio) is improved. It can also reconstruct and enhance weak signals. The experimental
results show that the SNR of this method is improved from 4.1 to 6.2, and the weak signal is
clearly recovered.

Keywords: weak signal; strong background noises; complete ensemble empirical mode;
graphical processing unit; parallel computing; cyclic neural network; generative adversarial network

1. Introduction

Traditional signal analysis and processing starts from the theory of Fourier analysis. However,
Fourier analysis is only applicable to the global transformation of stationary and linear signals.
Therefore, it is impossible to describe the time-frequency local characteristics of signals. Especially in
the case of strong noise, the traditional Fourier transform is difficult to deal with the weak signal in
the background of strong noise under the premise of ensuring high fidelity. Recently, some scholars
have proposed a non-linear method of wavelet threshold [1,2], but the wavelet basis function is fixed,
thus it cannot match all real signals. To be precise, wavelet analysis does not have the characteristics
of self-adaptation. Once a wavelet basis function is selected, it will be used to analyze all data, if the
selected wavelet decomposition is inappropriate, it will limit its denoising effect. Thus, it is very
difficult to enhance the weak signal in a low SNR environment [3–5]. In 1998, Huang proposed
a Hilbert–Huang transform (HHT) [6] signal processing method based on the Hilbert transform
(Hilbert–Huang transform is based on two parts. The first part is empirical mode decomposition, and
the second part is Hilbert spectrum analysis) This method has improved the processing of non-linear
and non-stationary signals [7,8]. The key part of the HHT method is the EMD (empirical mode
decomposition), which decomposes the signal into a series of sub-signals called IMFs (intrinsic mode
functions). It can separate the intrinsic modal component from the pseudo component or the noise
concentration, but it cannot select the IMF adaptively and enhance the weak signal adaptively, thus it
is easy to cause modal anomalies, but the Hilbert–Huang transformation is an empirical approach
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with many deficiencies [9,10], such as mode mixing, boundary effects, and instantaneous frequency
errors, etc. In order to resolve these defects, our paper proposes a method of fast enhancement of weak
signals based on the optimized EMD and neural network (EMDNN) model. The EMDNN method
can adaptively select effective intrinsic [11] modal components and adaptively enhance instantaneous
amplitude to reconstruct weak signals. With the increasing pace of people’s exploration of the objective
world, the 3D seismic exploration technology is also gradually in-depth, but if the SNR of 3D seismic
signal is low, it will affect the follow-up signal processing and interpretation work, which may lead
to a large miscalculation. Therefore, it is of practical significance to study efficient 3D seismic signal
denoising algorithm [12].

2. Weak Signal Reconstruction Method under EMDNN Model

This paper presents the EMDNN model, which is mainly used to detect and reconstruct the
weak signals in strong noise background, and reduce the problem of mode mixing [13,14] (when the
signal is screened, some IMF components with different time scales will appear, which is called
mode mixing). This method decomposes the modal function from high-frequency to low-frequency
distribution [15], thereby reducing the loss of effective information. By applying this method to weak
signal processing and reconstruction, we cannot only get rid of the constraints of weak signal linearity
and stationarity but also achieve good accuracy in both time and frequency [16]. At the same time,
it also has complete self-adaptiveness, and on the basis of suppressing all kinds of strong and weak
noises, effective signals are highlighted to improve the accuracy of reconstructed signals. In addition,
LSTM (long short-term memory) [17], GAN (generative adversarial networks) [18,19] are used to assist
this method, which further improves the recovery and enhancement of weak signals.

The weak signal data and the processing flow of the algorithm bring great challenges in the weak
signal enhancement method proposed in our paper. In this section, the first step is to pre-process the
original weak signal. The second step is to use the complementary set empirical mode decomposition
method to decompose the pre-processed signal and obtain the intrinsic modal component. In the
third step, the LSTM model is trained by correlation computation to select the effective intrinsic modal
components adaptively, and the instantaneous amplitude and phase of the instantaneous frequency
are obtained by the Hilbert transform. In the fourth step, we reconstruct the instantaneous phase and
amplitude to recover the weak signal without enhancement. Finally, the GAN model was trained to
generate enhanced weak high-definition signals. Figure 1 shows the flow chart of our method. We used
the three-dimensional seismic data [20] as the input signal. The three-dimensional seismic signal is the
three-dimensional spatial data obtained from the propagation route and time of the artificially excited
seismic wave in the underground strata [21,22].
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Figure 1. Flow chart of the weak signal reconstruction method under the neural network-assisted
empirical mode decomposition (EMDNN) model.

2.1. Original Signal Pre-Processing

We first pre-process the input signal. In order to prevent the common denoising method from
destroying the smoothness and continuity of the horizontal slice of the seismic signal, we use non-linear
wavelet transform threshold value method to denoise the seismic signal to eliminate the regular noise
in the original signal [23].

2.2. Empirical Mode Decomposition

After we get the one-dimensional signal after pre-processing, we start empirical mode
decomposition. Adding different amplitudes of Gaussian white noise λ0w(i) to the original signal
x (λ0 is the amplitude, w(i) is the white noise that achieves a zero average unit variance), x(i) = x +

λ0w(i), I = 1, 2, 3, . . . , n or the actual data is subjected to the empirical mode decomposition (EMD),
The integral set components of the first intrinsic mode function EMD are obtained by averaging the
components of the first intrinsic mode function (IMF) d1(i):

s̃1 =
1
n

n∑
i=1

d1(i) = s1 (1)
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Let Ej (*) is the operator of the j-th mode generated after EMD decomposition, and the first
remaining component can be calculated from the first step r1:

r1 = x− s̃1 (2)

The first mode component is obtained by EMD decomposition: r1 + λ1E1[w(i)], I = 1, 2, 3,
. . . , n; The EMD decomposition is performed again, and the available intrinsic mode components
obtained after decomposition are summed and averaged to obtain the second set of EMD intrinsic
mode functions:

s̃2 =
1
n

n∑
i=1

E1
{
r1 + λ1E1[w(i)]

}
(3)

And the k-th residual component can be obtained through loop iteration rk:

rk = r(k−1) − s̃k (4)

And the complete set component of the (k + 1)-th EMD is obtained from the intrinsic mode
component formula obtained through EMD decomposition:

s̃(k+1) =
1
n

n∑
i=1

E1
{
rk + λkEk[w(i)]

}
(5)

Repeated iteration calculations to the remaining components cannot be performed in the EMD
decomposition, the remaining components satisfy the IMF condition. After satisfying the condition
after the m-th iteration, the original signal is subtracted from the sum of the intrinsic modal functions
obtained by the decomposition to obtain the final residual component rm:

rm = x−
m∑

j=1

s̃ j (6)

Thus, the original signal can be reconstructed:

x =
m∑

j=1

s̃ j + rm (7)

2.3. Adaptive Selection of Effective Inherent Modal Components by Using LSTM Model

Through a large number of experiments and years of tests by Mr. Huang [24], it has been found
that the eigenmode component of the pseudo-component or noise concentration is separated during
the empirical mode decomposition process. It is an important issue about how to select effective
components from multiple components in signal recovery [25].

Formula (8) shows that the intrinsic mode component of a signal can be obtained by empirical
mode decomposition. Due to the decomposition error, the effective intrinsic mode component of B
term and the pseudo component of C term or the concentrated component of noise can be generated.

a∑
i=1

ci =
b∑

j=1

c j +
c∑

l=1

cl (8)
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The correlation between the intrinsic mode components and the pre-decomposed signals obtained
by empirical mode decomposition is as follows:

Rh4(t),c′i
= E

[
h4(t) ∗ c′i (t + τ)

]
= E[

a1∑
j=1

c j(t) ∗ c′i (t + τ)]

= E
(
c1(t) ∗ c′i (t + τ)

)
+ · · ·+ E

(
ca1(t) ∗ c′i (t + τ)

)
= Rci,c′i

(τ) +
a1∑

j=1, j,i
Rc j,c′i

(τ) ≈ Rci,c′i
(τ) ≈ Rci,c′i

(τ)

(9)

Since the empirical mode decomposition process is a local orthogonal decomposition, it can be
concluded from the premise:

a1∑
j=1, j,i

Rci,c′i
(τ) ≈ 0 (10)

Then the above two formulas can be used to derive the correlation between the spurious
component and the pre-decomposition signal. The above formula shows that the correlation between
the decomposed intrinsic modal component and the original signal depends on the auto-correlation of
each component’s autocorrelation. The correlation between the pseudo-component and the original
signal is approximately zero. According to the non-directionality of random noise, the correlation
between the components of the random noise and the original signal is low and approaches 0. Based on
the above inference, we can make a provision. The correlation is judged R ≥ 0.02, and if it is greater
than or equal to 0.02, it is recorded as an effective intrinsic modal component, and the self-adaptive
selection is determined as the target of the next step by judging the correlation. However, through
actual testing, it is found that the artificial correlation threshold will lead to incomplete classification
and cannot be perfectly screened out all the effective intrinsic modal components. In order to screen
out as many effective components as possible, we train an LSTM model here to continuously optimize
the correlation threshold to enhance the classification effect [26].

In Figure 1, in order to filter out the effective natural mode components more effectively, the LSTM
model is needed, Figure 2 describes the flow chart of RNN (recurrent neural network) model [27,28],
compared with each other neutral network modules, RNN models have interconnected nodes among
layers, which makes RNN perform well in dealing with timing problems.
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Figure 2. The flow chart of the recurrent neural network (RNN) model. 
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However, as the number of sequences in the RNN model increases, the amount of error loss in the
feedback process will also continue to superimpose, which may cause the disappearance of gradients.
In response to this problem, researchers proposed a more complex structural form, LSTM, as a hidden
unit of RNN. Using LSTM model also improves the accuracy to a certain extent. The memory unit of
LSTM is shown in Figure 3; and the flow chart of LSTM training is shown in Figure 4.Sensors 2020, 20, x FOR PEER REVIEW 6 of 19 

 

 

Figure 3. Long short term memory (LSTM) internal unit structure diagram. 

Inherent modal 
components 

extracted from 
original signals

Inherent modal 
components used in 

this experiment 

Computing the 
correlation with the 

original signal 

Complete RNN 
model training 

RNN
Effective Inherent 

Modal Classification 

Take the average 
correlation of all 

components below 
the threshold as a 

new threshold. 

Artificially set a 
correlation 
threshold 

Cyclic iteration

 

Figure 4. The flow chart of LSTM training. 

When we use serial index number I, x (t) represents the input of the inherent modal component. 

Similarly, x (t − 1) and x (t + 1) is the input of the inherent modal components when the serial index 

numbers t − 1 and t + 1 are used. 

In this model, we use W matrices to represent the linear relationship parameters, which are 

suitable for the whole model. 

In the hidden unit of the module, x (t) and h (t − 1) are used to determine the state of the forget 

gate f (t) that represents what information we’re going to throw (t indicates the serial number): 

})](),1([{sigm)(f ftf nxgthWt   (11) 

Where ()sigm  is a activation function, as shown in Formula (12), n is a bias of linear relation, 

and g (x) is a function for calculating the correlation of inherent modal components [29].  

xe
x




1

1
)(sigm  (12) 

And the input gate can calculates the cell state to be input, t

~

C  and the vector ti  based on x 

(t) and h (t − 1) in Formula (13) and (14) (t indicates the serial number): 

 

Figure 3. Long short term memory (LSTM) internal unit structure diagram.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 19 

 

 

Figure 3. Long short term memory (LSTM) internal unit structure diagram. 

Inherent modal 
components 

extracted from 
original signals

Inherent modal 
components used in 

this experiment 

Computing the 
correlation with the 

original signal 

Complete RNN 
model training 

RNN
Effective Inherent 

Modal Classification 

Take the average 
correlation of all 

components below 
the threshold as a 

new threshold. 

Artificially set a 
correlation 
threshold 

Cyclic iteration

 

Figure 4. The flow chart of LSTM training. 

When we use serial index number I, x (t) represents the input of the inherent modal component. 

Similarly, x (t − 1) and x (t + 1) is the input of the inherent modal components when the serial index 

numbers t − 1 and t + 1 are used. 

In this model, we use W matrices to represent the linear relationship parameters, which are 

suitable for the whole model. 

In the hidden unit of the module, x (t) and h (t − 1) are used to determine the state of the forget 

gate f (t) that represents what information we’re going to throw (t indicates the serial number): 

})](),1([{sigm)(f ftf nxgthWt   (11) 

Where ()sigm  is a activation function, as shown in Formula (12), n is a bias of linear relation, 

and g (x) is a function for calculating the correlation of inherent modal components [29].  

xe
x




1

1
)(sigm  (12) 

And the input gate can calculates the cell state to be input, t

~

C  and the vector ti  based on x 

(t) and h (t − 1) in Formula (13) and (14) (t indicates the serial number): 

 

Figure 4. The flow chart of LSTM training.

When we use serial index number I, x (t) represents the input of the inherent modal component.
Similarly, x (t − 1) and x (t + 1) is the input of the inherent modal components when the serial index
numbers t − 1 and t + 1 are used.

In this model, we use W matrices to represent the linear relationship parameters, which are
suitable for the whole model.

In the hidden unit of the module, x (t) and h (t − 1) are used to determine the state of the forget
gate f (t) that represents what information we’re going to throw (t indicates the serial number):

f(t) = sigm
{
W f · [h(t− 1), g(xt)] + n f

}
(11)
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Where sigm() is a activation function, as shown in Formula (12), n is a bias of linear relation, and
g (x) is a function for calculating the correlation of inherent modal components [29].

sigm(x) =
1

1 + e−x (12)

And the input gate can calculates the cell state to be input,
∼

Ct and the vector it based on x (t) and h
(t − 1) in Formulas (13) and (14) (t indicates the serial number):

∼

Ct = tanh
{
Wc · [h(t− 1), g(xt)] + nc

}
(13)

it = sigm
{
Wi · [h(t− 1), g(xt)] + ni

}
(14)

Where tan h() is a activation function, as shown in Formula (15):

tanh(x) =
ex
− e−x

ex + e−x (15)

And the old cell state Ct−1 can be updated by calculating with the results of the forget gate and
the input gate in Formula (16):

Ct = Ct−1 ∗ ft +
∼

Ct ∗ it (16)

Output gate calculates the output gate state, o(t), and the cell state Ct determines what information
in o(t) will be output units.

o(t) = sigm
{
Wo · [h(t− 1), g(xt)] + no

}
(17)

h(t) = ot ∗ tanh(Ct) (18)

At the end of the series index number t, our predicted output is as follow:

ŷ(t) = sigm[Wy · h(t) + ny] (19)

Finally, we used the log likelihood function L (t) to quantify the loss of the model at the current
position, compare the differences between y ˆ (t) and y (t) [30].

2.4. Reconstructing and Enhancing Weak Signals

The intrinsic modal component is a stationary signal or a simple non-linear signal and belongs
to a narrowband signal. Any narrowband signal X(t) can get its Hilbert transform result Y(t). The
formula is as follows:

Y(t) =
1
π

∫
∞

−∞

X(τ)

t− τ
dτ (20)

For the selected effective modal components, the Hilbert transform is used to construct the
analytical signal:

Zk(t) = Xk(t) + iYk(t) = ak(t)eiθk(t) (21)

ak(t) =
√

X2
k(t) + Y2

k(t) (22)

θk(t) = arctan
Yk(t)
Xk(t)

(23)

ak(t) =
√

X2
k(t) + Y2

k(t) (24)
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Instantaneous phase and amplitude can be used to recover weak signals:

∼
x(t) = Re

n∑
k=1

∼
ak(t)eiθk(t) (25)

Traditional signal enhancement methods are very sensitive to noise, which can cause significant
overshoots that can cause signal blurring. Here we use artificial training GAN (generative adversarial
network) to generate high-resolution signals.

In order to improve the stability and efficiency of training, we adopt an incremental enlargement
method to train GAN, as shown in Figure 5:
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Figure 5. The flow chart of generative adversarial networks (GAN) enhancement.

When the real seismic signal data input into the discriminator, we must make the objective
function to be maximized as much as possible thus that the machine can determine that it is the real
data. The second half of the formula shows that the generator makes the function G (z) as small as
possible when inputting and generating real seismic data. In this process, the generator deceives the
discriminator, making it mistakenly believe that the input is factual data [31], and the discriminator
tries to identify it as fake data. They train with each other to reach the Nash equilibrium.

We start training with generators (g) and discriminators (d) with low spatial resolution, with a
resolution of 4 × 4 at the beginning, and then add a convolution layer to G and D after each training,
thus as to gradually improve the spatial resolution of the generated signal [32–35]. All involved
convolution layers can be retrained in the whole training process. N × N in the figure refers to the
convolution layer working at N*N spatial resolution.

We give the distribution of reconstructed signal data Pdata (x), and distribution of Pg (x, θ),
which is controlled by θ. The formula can be found in Appendix A.

We complete GAN training based on KL divergence [36] and get the final signal enhancement
model, the reconstructed signal can be steadily enhanced by adding layers from low to high.
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3. Experimental Results and Discussion

This section will be divided into two parts. First, we will introduce the model training and
parameter setting in the experimental process, and then we will compare and analyze different signal
processing methods. The framework of this section is shown in Figure 6.Sensors 2020, 20, x FOR PEER REVIEW 9 of 19 
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Figure 6. The flow chart of the experimental process.

3.1. Training Detail

The LSTM model used in this paper contains two LSTM layers, a dropout layer with p = 0.2,
a fully connected and a sigmoid layer. The LSTM gets 32 hidden units and the loss function is the log
likelihood function. We also used the Adam optimizer to train the network. The learning rate was
0.01, which was attenuated by the natural index, the batch size was 20, and the number of the epoch
was 500. The change of loss value of the model is shown in Figure 7. When the model was trained
400 times, it basically converged, and the final loss value was around 0.015.
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When training GAN, the reconstructed weak signal was used as input. In the generator, we used
relu as the activation and tanh as the activation function in the last layer. In the discriminator, we used
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leakyrelu as the activation function. In one epoch, we trained the discriminator at first. After an epoch,
we froze the weight of the discriminator and trained the generator. At the end of each epoch, we added
a 2 × 2 convolution layer to the generator and discriminator. During model training, we set a batch
size of 16, and we iterated 300 epochs. We used an Adam optimizer, and the initial learning rate was
set to 2 × 10−4, which was reduced to 2 × 10−5 after 40 rounds of training.

3.2. Contrast and Verification

In the field of biomedicine, mechanical failure, and geophysics [37], the status of weak signals is
prevalent. In order to verify the validity of the method, we chose the 3D weak seismic data in the field
of geophysics as the test target for experimental testing.

In seismic exploration, people used artificial methods to cause crustal vibration (such as explosive
explosion and vibriosis vibration), then they used precision instruments to record the vibration
information of each receiving point on the ground after explode, and people finally inferred the
underground geological structure according to the result that processed from the original record
information. When seismic waves travel underground, it will encounter different rock stratum
interfaces with different media, which will produce reflection and refraction. At this time, we can
receive this kind of seismic wave with geophone on the surface. The seismic signals we receive are
related to the characteristics of seismic source, the location of the detection point, and the nature
and structure of the underground strata where the seismic waves pass. Through the processing and
interpretation of seismic wave records, we can infer the nature and shape of underground rock strata.
The acquisition of the seismic signal is shown in Figure 8.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 19 

 

3.2. Contrast and Verification 

In the field of biomedicine, mechanical failure, and geophysics [37], the status of weak signals is 

prevalent. In order to verify the validity of the method, we chose the 3D weak seismic data in the 

field of geophysics as the test target for experimental testing.  

In seismic exploration, people used artificial methods to cause crustal vibration (such as 

explosive explosion and vibriosis vibration), then they used precision instruments to record the 

vibration information of each receiving point on the ground after explode, and people finally inferred 

the underground geological structure according to the result that processed from the original record 

information. When seismic waves travel underground, it will encounter different rock stratum 

interfaces with different media, which will produce reflection and refraction. At this time, we can 

receive this kind of seismic wave with geophone on the surface. The seismic signals we receive are 

related to the characteristics of seismic source, the location of the detection point, and the nature and 

structure of the underground strata where the seismic waves pass. Through the processing and 

interpretation of seismic wave records, we can infer the nature and shape of underground rock strata. 

The acquisition of the seismic signal is shown in Figure 8. 

 

Figure 8. Flow chart of seismic signal acquisition. 

When effective waves are generated, various interference waves will also be generated. 

According to its generating law, it can be divided into regular noise and random noise. Regular noise 

has a dominant frequency and apparent velocity, its apparent velocity, apparent frequency, and 

waveform all have their own propagation characteristics and rules. It can be suppressed according 

to differences in the frequency spectrum or propagation direction between it and the effective wave. 

Random noise is the interference wave without a certain frequency and apparent velocity, which is 

mainly generated by natural and human factors. The method proposed in this paper is mainly to 

suppress this kind of random noise, highlight the effective signal, and achieve signal enhancement. 

3.2.1. Experimental Results and Analysis of Synthetic Weak Signal Data 

In order to detect the efficiency of our approach, we tested some simulated 3D seismic data. In 

our synthetic 3D seismic data, in the horizontal direction, each dataset has 50 seismic traces, each 

trace has 500 seismic sampling points, the plane in the horizontal direction is shown in Figure 9. We 

use the x-axis to represent the amount of analog 3D seismic data channels, and the y-axis is the vertical 

sampling points of analog 3D seismic data. Figure 9a shows the profile formed by the first line, which 

consists of a horizontal and a slanting reflection axis. Figure 9b is the profile of the first line after 

convolution of the reflection axis and the Ricker wavelet in the whole data. Figure 9c is a profile of 

the first line after Gaussian white noise is added to the whole synthetic data volume. Figure 9d is a 

profile of the first sideline of the synthesized 3D data processed by our method.  

Figure 8. Flow chart of seismic signal acquisition.

When effective waves are generated, various interference waves will also be generated. According
to its generating law, it can be divided into regular noise and random noise. Regular noise has a
dominant frequency and apparent velocity, its apparent velocity, apparent frequency, and waveform
all have their own propagation characteristics and rules. It can be suppressed according to differences
in the frequency spectrum or propagation direction between it and the effective wave. Random noise
is the interference wave without a certain frequency and apparent velocity, which is mainly generated
by natural and human factors. The method proposed in this paper is mainly to suppress this kind of
random noise, highlight the effective signal, and achieve signal enhancement.
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3.2.1. Experimental Results and Analysis of Synthetic Weak Signal Data

In order to detect the efficiency of our approach, we tested some simulated 3D seismic data. In our
synthetic 3D seismic data, in the horizontal direction, each dataset has 50 seismic traces, each trace has
500 seismic sampling points, the plane in the horizontal direction is shown in Figure 9. We use the x-axis
to represent the amount of analog 3D seismic data channels, and the y-axis is the vertical sampling
points of analog 3D seismic data. Figure 9a shows the profile formed by the first line, which consists of
a horizontal and a slanting reflection axis. Figure 9b is the profile of the first line after convolution of
the reflection axis and the Ricker wavelet in the whole data. Figure 9c is a profile of the first line after
Gaussian white noise is added to the whole synthetic data volume. Figure 9d is a profile of the first
sideline of the synthesized 3D data processed by our method.
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To test the feasibility of our method, we also did the contrast experiments of different methods in
the background with strong noise. Figure 10a is a section diagram with Gaussian white noise and
a signal-to-noise ratio of 0.5. Figure 10b shows a section diagram enhanced by wavelet transform.
Figure 10c shows a section diagram enhanced by a curved wave transform. Figure 10d shows a section
diagram enhanced by our method.
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Figure 11 shows that the profile of the sideline was composed of two reflection axes in the same
direction at the beginning. After being convoluted with the wavelet, some parts of the two reflection
axes in the same direction were indistinguishable. After being processed by our method, two coaxial
axes can be distinguished clearly. In order to reflect the results of different methods more intuitively,
we used Formula (22) to calculate the SNR of 10 lines of the composite data and the SNR before
processing, g (x, y) was the original 3D seismic data and g ˆ (x, y) represented the denoised 3D data.
A is the number of seismic trace and B is the number of vertical sampling points. The formula is shown
in (26):

SNR = 20 log10

∑ A−1
x=0

∑ B−1
y=0[ĝ(x,y)]2∑ A−1

x=0
∑ B−1

y=0[g(x,y)−ĝ(x,y)]2
(26)

The comparison results are shown in Figure 11. In Figure 11, the y-axis represents the SNR,
and the x-axis represents the 10 data lines processed by the composite data. The result shows that the
SNR of EMDNN processed is higher than others in the background of strong noise. The simulation
results show that the 3D data processed by this method can clearly identify the wedge-shaped geology,
which shows that EMDNN method not only improves the SNR but also increases the resolution.
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3.2.2. Experiment and Analysis of Actual Weak Signal Data

Next, we conducted experiments on the actual weak reflection 3D data. The actual three-
dimensional seismic data that we took were the weak seismic signal hidden in the background of
strong noise. There were 1160 lines in the data, 1040 for each line, 6000 ms for each seismic signal and
1ms for sampling interval. We processed the whole three-dimensional seismic data, and then observed
the profile of a survey line, and took the profile with weak reflection seismic signal, which contained
100 channels of 600 sampling points. The effect comparison before and after processing is shown in
Figure 12 (the red rectangle represents the most distinct area before and after processing). Figure 12a
is the unprocessed figure of the profile of the sideline, and Figure 12b is the figure that has been
recovered by the wavelet transform. Figure 12c is a graph that has been recovered by curved wave
transformation. Figure 12d is the graph that has been recovered by this method. Figure 12 shows that
the pre-processing signal cannot be recognized at all. After wavelet and curve transform processing,
compared with the original signal, some weak signals were recovered obviously, but some of the
same direction axes were still difficult to distinguish. As a result, the effect of the data processed by
our method was obviously improved, and the weak signal was clearly reflected. Figure 13a,c were
unprocessed figures of the sections of different sidings, and Figure 13b,d were the figures intercepted
after the processing by our method. It shows that the geological horizon processed by our method
was clearer.
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3.2.3. Parallel Processing Experiments and Analysis

In order to verify the advantage of this method in processing speed, we selected five groups of
actual seismic weak signal data of different sizes as experimental objects, and used non-parallelized
algorithms (CPU processing) and parallelized algorithms (GPU processing) to process the experimental
data [38]. We counted and tabulated the processing time of the two methods. The results are shown in
the Table 1. The experimental results in Table 1 show that the processing time of the GPU parallelized
algorithm was only one-fifth of the conventional CPU processing time, which improves the efficiency
of processing.

According to the comparison experiment, we know that using the GPU’s powerful parallel
processing capability can effectively improve the program’s operating speed and reduce the processing
and reconstruction time of weak signals. When the processed data was small, the acceleration ratio
was only 2–4 times because all the thread resources on the GPU cannot be fully utilized. As the amount
of processing data increased, all thread resources on the GPU were mobilized, and the speedup ratio
gradually increased. When the amount of data processed exceeded 10 G, the processing speed was
increased by nearly 8 times. The processing time and reconstruction time of the massive weak signal
data were greatly reduced, the working time of the processing personnel was saved, and the working
efficiency was improved.

Table 1. The comparison of processing speed between CPU and GPU.

Test Data Data Size (mb) CPU Program
Running Time (s)

GPU Program
Running Time (s) Speed up Ratio

Data1 43.2 32.03 12.41 2.58
Data2 262.8 256.15 68.49 3.74
Data3 568.7 532.47 122.69 4.34
Data4 1020.3 2209.41 355.78 6.21
Data5 14,328.8 40,160.92 5001.25 8.03

4. Conclusions and Future Work

This paper proposes a weak signal enhancement method based on the EMDNN model for the
characteristics of weak signals. Through theoretical and experimental results, it is shown that the weak
signal of the typical field is selected for processing experiments, and the signal-to-noise ratio of the
recovered weak signal is significantly improved. This method uses GPU parallel computing to solve the
shortcomings of the large amount of computation and slow operation speed, which is 4–5 times faster
than conventional CPU. After trying to introduce the LSTM model and GAN model into traditional
weak signal reconstruction and enhancement methods, we find that further breakthroughs have been
made in adaptive and weak signal image enhancement, which greatly improves the signal-to-noise
ratio. With the development of research, we will study the application of gated recurrent unit (GRU)
model in selecting the natural mode components in empirical mode decomposition and study the
varieties of the generative adversarial network to improve the effect of signal enhancement further.
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Appendix A KL Divergence Formula

θ∗ = argmax
θ

m∏
i=1

PG(xi;θ) = argmax
θ

log
m∏

i=1
PG(xi;θ)

= argmax
θ

m∑
i=1

PG(xi;θ)

≈ argmax
θ

Ex ∼ Pdata[log Pa(x;θ)]

= argmax
θ

[
∫
x

Pdata(x) log Pa(x;θ)dx−
∫
x

Pdata(x) log Pdata(x)dx]

= argmax
θ

∫
x

Pdata(x) log PG(x;θ)
log Pdata(x)dx

= argmin
θ

∫
x

Pdata(x) log PG(x;θ)
log Pdata(x)dx

= KL

G∗ = min
θ

max
θ

V(G, D)

V = Ex ∼ Pdata[log D(x)] + Ex ∼ Pa[1− log D(x)]

=
∫
x

Pdata(x) log D(x) log D(x) + Pa(x) log(1−D(x))dx

D∗ = Pdata(x) log D(x) + PG(x) log(1−D(x))

f (D) = a log D + b log(1−D)
d f (D)

dD = a ∗ 1
D + b ∗ 1

1−D ∗ (−1) = 0

a ∗ 1
D∗ = b ∗ 1

1−D∗

D∗ = a
a+b

D∗(x) = Pdata(x)
Pdata(x)+Pa(x)

maxV(G, D) = V(G, D∗)

= Ex ∼ Pdata[log Pdata(x)
Pdata(x)+PG(x)

] + Ex− Pa[1− log Pdata(x)
Pdata(x)+PG(x)

]

=
∫
x

Pdata(x) log Pdata(x)
Pdata(x)+PG(x)

dx +
∫
x

Pa(x) log Pdata(x)
Pdata(x)+PG(x)

dx

JSD(P1 ‖ P2) = 1/2KL(P1 ‖ P1+P2
2 ) + 1/2KL(P2 ‖ P1+P2

2 )∫
x

Pdata(x) log 1/2∗Pdata(x)
Pdata(x)+PG(x)dx

2

+
∫
x

PG(x) log 1/2∗Pdata(x)
Pdata(x)+PG(x)dx

2

= 2 log(1/2) + KL(Pdata(x) ‖ Pdata(x)+Pa(x)
2 ) + KL(PG(x) ‖

Pdata(x)+Pa(x)
2 )

= 2 log(1/2) + 2JSD(Pdata(x) ‖ PG(x))

→ max
D

V(G, D)
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