Proof-of-Principle of a Cherenkov-Tag Detector Prototype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cherenkov-Tag Prototype Design and Construction
2.2. SiPMs Front-End Electronics
2.3. Test Setup and Read-Out Electronics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Grieder, P.K.F. Cosmic Rays at Earth; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Longair, M.S. High Energy Astrophysics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Nagamine, K. Introductory Muon Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- George, E.P. Cosmic rays measure overburden of tunnel. Commonw. Eng. 1955, 455–457. [Google Scholar]
- Alvarez, L.W.; Anderson, J.A.; El Bedwei, F.; Burkhard, J.; Fakhry, A.; Girgis, A.; Goneid, A.; Hassan, F.; Iverson, D.; Lynch, G.; et al. Search for Hidden Chambers in the Pyramids. Science 1970, 167, 832–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morishima, K.; Kuno, M.; Nishio, A.; Kitagawa, N.; Manabe, Y.; Moto, M.; Takasaki, F.; Fujii, H.; Satoh, K.; Kodama, H.; et al. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 2017, 552, 386–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagamine, K.; Iwasaki, M.; Shimomura, K.; Ishida, K. Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1995, 356, 585–595. [Google Scholar] [CrossRef]
- Tanaka, H.; Nagamine, K.; Kawamura, N.; Nakamura, S.N.; Ishida, K.; Shimomura, K. Development of a two-fold segmented detection system for near horizontally cosmic-ray muons to probe the internal structure of a volcano. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 507, 657–669. [Google Scholar] [CrossRef]
- Tanaka, H.K.M.; Nakano, T.; Takahashi, S.; Yoshida, J.; Niwa, K. Development of an emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of a volcano, Mt. Asama. Nucl. Instrum. Methods Phys. Res. A 2007, 575, 489–497. [Google Scholar] [CrossRef]
- Tanaka, H.K.M.; Nakano, T.; Takahashi, S.; Yoshida, J.; Ohshima, H.; Maekawa, T.; Watanabe, H.; Niwa, K. Imaging the conduit size of the dome with cosmic-ray muons: The structure beneath Showa-Shinzan Lava Dome, Japan. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Oláh, L.; Tanaka, H.K.; Ohminato, T.; Varga, D. High-definition and low-noise muography of the Sakurajima volcano with gaseous tracking detectors. Sci. Rep. 2018, 8, 3207. [Google Scholar] [CrossRef] [Green Version]
- Lesparre, N.; Marteau, J.; Déclais, Y.; Gibert, D.; Carlus, B.; Nicollin, F.; Kergosien, B. Design and Operation of a Field Telescope for Cosmic Ray Geophysical Tomography. Geosci. Instrum. Methods Data Syst. 2012, 1. [Google Scholar] [CrossRef] [Green Version]
- Jourde, K.; Gibert, D.; Marteau, J.; de Bremond d’Ars, J.; Gardien, S.; Girerd, C.; Ianigro, J.C.; Carbone, D. Experimental detection of upward going cosmic particles and consequences for correction of density radiography of volcanoes. Geophys. Res. Lett. 2013, 40, 6334–6339. [Google Scholar] [CrossRef] [Green Version]
- Cârloganu, C.; Niess, V.; Béné, S.; Busato, E.; Dupieux, P.; Fehr, F.; Gay, P.; Miallier, D.; Vulpescu, B.; Boivin, P.; et al. Towards a muon radiography of the Puy de Dôme. Geosci. Instrum. Methods Data Syst. 2013, 2. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, F.; Anastasio, A.; Basta, D.; Bonechi, L.; Brianzi, M.; Bross, A.; Callier, S.; Caputo, A.; Ciaranfi, R.; Cimmino, L.; et al. The MU-RAY project: Detector technology and first data from Mt. Vesuvius. J. Instrum. 2014, 9, C02029. [Google Scholar] [CrossRef]
- Bonechi, L.; Ambrosino, F.; Cimmino, L.; D’Alessandro, R.; Macedonio, G.; Melon, B.; Mori, N.; Noli, P.; Saracino, G.; Strolin, P.; et al. The MURAVES project and other parallel activities on muon absorption radiography. EPJ Web Conf. 2018, 182, 02015. [Google Scholar] [CrossRef]
- Varga, D.; Nyitrai, G.; Hamar, G.; Oláh, L. High Efficiency Gaseous Tracking Detector for Cosmic Muon Radiography. Adv. High Energy Phys. 2016, 2016. [Google Scholar] [CrossRef]
- Tioukov, V.; Alexandrov, A.; Bozza, C.; Consiglio, L.; D’Ambrosio, N.; De Lellis, G.; De Sio, C.; Giudicepietro, F.; Macedonio, G.; Miyamoto, S.; et al. First muography of Stromboli volcano. Sci. Rep. 2019, 9, 6695. [Google Scholar] [CrossRef] [PubMed]
- La Rocca, P.; Lo Presti, D.; Riggi, F. Cosmic Ray Muons as Penetrating Probes to Explore the World around Us. In Cosmic Rays; IntechOpen: London, UK, 2018. [Google Scholar]
- Bonechi, L.; D’Alessandro, R.; Giammanco, A. Atmospheric muons as an imaging tool. Rev. Phys. 2020, 5, 100038. [Google Scholar] [CrossRef]
- Lo Presti, D.; Gallo, G.; Bonanno, D.L.; Bongiovanni, D.G.; Longhitano, F.; Reito, S. Feasibility Study of a New Cherenkov Detector for Improving Volcano Muography. Sensors 2019, 19, 1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Presti, D.; Gallo, G.; Bonanno, D.L.; Bonanno, G.; Bongiovanni, D.G.; Carbone, D.; Ferlito, C.; Immè, J.; La Rocca, P.; Longhitano, F.; et al. The MEV project: Design and testing of a new high-resolution telescope for muography of Etna Volcano. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 904, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Gallo, G.; Lo Presti, D.; Bonanno, D.L.; Bonanno, G.; Bongiovanni, D.G.; Carbone, D.; Ferlito, C.; Immé, G.; La Rocca, P.; Longhitano, F.; et al. Improvements of data analysis and self-consistent monitoring methods for the MEV telescope. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019. [Google Scholar] [CrossRef]
- Bonanno, D.; Gallo, G.; La Rocca, P.; Longhitano, F.; Lo Presti, D.; Pinto, C.; Riggi, F. Measurement of nearly horizontal cosmic muons at high altitudes with the MEV telescope. Eur. Phys. J. Plus 2019, 134, 281. [Google Scholar] [CrossRef]
- Saracino, G.; Amato, L.; Ambrosino, F.; Antonucci, G.; Bonechi, L.; Cimmino, L.; Consiglio, L.; D.’Alessandro, R.; De Luzio, E.; Minin, G.; et al. Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples). Sci. Rep. 2017, 7, 1181. [Google Scholar] [CrossRef] [PubMed]
- Metal Velvet Coating | Optical Black Coating—Acktar Black Coatings. Available online: https://www.acktar.com/product/metal-velvet-2/ (accessed on 20 April 2020).
- WACKER SilGel® 612 A/B | Silicone Gels | Wacker Chemie AG. Library Catalog. Available online: www.wacker.com (accessed on 20 April 2020).
- Lo Presti, D.; Agodi, C.; Bonanno, D.; Bongiovanni, D.; Carbone, D.; Cappuzzello, F.; Cavallaro, M.; Finocchiaro, P.; Geronimo, G.D.; Gallo, G.; et al. Challenges for high rate signal processing for the NUMEN experiment. J. Phys. Conf. Ser. 2018, 1056, 012034. [Google Scholar] [CrossRef] [Green Version]
- sbRIO-9651—National Instruments. Available online: http://www.ni.com/en-gb/support/model.sbrio-9651.html (accessed on 20 April 2020).
- Bonanno, D.; Lo Presti, D.; Bongiovanni, D.; Gallo, G.; Longhitano, F.; Reito, S. The read-out and data transmission for the MAGNEX focal plane detector for the NUMEN project. J. Phys. Conf. Ser. 2018, 1056, 012006. [Google Scholar] [CrossRef] [Green Version]
- Gómez, S.; Gascón, D.; Fernández, G.; Sanuy, A.; Mauricio, J.; Graciani, R.; Sanchez, D. MUSIC: An 8 channel readout ASIC for SiPM arrays. In Proceedings of the Optical Sensing and Detection IV, San Diego, CA, USA, 28 August–1 September 2016; Volume 9899, p. 98990G. [Google Scholar] [CrossRef]
SDT [a.u.] | [] | [] |
---|---|---|
290 | 586,911 | 141,961 |
280 | 59,084 | 96,248 |
270 | 97,529 | 94,768 |
260 | 87,791 | 96,634 |
255 | 149,435 | 139,809 |
254 | 97,123 | 67,795 |
253 | 184,055 | 324,834 |
SDT | RateUP | trig-ext-coinUP | RateDOWN | trig-ext-coinDOWN | Correctly-tag |
---|---|---|---|---|---|
[a.u.] | [] | [%] | [] | [%] | [%] |
290 | |||||
280 | |||||
270 | |||||
260 | |||||
255 | |||||
254 | |||||
253 |
SDT | RateUP | trig-ext-coinUP | RateDOWN | trig-ext-coinDOWN | Correctly-tag |
---|---|---|---|---|---|
[a.u.] | [] | [%] | [] | [%] | [%] |
290 | |||||
280 | |||||
270 | |||||
260 | |||||
255 | |||||
254 | |||||
253 |
SDT | RateUP | trig-ext-coinUP | RateDOWN | trig-ext-coinDOWN | Correctly-tag |
---|---|---|---|---|---|
[a.u.] | [] | [%] | [] | [%] | [%] |
290 | |||||
280 | |||||
270 | |||||
260 | |||||
255 | |||||
254 | |||||
253 |
SDT | RateUP | trig-ext-coinUP | RateDOWN | trig-ext-coinDOWN | Correctly-tag |
---|---|---|---|---|---|
[a.u.] | [] | [%] | [] | [%] | [%] |
290 | |||||
280 | |||||
270 | |||||
260 | |||||
255 | |||||
254 | |||||
253 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, G.; Lo Presti, D.; Bonanno, D.L.; Bonanno, G.; La Rocca, P.; Reito, S.; Riggi, F.; Romeo, G. Proof-of-Principle of a Cherenkov-Tag Detector Prototype. Sensors 2020, 20, 3437. https://doi.org/10.3390/s20123437
Gallo G, Lo Presti D, Bonanno DL, Bonanno G, La Rocca P, Reito S, Riggi F, Romeo G. Proof-of-Principle of a Cherenkov-Tag Detector Prototype. Sensors. 2020; 20(12):3437. https://doi.org/10.3390/s20123437
Chicago/Turabian StyleGallo, Giuseppe, Domenico Lo Presti, Danilo Luigi Bonanno, Giovanni Bonanno, Paola La Rocca, Santo Reito, Francesco Riggi, and Giuseppe Romeo. 2020. "Proof-of-Principle of a Cherenkov-Tag Detector Prototype" Sensors 20, no. 12: 3437. https://doi.org/10.3390/s20123437
APA StyleGallo, G., Lo Presti, D., Bonanno, D. L., Bonanno, G., La Rocca, P., Reito, S., Riggi, F., & Romeo, G. (2020). Proof-of-Principle of a Cherenkov-Tag Detector Prototype. Sensors, 20(12), 3437. https://doi.org/10.3390/s20123437