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Abstract: This paper demonstrates the development of an automatic mobile trainer employing inertial
movement units (IMUs). The device is inspired by Neuro-Developmental Treatment (NDT), which is
an effective rehabilitation method for stroke patients that promotes the relearning of motor skills by
repeated training. However, traditional NDT training is very labor intensive and time consuming for
therapists, thus, stroke patients usually cannot receive sufficient rehabilitation training. Therefore,
we developed a mobile assisted device that can automatically repeat the therapists’ intervention and
help increase patient training time. The proposed mobile trainer, which allows the users to move at
their preferred speeds, consists of three systems: the gait detection system, the motor control system,
and the movable mechanism. The gait detection system applies IMUs to detect the user’s gait events
and triggers the motor control system accordingly. The motor control system receives the triggering
signals and imitates the therapist’s intervention patterns by robust control. The movable mechanism
integrates these first two systems to form a mobile gait-training device. Finally, we conducted
preliminary tests and defined two performance indexes to evaluate the effectiveness of the proposed
trainer. Based on the results, the mobile trainer is deemed successful at improving the testing subjects’
walking ability.

Keywords: gait training; IMU; stroke; NDT; gait detection; motor control

1. Introduction

Stroke is the second leading cause of death in the world [1], with a case occurring about every two
seconds [2]. Stroke accounts for nearly 34 billion US dollars in medical costs each year in the USA [3].
The survivors usually suffer inconvenience in their daily lives and need lengthy rehabilitation to recover
their abilities, such as walking by themselves. Several lower-limb rehabilitation devices have been
proposed to help improve patients’ walking ability. For example, Colombo et al. [4] designed a driven
gait orthosis to guide a patient’s legs on a moving treadmill. Similarly, Schmidt et al. [5] proposed
the HapticWalker with programmable footplates for wheelchair-mobilized patients. Wang et al. [6]
developed an active gait trainer that can actively guide the user’s ankles by motors with six bar linkages.
Patton et al. [7] designed the KineAssist for gait and balance training. Esquenazi et al. [8] proposed the
powered ReWalk exoskeleton that allowed the user to walk without human assistance. Schmitt et al. [9]
presented the MotionMaker that had two orthoses with motors and sensors to control leg movements
according to the desired positions and speeds. Bradley et al. [10] developed the NeXOS for the lower
limbs of supine patients. Belforte et al. [11] designed an active gait orthosis with electro-pneumatic
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circuits to assist locomotion in paraplegic subjects. Yu et al. [12] proposed a compact compliant-force
control actuator for portable rehabilitation robots.

Unlike these aforementioned devices, which usually guide the users to follow certain preset
movements, Neuro-Developmental Treatment (NDT) is a way to let patients have the feeling of walking
with minimal physical intervention [13]. Therapists need to control their patients’ joints, such as head,
shoulders, and pelvis, so that patients can intentionally drive their body center of gravity (COG)
forward, while balancing themselves by striding steps and feeling the COG conversion between their
feet. The purpose of NDT training is to help patients to elicit positive brain reorganization and to regain
control of their feet by multiple training. The gait symmetry between the healthy leg and the paretic
leg can be improved during or after rehabilitation treatments by gait facilitation. However, traditional
NDT training is very labor intensive and time consuming for therapists. For instance, in a clinical NDT
training [14,15], one therapist stood behind the patient to correct the pelvis motion, while another
therapist crouched beside the patient’s paretic limb to assist gait movements. Consequently, patients
usually cannot receive sufficient training because of a lack of therapists. Therefore, Wang et al. [16]
developed a stationary device that can repeat the therapists’ intervention patterns, to reduce the
therapists’ working burdens and increase the patients’ training time. However, the stationary device
needed to be operated in a specified space, and the patient’s forward speed was constrained by the
treadmill. Therefore, this paper presents a mobile trainer that allows the subjects to walk on the ground
at their preferred speeds and to receive visual feedback while walking.

The proposed mobile trainer consists of three systems: the gait detection system, the motor
control system, and the movable mechanism. First, we apply IMUs to develop a gait detection system
that can record the angular velocities of shanks and detect important gait events during walking.
Compared with the optical motion capture systems, such as VZ4000 [17] and VICON [18], the IMU is
less expensive and is portable for measuring kinematic data, allowing the extraction of gait information
under different operating conditions. Second, we develop a motor control system to imitate the
therapists’ interventions. We conduct traditional NDT training and record the experimental data to
build an expert system that describes the therapists’ intervention patterns: stimulating the right (left)
pelvis when the left (right) foot strikes the ground. Therefore, we can control the motors to recreate the
therapists’ intervention patterns when the gait detection system senses heel strikes. Lastly, the gait
detection system and the motor control system are integrated on a movable mechanism. We have
conducted preliminary tests and defined two performance indexes to demonstrate the effectiveness of
the mobile device in improving the walking ability of subjects.

The paper is arranged as follows: Section 2 introduces the mobile trainer, which is composed of a
gait detection system, a motor control system, and a movable mechanism. Section 3 describes the gait
detection system, which comprises two measurement units and one data logging unit. The former
can estimate the gait events, while the latter sends triggering signals to the motor control system.
In Section 4, we conduct clinical NDT training and record the gait data during NDT training to
build an expert system that interprets the therapists’ intervention. We then design a motor control
system to mimic the therapists’ intervention. Section 5 integrates the two systems and describes our
clinical tests. We define two performance indexes to evaluate the performance of the proposed trainer.
The results indicate that the designed trainer has positive influences on the test subjects. Finally,
we draw conclusions and discuss potential future work in Section 6.

2. System Description

The mobile trainer is shown in Figure 1; it is composed of a gait detection system, a motor control
system, and a movable mechanism. The gait detection system comprises two measurement units
and one data logging unit. Each measurement unit is equipped with an IMU MPU-9250 [19] for
measuring gaits, an Arduino Nano [20] for estimating gait events, and a wireless module ESP-01 [21]
for transmitting data to the data logging unit. The data logging unit consists of a wireless module
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ESP-01 for receiving gait information and an Arduino Mega2560 [22] to record the gait data and to
trigger the motor control system.

The motor control system is composed of an Arduino Mega2560 to imitate the therapists’
intervention patterns, two MPK569-2.8A motors [23] to provide cuing forces through ropes, and two
MLP-200 load cells [24] to measure the applied forces for feedback control. Note that we apply two
Arduino Megas at the gait detection system and the motor control system so that these two systems
can be operated at different sampling rates.

The movable mechanism integrates the gait detection system and the motor control system. It has
four casters so that the subject can push the trainer forward when receiving training. It is also equipped
with an adjustable handle and a belt for safety. The ropes connect the motors to the user’s pelvis to guide
the user based on the therapists’ intervention patterns. The system specifications are illustrated in Table 1.

Figure 1. Cont.



Sensors 2020, 20, 3389 4 of 20

Figure 1. The automatic mobile trainer. (a) The physical structure; (b) the schematic diagram; (c) the
system layout.

Table 1. System specifications. IMU: inertial movement units.

IMU (MPU9250) [19,25,26]
operating voltage 3.3 V
operating current 3.7 mA

Resolution 16 bits
max measurement range of gyroscope ±2000 ◦/s

max measurement range of accelerometer ±16 g
max measurement range of magnetometer ±4800 µT

Wireless transmission module (ESP-01) [21,27]
operating voltage 3.3 V

communication protocol 802.11 b/g/n
peripheral interface UART

working mode Station/SoftAP/SoftAP+Station
network protocol TCP/UDP

Step motor driver (MAC5528) [23]
Resolution 500–125,000 steps

max pulse rate 500 kHz
input signal 4–10 V, <20 mA

output signal 24 V, <10 mA
Step motor (MPK569-2.8A) [23]

Phase 5
operating voltage 1.75 V
operating current 2.8 A/phase

static torque 16 kgf · cm
Load cell (MLP-200 [24] & DPM-3 [28,29])

max measurement range of force 200 lb
resonance frequency 5200 Hz

max power consumption 5 W
signal output voltage 0–10 V
signal output current 2 mA

Accuracy ±0.02% of full scale

3. Gait Detection System

The gait detection system contains two measurement units and one data logging unit, as shown
in Figure 2. The wearable measurement units are attached to the subject’s shanks to obtain the user’s
kinematic data and to estimate the important gait events. The gait information is then transmitted to
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the data logging unit, which records the gait data and sends triggering signals to the motor control
system to imitate the therapists’ intervention.

Figure 2. The gait detection system. (a) The measurement unit; (b) the data logging unit.

3.1. Gait Event Estimation

Human gaits are regular and periodic. A complete gait cycle is defined as a period from the heel
strike (HS) to the next HS of the same leg, as shown in Figure 3 [13]. A gait cycle normally consists
of about 60% stance phase and 40% swing phase, with the following three important gait events:
mid-swing (MS), HS, and toe-off (TO). The gait detection system measures the gait data and estimates
these gait events in real time, in order to decide the intervention timing.

Figure 3. A complete gait cycle.

We applied IMU to measure the angular velocity of the shank on the sagittal plane [30,31], i.e., the
Y-axis in Figure 4a. The typical angular velocity responses during a complete gait phase is illustrated
in Figure 4b, where the MS usually occurs with the maximum angular velocity during the gait cycle.
Conversely, the HS usually happens when the angular velocity has the first negative trough after the
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MS, while the TO is usually associated with the negative trough before the next MS. Note that the
placement of IMU sensors might affect the magnitudes of the signals because of vector projection.
However, the characteristics of gait events remains the same. Therefore, we developed the following
algorithms to estimate the three gait events.

Figure 4. Gait measurement. (a) The IMU attachment; (b) the angular velocity.

1. The MS event

The MS usually accompanies the maximum angular velocity in the gait cycle. As shown in
Figure 4b, we set a threshold THω

MS = 60◦/s and mark the point as the MS if its angular velocity ω is
locally maximum and greater than this threshold, as follows:

ω > THω
MS (1)

2. The HS event

The HS usually happens with the first negative trough after the MS, as shown in Figure 4b.
Therefore, we set two thresholds, THω

HS and THt
HS, to identify the HS event. The gait phase is estimated

as HS if the following three conditions are satisfied:

(1) The angular velocity ω reaches a local minimum.
(2) The angular velocity ω is less than THω

HS, i.e., ω < THω
HS.

(3) The time interval between MS and HS, labelled as ∆tMS
HS , is greater than THω

HS, i.e., ∆tMS
HS > THt

HS.

Referring to Figure 4b, we set THω
MS = −5◦/s and THt

HS with an initial value of 0.042 s, which is the
sampling time of the system; that is, the HS should be at least one sample after the MS. Note that THt

HS
is adjustable because the patient’s paretic leg might have abnormal trembles and vibration during
walking. The HS event can be easily identified in healthy subjects, as shown in Figure 4b. However,
a stroke patient might have an uneven gait, as shown in Figure 5a, which can cause difficulties in
identifying the HS event. For example, the first HS was correctly labelled as HS1, but the second HS
was wrongly labelled as HS2 because a positive peak occurred afterward (i.e., the actual HS should be
HS2’). Similarly, the third HS was wrongly labelled at HS3, while the correct one should be HS3’. To
correct these potential errors, the threshold THt

HS was adjusted as follows:

THt
HS ← THt

HS + n× T (2)

where n represents the number of positive peaks after the labelled HS, while T is the sampling time
(0.042 s). For instance, one positive peak (n=1) was evident between HS2 and the next TO, so that THt

HS
should be modified to THt

HS = 0.042 + 1× 0.042 = 0.084s. Similarly, one positive peak (n = 1) occurred
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between HS3 and the next TO, so that THt
HS should be adjusted to THt

HS = 0.084 + 1× 0.042 = 0.126
sec. The online adjustment of THt

HS is shown Figure 5b. Using the adjustment algorithm, the HS events
afterward were all correctly identified. Note that THt

HS was reduced by one sample if the HS was not
successfully identified.

Figure 5. Identification of the HS events. (a) Labelling of the HS events; (b) online adjustment of THt
HS.

3. The TO event

The TO event happens after the HS and normally with the minimum angular velocity within one
gait cycle. We defined two thresholds, THω

TO and THt
TO, to estimate the TO events. The gait event is

labelled as a TO if the following two conditions are satisfied:

(1) The angular velocity ω is less than THω
TO, i.e.,ω < THω

TO.

(2) The time interval between HS and TO, labelled as ∆tHS
TO, is greater than THt

TO, i.e., ∆tHS
TO > THt

TO.

Referring to Figure 4b, we set THω
TO = −35◦/s and let THt

TO adjustable to improve the estimation
accuracy. Because TO usually occurs with the last negative trough before the next MS, we adjust THt

TO
as follows:

THt
TO ← THt

TO +
1
2
(∆t− ∆tHS

TO) (3)

where ∆t represents the time interval between the labelled TO and the last negative trough before the next
MS. The initial value of THt

TO was set to THt
TO = 2×T = 0.084 s, i.e., the quickest TO should be at least

two samples after the HS. Figure 6a shows the identification of the TO events. First, TO1 was correctly
identified, but TO2 was labelled incorrectly in real time because a smaller trough (TO2’) appeared
before MS3. The identification of MS3 made us realize that the correct TO should be TO2’. Because
∆tHS

TO between HS2 and TO2 was measured as 0.126 s (three samples), while ∆t between TO2 and TO2’
was measured as 0.504 s (12 samples), we adjusted THt

TO to THt
TO = 0.084 + (0.504− 0.126)/2 = 0.273.

The online adjustment of THt
TO is shown in Figure 6b. Using the adjustment algorithm, the TO events

afterward were all correctly identified.
The system also calculated the average stride time of the previous three gait cycles and set it as an

upper limit for THt
HS and THt

TO.
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Figure 6. Identification of the TO events. (a) Labelling of the TO events; (b) online adjustment of THt
TO.

3.2. Implementation and Tests

The gait detection system applies these algorithms to detect the three gait events (MS, HS, and
TO) sequentially, as shown in Figure 7.

Figure 7. Flow chart of the gait detection algorithms.

We invited two stroke patients to participate in experiments. Their information is shown in
Table 2. Each patient walked about 600 steps in 12 min. The testing results are shown in Figure 8. First,
the gait of the healthy legs, as shown in Figure 8a,c, were regular and easy to identify. By contrast,
the gait of the paretic legs contained certain noises and vibration, as shown in Figure 8b,d. Second,
using our detection algorithms, the detection system could correctly identify both subjects’ gait events
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during walking. Third, the automatic adjustments of THt
HS and THt

TO are shown in Figure 9, where
the parameters on the paretic side were adjusted more frequently than on the healthy side because the
paretic legs tended to have abnormal tremble and vibration during walking.

Table 2. Information of the stroke subjects.

Subject Sex Age Height
(cm)

Weight
(kg)

Paretic
Side

MMSE
(score)

BS
(stage)

FAC
(stage)

P1 male 55 155 61 right 30 4 4
P2 male 55 180 75 right 30 4 4

MMSE: Mini-Mental State Examination; BS: Brunnstrom Stage; FAC: Functional Ambulation Category.

Figure 8. The detected gait events. (a) On the healthy leg of P1; (b) on the paretic leg of P1; (c) on the
healthy leg of P2; (d) on the paretic leg of P2.
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Figure 9. Parameter adjustment for gait detection. (a) On the healthy leg of P1; (b) on the paretic leg of
P1; (c) on the healthy leg of P2; (d) on the paretic leg of P2.

We checked the effectiveness of the gait detection system by comparing its results with a VZ4000
motion capture system [18]. The successful rate of the gait detection system is defined as follows:

Psuccess =
Nstep-detected

Nstep-total
× 100% (4)

where Nstep-total is the total steps obtained by the VZ4000 motion capture system, while Nstep-detected is
the number of detected HS by the proposed detection system in real time. We emphasized the detection
of the HS because the automatic trainer begins the intervention upon detecting HS, as described
in [16]. The walking patterns and gait parameters varied significantly in individuals. The proposed
algorithms can automatically adjust the parameters, as shown in Figure 9. We set the initial values of
these parameters based on the experimental data (see Figure 4b), and applied the algorithms to make
real-time adjustment of the parameters for individual users. Based on this automatic adjustment, the
successful rates are shown in Table 3, where the gait detection system achieved a successful rate of
more than 95%. That is, it can correctly identify the HS events for triggering the motor system to repeat
the therapists’ intervention, as introduced in Section 4.
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Table 3. Success rates of the gait detection algorithms.

Subject Left HS Right HS

P1 98.4925% 96.4942%
P2 95.4277% 99.2331%

HS: Heel Strike.

4. Motor Control System

The trainer is designed to repeat the therapists’ intervention using ropes. As observed in [16],
the therapists applied forces on the anterior superior iliac spine (ASIS) when they perceived the patients’
HS on the opposite sides. Therefore, the motor control system was designed to act as follows: pulling
the right (left) ASIS when detecting the left (right) HS. In addition, the intervention force patterns were
approximated as sinusoidal signals [30]. Therefore, we can control the motors to track the following
force commands when detecting the HS:

F(t) =
(Fmax − Fmin)

2
× sin(2π f t) +

(Fmax + Fmin)

2
(5)

where Fmax and Fmin, respectively, represent the maximum and minimum applied forces and f is the
intervention frequency. Table 4 illustrates the parameter settings for P2. Note that these parameters
can be varied for different individuals.

Table 4. Parameter settings for the motor control system.

Fmax Fmin f(Hz) Force Command (lb)

Left side 4.9876 lb 0.3739 lb 0.4994 2.30685× sin(2π× 0.4994t) + 2.68075
Right side 5.8170 lb 0.2223 lb 0.4994 2.79735× sin(2π× 0.4994t) + 3.01965

The block diagram of the motor control system is shown in Figure 10, where G(s) represents the
motor system. The identification and control design for the motors are illustrated in Appendix A.
We repeated the identification experiments ten times, while considering system variation and human
disturbances during NDT training. We then applied the gap metric to select the following nominal
plant for the control design:

G(s) =
−16.95s + 351.9

s2 + 38.9s + 114.7
(6)

The robust loop-shaping techniques were applied to design the following controller, as illustrated
in Appendix A, to control the motors for imitating the therapists’ intervention patterns:

C(s) =
1.671s + 10.5
0.03183s2 + s

·
−2.801s3

− 201.5s2
− 3991s− 14390

s3 + 103.9s2 + 7049s + 40320
(7)

We then designed the following pre-compensator Cpre(s) to amend the phase lag:

Cpre(s) =
0.143s + 0.4
0.0709s + 1

(8)

Figure 10. Block diagram of the motor control system.
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Before conducting clinical experiments, we tested the motor control system by attaching the ropes
to a subject. The detection system sent triggering signals to the motor control system when it detected
the HS events. The motors, when receiving the triggering signals, began to track the sinusoidal
commands then followed a minimum force of 1 lb to keep the ropes straight. Note that the motors
would follow a force command of 1 lb if the system failed to detect the HS events. This small force
would not harm the users. The testing results are shown in Figure 11, where the motors successfully
followed the force commands with a RMSE of 0.6464 lb. That is, the designed robust control can
effectively repeat the therapists’ intervention patterns even when user disturbances were introduced
during NDT training. Therefore, we invited five subjects to participate in experiments, as shown in the
next section.
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Figure 11. Force responses employing the motor control system.

5. Experimental Results

We invited five subjects, including three healthy subjects and two stroke patients, to test the mobile
trainer. The information of these subjects is illustrated in Tables 2 and 5. All subjects were informed of
the purpose of the study and signed the informed consent document approved by Human Subject
Research Ethics Committee of Institutional Review Board (IRB) [32] before participating. A rehab
gaiter was applied to the healthy subjects to limit the joint movement of one knee, so that they would
imitate the stroke gaits and receive training by the trainer. The stroke patients were selected based on
the following criteria: (1) a Brunnstrom Stage (BS) [33] of 3–5; (2) a Functional Ambulation Category
(FAC) [34] of 3–5; (3) ability to walk for more than 10 min with or without aid devices; (4) ability
to stand up by themselves with a handrail or other aids; and (5) a Mini-Mental State Examination
(MMSE) [35] score higher than 24.

Table 5. Information of the health subjects.

Subject Sex Age Height (cm) Weight (kg) Rehab Gaiter Applied Side

H1 male 24 170 70 right
H2 male 24 176 63 left
H3 male 25 165 60 right

Each subject received the tests by the following A-B-A procedures, where A, B, and A represent
before treatment, during treatment, and after treatment, respectively. The subjects first walked by
themselves for about 3 min (A), then received NDT training by the trainer for about 6 min (B), and
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finally walked by themselves for about 3 min (A). We recorded their gait data to analyze the effects of
the trainer intervention.

Because gait symmetry is critical for post-stroke walking rehabilitation, we defined the following
two performance indexes to evaluate the effectiveness of rehabilitation:

(1) Ratio of the swing time [36]: The ratio of the swing time is defined as follows [36]:

RSW =
TSW(P)

TSW(NP)
(9)

where TSW(P) and TSW(NP) represent the swing time on the paretic and non-paretic side,
respectively. The swing time is defined as a time interval from TO to the next HS on the same side.
The swing time of two legs is usually symmetrical for healthy persons, but tends to be uneven
for stroke patients because of hemiparalysis. Therefore, the rehabilitation training is said to be
effective if the swing time is more symmetric, i.e., RSW is closer to one [37].

(2) Asymmetry of the swing phase [38]: The asymmetry of the swing phase is defined as follows:

AsymSP =
PSP(P) − PSP(NP)

PSP(P)
× 100% (10)

where PSP(P) and PSP(NP) represent the proportion of the swing phase on the paretic side and
the non-paretic side, respectively. The proportion of the swing phase is defined as:

PSP =
TSW
Tgait

(11)

in which Tgait is the duration of one complete gait cycle, while TSW is the swing time of that gait
cycle. For healthy persons, their gaits are usually symmetric and the swing time takes about 40%
of the complete gaits on both sides. By contrast, stroke patients tend to have a deviation on the
paretic side because of hemiparalysis. Therefore, we can use AsymSP to evaluate the impacts of
the training. The rehabilitation training is said to be effective if AsymSP approaches zero.

We used the two indexes to analyze the testing subjects’ gaits at different stages. The experimental
results are shown in Figure 12. First, RSW tended to be a value of one and AsymSP tended to be a value
of zero at both the B and A stages. That is, the training has positive influences on these subjects and
the effects could endure after the treatments. Second, the statistical data of Figure 12 are illustrated in
Table 6, where the numbers in bold indicate improvements. Note that RSW almost exceeded a value of
one for all subjects because the paretic/restricted side tended to be weak and shortened the swing time
on the opposite side. Third, RSW was, in general, improved by the training, except for subject P2, who
already had a good recovery in gait symmetry, as indicated by RSW = 0.9880 at stage A. Therefore,
the treatment did not have significant effects on P2. Similarly, AsymSP was generally improved by the
training, again except for subject P2, who had already achieved AsymSP = −3.1273% at stage A. Lastly,
the results showed that the automatic trainer had a positive influence on almost all subjects, i.e., their
gait symmetry was generally improved by the mobile trainer.
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Figure 12. Cont.
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Figure 12. The ratio of the swing time RSW and the asymmetry of the swing phase AsymSP. (a) For
subject P1; (b) for subject P2; (c) for subject H1; (d) for subject H2; (e) for subject H3.

Table 6. Performance analyses of Figure 12.

Subject Index A B A

P1
RSW 1.3604 1.2481 1.2057

AsymSP(%) 25.1645 17.4078 13.7540

P2
RSW 0.9880 1.0187 1.0034

AsymSP(%) −3.1273 −0.9489 −6.0481

H1
RSW 1.7277 1.1087 1.0753

AsymSP(%) 38.1344 0.0879 1.3726

H2
RSW 1.2410 1.2045 1.1386

AsymSP(%) 14.0254 6.4010 6.2071

H3
RSW 1.3577 1.0928 1.0503

AsymSP(%) 27.7783 −2.0309 −2.2814

6. Conclusions

This paper has demonstrated a mobile trainer designed to help with rehabilitation training of
stroke patients. The device consisted of a detection system, a motor control system, and a movable
mechanism. First, the detection system was equipped with two measurement units and one data
logging unit. The former detected the subjects’ gait data, while the latter transmitted and recorded the
data. Gait estimation algorithms were then developed to identify three important gait events: MS, HS,
and TO. Second, we conducted clinical NDT training by therapists and recorded the data to describe
the therapists’ facilitation patterns. The motor control system was then designed to reconstruct these



Sensors 2020, 20, 3389 16 of 20

patterns. Lastly, the detection system and the motor control system were integrated on a movable
mechanism, so that the users can move at their own preferred speeds during the training. We conducted
experiments and defined two performance indexes to evaluate the effects of the proposed trainer.
Based on the results, the automatic trainer was shown to improve the subjects’ walking ability. In the
current study, we set strict criteria in recruiting subjects who should be in stable states of stroke and
have no other musculoskeletal problems in order to reduce the risk of injuries during the experiments.
In the future, we plan to invite more stroke subjects with varieties of gait deficits to participate in more
ambulation training to evaluate the long-term rehabilitation effects.
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Appendix A. Robust Loop-Shaping Design for the Motor Control System

The motor control system is represented as in Figure 10, where the plant G(s) was obtained by
closed-loop identification [39]. We set C(s) = 1 and Cpre(s) = 1 and applied a swept sinusoidal signal
to the input r with a magnitude of 1~6 lb at the frequency range of 0.01–3 Hz. Then we measured u
and y to derive the model Tu→y by the MATLAB command tfest. Considering system uncertainties,
we repeated the experiments ten times and obtained the following transfer functions:

Gi(s) = Ti
u→y, i = 1, 2 . . . , 10 (A1)

where Gi represented the model derived from the i-th experiment. These signals and the corresponding
Bode plots of Gi(s) are shown in Figure A1.

Figure A1. Cont.
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Figure A1. System identification. (a) input r; (b) model input u; (c) model output y; (d) Bode plots.

From Figure A1d, we can note the model variation, which might be caused by system nonlinearities
and operation conditions. Because robust control can cope with system uncertainties, we applied
robust control techniques to guarantee system stability and performance. Suppose a nominal plant G
with the following left coprime factorization (LCF) [40]:

G = M̃−1Ñ (A2)

where M̃, Ñ ∈ RH∞ and M̃M̃∗ + ÑÑ∗ = I. Assume a perturbed plant G∆ can be represented as follows:

G∆ = (M̃ + ∆M̃)
−1
(Ñ + ∆Ñ) (A3)

where ∆M̃, ∆Ñ ∈ RH∞. The gap between the nominal plant and the perturbed plant can be defined as:

the smallest value of
∥∥∥∥[ ∆Ñ ∆M̃

]∥∥∥∥
∞
< ε which perturbs G into G∆ , denoted by δ(G, G∆). Therefore,

we can select the nominal plant from the ten transfer functions by the following equation:

G = arg
{

min
G

max
Gi

δg (G, Gi)

}
, ∀Gi

= G5(s) = −16.95s+351.9
s2+38.9s+114.7

(A4)

which gave δ(G, Gi) ≤ 0.1140. The nominal plant was set to minimize the maximum gaps between
plants. The gap can be regarded as the maximum model variation during operations.

The closed-loop system with the controller K and the perturbed plant G∆ is shown in Figure A2a,
which can be arranged as in Figure A2b. From the Small Gain Theorem [41,42], the closed loop system

is internally stable for all perturbation with
∥∥∥∥[ ∆Ñ ∆M̃

]∥∥∥∥
∞
≤ ε if and only if:∥∥∥∥∥∥

[
K
I

]
(I −GK)−1M̃−1

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
[

K
I

]
(I −GK)−1

[
I G

]∥∥∥∥∥∥
∞

<
1
ε

(A5)

Hence, we can define the stability margin b(G, K) as:

b(G, K) =

∥∥∥∥∥∥
[

K
I

]
(I −GK)−1

[
I G

]∥∥∥∥∥∥
∞

−1

(A6)

so that the system is internally stable for all uncertainty with
∥∥∥∥[ ∆Ñ ∆M̃

]∥∥∥∥
∞
≤ ε if and only if

b(G, K) > ε.
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Figure A2. Robust stability analysis. (a) closed-loop system with the perturbed plant; (b) rearrangement
for the Small-Gain theorem.

System performance can be considered by loop-shaping techniques [43,44] with suitable weighting
functions, based on the following principles:

(1) increasing system gains at the low frequency for disturbance rejection;
(2) decreasing system gains at high frequency for noise attenuation;
(3) limiting the slope of the magnitude plot less steep than –40 dB/decade around cross-over frequency

for stability.

We finally selected the following weighting function by iteratively adjusting the weighting
function and verifying the system performance:

W(s) =
1.671s + 10.5
0.03183s2 + s

(A7)

The Bode plot of the shaped plant is shown in Figure A3a. The corresponding robust controller
was designed as follows:

K∞(s) =
−2.801s3

− 201.5s2
− 3991s− 14390

s3 + 103.9s2 + 7049s + 40320
(A8)

with stability margin b(WG, K∞) = 0.3362, which was greater than the system gap of 0.1140 and
guaranteed system stability during operation. The Bode plots of the plants are shown in Figure A3.
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Figure A3. Bode plots for control design. (a) Open-loop Bode plots for robust control design;
(b) Closed-loop Bode plots for pre-compensator design.
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The designed weighted robust controller K = WK∞ was implemented to control the motor system.
The Bode plot of the closed-loop system is shown in Figure A3b, where the phase-lag (e.g., 42◦ at the
frequency of 1 Hz) might cause unsynchronized responses during the training. Therefore, we designed
the following phase-lead pre-compensator (see Figure 10) to compensate this phase lag:

Cpre(s) =
0.143s + 0.4
0.0709s + 1

(A9)

which gave a phase lead of about 42◦ at the frequency of 1 Hz, so that the closed-loop responses will
not have phase delay.
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