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Abstract: Ophthalmological analysis plays a vital role in the diagnosis of various eye diseases,
such as glaucoma, retinitis pigmentosa (RP), and diabetic and hypertensive retinopathy. RP is
a genetic retinal disorder that leads to progressive vision degeneration and initially causes night
blindness. Currently, the most commonly applied method for diagnosing retinal diseases is optical
coherence tomography (OCT)-based disease analysis. In contrast, fundus imaging-based disease
diagnosis is considered a low-cost diagnostic solution for retinal diseases. This study focuses on
the detection of RP from the fundus image, which is a crucial task because of the low quality of
fundus images and non-cooperative image acquisition conditions. Automatic detection of pigment
signs in fundus images can help ophthalmologists and medical practitioners in diagnosing and
analyzing RP disorders. To accurately segment pigment signs for diagnostic purposes, we present an
automatic RP segmentation network (RPS-Net), which is a specifically designed deep learning-based
semantic segmentation network to accurately detect and segment the pigment signs with fewer
trainable parameters. Compared with the conventional deep learning methods, the proposed method
applies a feature enhancement policy through multiple dense connections between the convolutional
layers, which enables the network to discriminate between normal and diseased eyes, and accurately
segment the diseased area from the background. Because pigment spots can be very small and consist
of very few pixels, the RPS-Net provides fine segmentation, even in the case of degraded images,
by importing high-frequency information from the preceding layers through concatenation inside and
outside the encoder-decoder. To evaluate the proposed RPS-Net, experiments were performed based
on 4-fold cross-validation using the publicly available Retinal Images for Pigment Signs (RIPS) dataset
for detection and segmentation of retinal pigments. Experimental results show that RPS-Net achieved
superior segmentation performance for RP diagnosis, compared with the state-of-the-art methods.

Keywords: deep learning; retinal disease; retinitis pigmentosa; semantic segmentation; RPS-Net

1. Introduction

Retina is among the highest metabolically active tissues in the body, and different diseases can
cause structural changes in the retina. These changes can be identified for diagnostic purposes. Retinal
imaging by optical coherence tomography (OCT) and fundus imaging can help in the analysis of eye
diseases. These diseases include diabetic retinopathy, macular degeneration, retinitis pigmentosa (RP),
macular edema, macular bunker, and glaucoma [1]. Among these diseases, RP is a rare eye disease
with a prevalence of 1/4000 which is caused by degeneration of the cones and rods by a gene mutation.
An early clinical feature of RP is night blindness, which is later converted to the loss of peripheral
vision and finally can lead to complete blindness [2]. A retinal image of RP shows pigmented areas on
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the retina posterior which can increase and migrate with symptoms. The RP state can be analyzed
using OCT and fundus imaging [3]. RP diagnosis and growth rate determination are very important
for early treatment. Studies have focused on the growth rate of RP for stem cell therapy and surgery
for RP [4]. Monitoring RP progress through retinal imaging morphology and genotyping could benefit
gene therapy [5]. Learning-based methods using deep/machine learning have attracted attention for
the screening of various retinal diseases and for abnormality detection for disease analysis. These
diseases can be identified through classification, or can be segmented for deep analysis [6]. Glaucoma
and related diseases can be classified using deep learning methods that can discriminate between
normal and diseased eyes from large amounts of data [7]. Considering the importance of segmentation
of retinal diseases, many researchers have focused on retinal vessels, optical disc, optical cup, optic
nerve, and disease spot segmentation for analysis of different diseases [8–14]. Clinically advanced
solutions have been proposed to detect diabetic and hypertensive retinopathy by deep learning-based
segmentation [15]. Considering RP, medical researchers are focusing on the classification of RP
severity using scoring criteria based on visual acuity, visual field width, and ellipsoid zone width.
A score between 0–15 describes the severity of the RP based on the results of imaging findings [16].
Researchers are currently focusing on developing low-cost fundus imaging solutions for retinal disease
identification and analysis. These solutions can then be implemented on mobile platforms for clinical
purposes [17]. Artificial intelligence-based algorithms and semantic segmentation are already helping
the healthcare sector in detection and diagnosis of various retinal and other diseases [18–25]. It is now
possible to create a low-cost fundus image solution for the detection and segmentation of pigment signs
for RP analysis. Very few studies have focused on RP detection using fundus images. To implement
a robust system for RP detection and accurate segmentation of pigment signs (PS), we propose an
effective deep learning-based RP segmentation network (RPS-Net). RPS-Net can accurately detect
the PS deposited on the retina due to cone degeneration. In addition, RPS-Net accurately segments
these pigments for analysis and to determine the growth rate of the disease. Unlike conventional deep
learning-based segmentation networks, RPS-Net focuses on feature importation, which ensures the
detection of PS even with few pixels. Our proposed RPS-Net is a fully convolutional network that
avoids the use of fully connected layers, thus allowing the network to utilize less trainable parameters,
and numerous dense paths enable the network to provide fine segmentation performance without
prior preprocessing.

Unlike the other OCT-based RP detection algorithms, this study focuses on fundus imaging for
RP analysis. The RPS-Net provides fine segmentation with inferior quality fundus images to aid
the ophthalmologist or medical practitioner in the detection and analysis of growth in RP patients.
Compared to available methods, this study is novel in the following three ways:

- RPS-Net avoids the postprocessing step to enhance segmentation results.
- RPS-Net utilizes deep-feature concatenation inside and outside of the encoder-decoder to enhance

the quality of the feature.
- For fair comparison with other research results, the trained RPS-Net models and algorithms are

made publicly available through [26].

The paper is structured as follows: Section 2 covers the related works. Section 3 describes the
methodology of the proposed system and structure of the RPS-Net. Section 4 provides experimental
visual results and evaluation. Section 5 elaborates the discussion on the clinical usage of the proposed
method. Section 6 presents the conclusive remarks and the future directions of the proposed work.

2. Related Works

Segmentation of retinal images is a well-known method for diagnosis and analysis of several
diseases. Specifically, with respect to RP, few researchers have focused on segmentation of fundus
images. A low-cost solution based on a learning-based method can produce good results with
few images. Researchers have focused on different spot segmentation techniques of retinal images.
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The retinal image segmentation of fundus images is explained using two major groups of methods:
handcrafted-feature and deep-feature-based methods.

2.1. Retinal Image Segmentation Based on Handcrafted Features

Considering the detection of retinal disease landmarks, Sánchez et al. proposed a novel method
for hard exudate segmentation based on color information using Fisher’s linear discriminant model
with prior preprocessing of the image [27]. Zhang et al. presented a specific preprocessing method
that performs normalization and denoising, where mathematical morphology is used for exudate
detection [28]. Welfer et al. presented a coarse-to-fine strategy for detection of the hard exudates
based on mathematical morphology, thresholding, and maximal transform [29]. Considering the
retinal pigment epithelium, Götzinger et al. used intensity-based segmentation based on polarization;
this scheme is implemented on polarization-sensitive optical coherence tomography (PS-OCT) [30].
Yang et al. used dual-scale gradient information combined with a Canny edge detector for the inner
and outer segments (IS/OS) in OCT images of RP patients [31]. This study focuses on the detection of
RP in fundus images, which is underrepresented by previous studies. Das et al. [32] considered the
fundus images for RP analysis using handcrafted local features. They extracted low and high-intensity
levels from red and green channels, and the final images with microaneurysms and RP signs were
segmented using a Sobel operator and interpolation of the original image. Considering the retinal
pigment sign segmentation, Ravichandran et al. utilized the RIPS dataset. The mean filter was used
for shade correction, and the contrast limited adaptive histogram equalization (CLACHE) was applied
to enhance the image, where the watershed transform was used to detect the pigment deposits on the
fundus images [33].

2.2. Retinal Image Segmentation Based on Deep-Feature (CNN)

Among the deep learning methods for retinal disease segmentation, Guo et al. used deep
learning-based methods of DeepLab v2 and a fully convolutional residual network in a combination
of bin loss function for hard exudate segmentation [34]. Mo et al. considered the cascaded residual
network for exudate segmentation to recognize diabetic macular edema [35]. Similarly, the exudate
landmarks were segmented by Prentašić et al. using the convolutional neural network; to segment
other structures, the outputs of vessels and the optic disc were combined with exudates [36]. Tan et al.
proposed a 10-layered convolutional neural network which could automatically detect the exudates in
a multiclass manner for hemorrhages and microaneurysms in the retinal images. Image normalization
was used before training and testing [37]. Many disease classification and detection methods related
to the lesion, vessels, optical disc, and optical cup based on artificial intelligence were discussed
by [38]. Chudzik et al. presented a fully convolutional deep learning method for microaneurysm
detection. They used the patch-based classification, in which the required patches were generated
after preprocessing with the green channel [39]. Phasuk et al. proposed an automatic glaucoma
screening method, the approach used several classification networks and the output of those networks
are combined to provide a simple artificial neural network (ANN) to provide the final prediction
for the screening of the disease [40]. Christopher et al. used a deep neural network approach to
predict the glaucomatous visual field damage in the OCT images, for this purpose they used ResNet-50
architecture with pretrained weights from ImageNet, where preprocessing is also used prior to the
training of the network [41]. Martin et al. detected glaucoma eye diseases by means of computer
aided diagnosis, they combined several networks trained for classification and segmentation tasks
for glaucoma and these relevant structures and morphological features are combined to interpret the
glaucoma disease on mobile platforms [42]. Fu et al. segmented the optical disc and optical cup to
compute the cup to disc ratio (CDR) which is used to screen for glaucoma disease. In detail, they used
a U-shaped network for the joint segmentation of OC and OD in a multiclass scenario with the help of
multi-label loss functions [43]. Wang et al. also presented a glaucoma screening method using OC and
OD segmentation by adversarial learning. Therefore, they used special domain adaption to generate
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the smooth segmentation and further developed the patch-based fine-grained discrimination on local
segmentation details for effective performance [44]. The more detailed eye disease detection in fundus
images are effectively discussed by Islam et al. [45]. As described in Section 2.1, most researchers
have focused on OCT images for RP. Because of the unavailability of the public dataset for RP and
pigment landmarks, few researchers have focused on learning-based methods for retinal pigment
segmentation with fundus images for RP analysis. Brancati et al. [46] innovatively constructed the
Retinal Images for Pigment Signs (RIPS) dataset for segmentation of retinal pigments and detection
of RP in fundus images. They provided baseline learning-based methods for the researchers, which
contributed to RP analysis. They used a three step method to detect the pigment signs. In the first step,
preprocessing is applied to correct the lighting and noise effects, illumination correction is carried out
by shade correction method, and high frequencies are handled edge preserving smoothing. In the
second step, watershed transform is used to divide the image into homogenous components after
changing the preprocessed image into Lab color space, where the number of regions is limited by the
Otsu multi-level method and the region merging process is performed. In the third step, AdaBoost and
Random Forest classifiers are used to classify the selected regions in the previous steps. The strength
of this method is the simplicity of the ensemble learning and the advantage over the classification
trees. As false negatives are more important in medical applications, so the Random Forest classifier
shows more false negatives compared to AdaBoost [46]. The same group subsequently enhanced the
accuracy further by using a modified U-Net deep learning model on patches [47]. Therefore, the two
blocks removed from the original five U-Net blocks and the number of filters is halved. Avoiding the
preprocessing schemes and a substantial increase in F-measure compared to the machine learning
method are the strength of this method. Considering the F-measure, this method improved overall
segmentation performance, but as false negatives (represented by sensitivity) are considered more
critical than false positive, this method [47] has higher false negatives (low sensitivity) compared to
Random Forest and AdaBoost presented in [46].

Table 1 shows the strengths and weaknesses of the retinal pigment segmentation in contrast with
RPS-Net for RP analysis.

Table 1. Comparison of the available methods and RPS-Net for retinal pigment segmentation.

Type Methods Strength Limitation

RP by
handcrafted features

Das et al. [32] Uses simple image
processing schemes. Preprocessing is required.

Ravichandran et al. [33] Watershed transform gives better
region approximation.

The handcrafted feature-based
method performance is subject to

preprocessing by CLACHE.

RP by learned features

Brancati et al. [46]
The simple machine learning
classifier are used, AdaBoost
provides less false negatives

The classification accuracy of the
classifier is based on the,

denoising, shade correction, etc.

Brancati et al. (Modified
U-Net) [47]

Subsequently improved
segmentation performance by

modified U-Net model, and 15%
improvement in F-measure

compared to [46].

The method performance is
affected by more false negatives
(represented by sensitivity of the

method) compared to [46].

RPS-Net(Proposed)

Utilizes deep concatenation inside
encoder-decoder, and

encoder-to-decoder (outer) for
immediate feature transfer and
enhancement, with substantial

reduction in false negatives.

Training for fully convolutional
network requires a large amount

of data by augmentation.

3. Proposed Method

3.1. Overview of the Proposed Architecture

Unlike image classification networks, RPS-Net is a fully convolutional network that does not
include a fully connected layer. RPS-Net provides accurate pixel-wise classification and marks the
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detected pixel using a pixel classification layer. Because the proposed method takes advantage of
deep-feature concatenation for both the encoder and decoder, the network can import and concatenate
high-frequency information from different layers. Because of multiple dense connections, RPS-Net is
powerful in the segmentation of PS in intense scenarios. The RPS-Net takes the original fundus image
as direct input into the RPS-Net without any preprocessing, and it gives the retinal pigment mask,
which is detected as output without postprocessing.

3.2. Retinal Pigment Sign Segmentation Using RPS-Net

The classification task is the basis for computer vision tasks like detection, segmentation,
et cetera. To accomplish the classification task, the neural networks have to become deeper with many
convolutional layers. These convolutional layers tend to lose spatial information in each operation,
which is logically called the vanishing gradient problem [48]. The most well-known approach to
deal with the vanishing gradient problem is feature empowerment using ResNet [49], which when
applied skips connections based on summation, thereby creating a valuable performance increment.
However, the residual networks can still face the information flow impedance problem, which can
be alleviated using DenseNet, which provides dense connectivity by deep-feature concatenation [50].
DenseNet outperforms the well-known networks for classification because of the reduced number of
parameters [50]. RPS-Net adopts a similar deep-feature concatenation method using dense connections.
As the retinal pigments are very small, dealing with classes with a low number of pixels is a difficult
task. The segmentation task is accomplished on the basis of three techniques. First, feature loss by
convolution should be compensated within the dense block by deep-feature concatenation. Second,
these immediate enriched features should be transferred from the encoder to the decoder by the same
deep-feature concatenation. Third, because convolutions cause loss of information in a combination
of pooling operations in each block, the number of convolutions should be lower than those of
conventional networks. Figure 1 represents the deep-feature concatenation layout for the candidate
encoder-decoder block. The three strategies discussed above are implemented in the design of RPS-Net
which let it perform segmentation with just 10.5 million trainable parameters.
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Figure 1. Schematic diagram of retinitis pigmentosa segmentation network (RPS-Net) deep-feature concatenation.

The quality of the retinal images taken from the fundus camera is usually compromised because
of image acquisition conditions. Figure 2 represents the complete architecture with dense feature
implementation policy by concatenation. Each encoder and each decoder comprise four dense blocks
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with two convolutional layers in each block. As shown in Figure 1 which shows the candidate dense
block, each encoder block (left of Figure 1) receives an input feature FI and each decoder block receives
an input feature Gi. The convolutional operation from the first convolution of the encoder ECi-A gives
the resultant feature T(Fi), which is provided to the second convolution of the encoder ECi-B which
alters the feature to T∼(Fi). The feature T∼(Fi) is obtained after two convolutional operations, and the
spatial loss is recovered by deep-feature concatenation of these two convolutional layers. The dense
feature Pi and the concatenated feature of the outputs (T(Fi) and T∼(Fi)) of ECi-A and ECi-B are given
as follows:

Pi = T(Fi)∗T∼(Fi) (1)

Here, Pi is the dense feature after concatenation of T(Fi) and T∼(Fi), where “*” represents the
depth-wise concatenation. The number of channels for the Pi feature is increased, which can cause
memory consumption. Therefore, Bottlenecki limits the channels after the batch normalization and
ReLU operation. The controlled feature is ∆Pi, which is given by the following equation:

∆Pi = ∆[T(Fi)∗T∼(Fi)] (2)

Here, “∆“ represents the batch normalization and ReLU operation in a combination of channel
limitation by the BottleneckI layer, and ”*“ represents the depth-wise concatenation. Similarly, for the
decoder (right of Figure 1), the convolutional operation from the first convolution of the decoder DCj-A
gives the resultant feature T(Gi), which is provided to the second convolution of the decoder DCj-B,
which alters the feature to T∼(Gi). The feature T∼(Gi) is obtained after two convolutional operations,
and the spatial loss is recovered by deep-feature concatenation of these two convolutional layers. In
addition, the third feature T(Fi) is imported from the encoder by the external dense path. Therefore,
the dense feature Qi is an enriched feature by concatenation of three features T(Gi), T∼(Gi), and T(Fi)

of the outputs DCi-A, DCi-B, and ECi-A, which are given as follows:

Qi = T(Gj)∗T∼(Gi)∗T(Fi) (3)

Here Qi is the dense feature after concatenation of three features T(Gj), T∼(Gi), and T(Fi),
where “*” represents the depth-wise concatenation. The number of channels for the Qi feature are
increased, which can cause memory consumption. Therefore, BottleneckI limits the channels after batch
normalization and ReLU operation. The controlled feature is ∆Qi, given by the following equation:

∆Qi = ∆[T(Gj)∗T∼(Gi)∗T(Fi)] (4)

Here, “∆” represents the batch normalization and ReLU operation in a combination of channel
limitation by the Bottleneckj layer, and ”*“ represents the depth-wise concatenation. Both ∆Pi and ∆Qi
features are empowered by dense connectivity. However, ∆Qi is a resultant feature of concatenation of
three features, which include the important edge information enriched feature T(Fi) which lets the
RPS-Net perform fine segmentation without prior preprocessing.

There are three design concerns for RPS-Net: First, to ensure the segmentation of the small object
dense block level, feature enhancement is performed, which is shown for each dense block in Figure 3
(encoder side) and represented by Pi in Figure 1; Second, importation of immediate features from
the initial dense block to decoder enables further enhancement before pixel classification, which is
shown in Figure 2 (decoder side) and represented by Qi in Figure 1; Third, the overall reduction of
the convolutional layers and pooling layers is implemented using four dense blocks for each encoder
and decoder, respectively. The RPS-Net maintains the feature map size before upsampling at 18 × 25
for an input image of 400 × 300, which is sufficient to represent the valuable features for retinal
pigment segmentation.

Considering the key architectural differences from semantic segmentation architectures of
SegNet [51], OR-Skip-Net [52], Vess-Net [15], U-Net [53], Modified U-Net [46], Dense-U-Net [54],
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H-Dense-U-Net [54], and U-Net++ [55]. The RPS-Net follows the very simple architecture of
two convolutional layers in each dense block (for both encoder and decoder). The features from
these two convolutional layers in each dense block are concatenated locally inside that specific
block (connectivity-1). Additionally, from each first convolutional layer the feature of each encoder
block is directly provided to the corresponding decoder convolution (connectivity-2) as shown in
Figure 2. The local feature concatenation (connectivity-1) combines two inputs, where outer feature
concatenation (connectivity-2) combines three inputs. Table 2 presents the potential architectural
differences for the proposed RPS-Net in contrast to existing convolutional neural networks such as,
SegNet [51], OR-Skip-Net [52], Vess-Net [15], U-Net [53], Modified U-Net [46], Dense-U-Net [54],
H-Dense-U-Net [54], and U-Net++ [55]. Note that these mentioned networks are used in different
domains of computer vision applications.Sensors 2020, 20, 3454 8 of 20 
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Table 2. Architectural differences between RPS-Net and existing deep learning models.

Method Other Architectures RPS-Net

SegNet [51]

Collectively, the network has 26 convolutional layers. Total 16 convolutional layers (3 × 3) are used in the encoder and
decoder with concatenation in each dense block.

No feature reuse policy is employed. Dense connectivity in both the encoder and decoder for
feature empowerment.

First two dense blocks have two convolutional layers,
whereas the others have three convolutional layers. Each dense block similarly has two convolutional layers.

The convolutional layer with 512-depth is utilized twice in
the network.

The convolutional layer with 512-depth is used once for each
encoder and decoder.

OR-Skip-Net [52]

No feature reused policy is implemented for internal
convolutional blocks. Internal dense connectivity for both encoder and decoder.

Only external residual skip paths are used. Both internal and external dense paths are used by concatenation.

No bottleneck layers are used. Bottleneck layers are employed in each dense block.

Total of four residual connections are used in total. Overall, 20 dense connections are used internally and externally.

Vess-Net [15]

Based on residual connectivity. Based on dense connectivity.

Feature empowerment from the first convolutional layer is
missed and has no internal or external residual connection. Each layer is densely connected.

No bottleneck layer is used. Bottleneck layers are employed in each dense block.

Collectively, 10 residual paths. Overall, 20 dense connections are used internally and externally.

U-Net [53]

Overall, 23 convolutional layers are employed. Total 16 convolutional layers (3 × 3) are used in the encoder and
decoder with concatenation in each dense block.

Up convolutions are for the expansion part to upsample
the features. Up convolutions are not used.

Based on residual and dense connectivity. Based on dense connectivity.

Convolution with 1024-depth is used between the encoder
and decoder.

1024-depth convolutions are ignored to reduce the number
of parameters.

Cropping layer is employed for borders. Cropping is not required; pooling indices keep the image size
the same.

Modified U-Net [47]

Overall, 3 blocks are used in each encoder and decoder Overall, 4 blocks are used in each encoder and decoder

The up convolutions are used for upsampling Unpooling layers are used to upsample

The deep feature concatenation is just used
encoder-to-decoder

Feature concatenation used inside both encoder/decoder and
encoder-to-decoder

The number of filters considered is 32 to 128 The number of filters considered is 64 to 512

Dense-U-Net [54]

Total of 4 dense blocks are used inside encoder with 6, 12,
36, 24 convolutional layers in each block respectively

Total 16 convolutional layers for overall network with occurrence of
two convolutional layers in each block

Average pooling used in each encoder block Max pooling used in each encoder block

Five up convolutions are used in decoder for upsampling 4 unpooling layers are used in decoder for upsampling

H-Dense-U-Net [54]

Combines 2-D Dene-U-Net and 3-D Dene-U-Net for voxel
wise prediction Used for pixel wise prediction

Total 4 dense blocks are used inside encoder with 3, 4, 12, 8
3-D convolutional layers in combination of 2-D

Dense-U-net fusion
Total of 16 2-D convolutional layers for overall network

Designed for 3-D volumetric features Designed for 2-D image features

Utilizes 3-D average pooling layer in each 3-D dense block Used 2-Maxpooling layer in each encoder dense block

U-Net++ [55]

The external dense path is with dense convolutional block No convolutional layer is used in external dense path

There is a pyramid type structure of dense convolutional
blocks between the encoder and decoder Direct flat dense paths are used

Individual dense blocks in dense path also have own
dense skip connections No convolutions are used in dense skip path

The RPS-Net encoder performs a constant convolutional operation on the image, and the feature
travels through the network in a feed-forward fashion until the image is represented by small features.
The convolution and max-pooling operation cause spatial information loss, because of which useful
information can be lost with the other information. This is avoided by deep-feature concatenation in
RPS-Net. By the four dense block operations with eight convolution layers and four pooling layers,
the final feature map is 18 × 25 for a 400 × 300 input image. Note that, the RPS-Net is designed with
the feature reuse policy phenomena, according to which it receives an input image of 400 × 300 × 3
which is a color image. The structure of the RPS-Net encoder in terms of the dense block is shown
in Table 3, the max-pooling operation reduces the feature map size, which accelerates the network
computation. The pooling layers in RPS-Net have information of the indices, as shown in Figure 2.
The paths of these information indices do not contain the image but contain the image size and index
information, which is transferred to the corresponding unpooling layer at the decoder side
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Table 3. RPS-Net encoder with deep-feature concatenation, individual feature map size of each block
(DB, EC, EDP, Ecat, and Pool indicate dense block, encoder convolution, external dense path, encoder
concatenation, and pooling layer, respectively). The layer that contains “ˆˆ” denotes batch normalization,
and ReLU layers are associated with this layer. The table is designed with an input image size of
300 × 400 × 3.

Block Name/Size Number of Filters Output Feature Map Size
(Width × Height × Number of Channels)

Encoder
DB-1

EC1-A ˆˆ/3 × 3 × 3
To decoder (EDP-1) and Ecat-1 64

300 × 400 × 64EC1-B/3 × 3 × 64
To Ecat-1 64

Ecat-1 (EC1-A * EC1-B) - 300 × 400 × 128

Bneck-1ˆˆ/1 × 1 × 64 300 × 400 × 64

Pool-1 - 150 × 200 × 64

Encoder
DB-1

EC2-A ˆˆ/3 × 3 × 64
To decoder (EDP-2) and Ecat-2 128

150 × 200 × 128EC2-B/3 × 3 × 64
To Ecat-2 128

Ecat-2 (EC2-A * EC2-B) - 150 × 200 × 256

Bneck-2ˆˆ/1 × 1 × 128 150 × 200 × 128

Pool-2 - 75 × 100 × 128

Encoder
DB-1

EC3-A ˆˆ/3 × 3 × 64
To decoder (EDP-3) and Ecat-3 256

75 × 100 × 256EC3-B/3 × 3 × 64
To Ecat-3 256

Ecat-3 (EC3-A * EC3-B) - 75 × 100 × 512

Bneck-3ˆˆ/1 × 1 × 256 75 × 100 × 256

Pool-3 - 37 × 50 × 256

Encoder
DB-1

EC4-A ˆˆ/3 × 3 × 64
To decoder (EDP-4) and Ecat-4 512

37 × 50 × 512EC4-B/3 × 3 × 64
To Ecat-4 512

Ecat-4 (EC4-A * EC4-B) - 37 × 50 × 1024

Bneck-4ˆˆ/1 × 1 × 512 37 × 50 × 512

Pool-4 - 18 × 25 × 512

As shown in Figure 2, RPS-Net decoder provides the reverse operation of the decoder. Unlike
the encoder, each dense block in the decoder starts with an unpooling layer which increases the
feature map size gradually using the pooling indices from the encoder. After each unpooling layer,
the encoder follows the same process for the connectivity of the convolutional layers in the decoder.
The feature maps of both convolutional layers are concatenated by a depth-wise concatenation layer.
The RPS-Net decoder receives an input of 18 × 25 pixels from the encoder and provides the final
feature map of the size equal to the input image provided to the network. The purpose of the RPS-Net
is to perform semantic segmentation on retinal images to provide a pixel-wise classification for RP.
The pixel classification layer in combination with softmax is responsible for assigning a label to each
pixel in the image from the available class based on prediction. Table 4 provides the layer layout of the
RPS-Net decoder with the respective feature map sizes.



Sensors 2020, 20, 3454 10 of 19

Table 4. RPS-Net decoder with deep-feature concatenation, and individual feature map size of each
block (DB, DC, EDP, Dcat, and Pool indicate dense block, decoder convolution, external dense path,
decoder concatenation, and pooling layer, respectively). The layer that contains “ˆˆ” denotes batch
normalization, and ReLU layers are associated with this layer. The table is designed with an input
image size of 300 × 400 × 3.

Block Name/Size Number of Filters Output Feature Map Size
(Width × Height × Number of Channels)

Decoder
DB-4

Unpool-4 -

37 × 50 × 512DC4-B ˆˆ/3 × 3 × 512
To Dcat-4 512

DC4-A/3 × 3 × 512
To Dcat-4 256 37 × 50 × 256

Dcat-4 (DC4-B * DC4-A * EC4-A) - 37 × 50 × 1280

Bneck-5ˆˆ/1 × 1 × 1280 256 37 × 50 × 256

Decoder
DB-3

Unpool-3 -

75 × 100 × 256DC3-B ˆˆ/3 × 3 × 256
To Dcat-3 256

DC3-A/3 × 3 × 256
To Dcat-3 128 75 × 100 × 128

Dcat-3 (DC3-B * DC3-A * EC3-A) - 75 × 100 × 640

Bneck-6ˆˆ/1 × 1 × 640 128 75 × 100 × 128

Decoder
DB-2

Unpool-2 -

150 × 200 × 128DC2-B ˆˆ/3 × 3 × 128
To Dcat-2 128

DC2-A/3 × 3 × 128
To Dcat-2 64 150 × 200 × 64

Dcat-2 (DC2-B * DC2-A * EC2-A) - 150 × 200 × 320

Bneck-7ˆˆ/1 × 1 × 320 64 150 × 200 × 64

Unpool-1
DB-1

Unpool-1 -

300 × 400 × 64DC1-B ˆˆ/3 × 3 × 64
To Dcat-1 64

DC1-A/3 × 3 × 64
To Dcat-1 2 300 × 400 × 2

Dcat-1 (DC1-B * DC1-A * EC1-A) - 300 × 400 × 130

Bneck-8ˆˆ/1 × 1 × 130 2 300 × 400 × 2

4. Experimental Results

4.1. Experimental Data and Environment

This study uses retinal images for the detection of retinal PS. Because this study is based on the
rare retinitis pigmentosa disease with applications for the method of RP analysis to aid the medical
practitioner in early diagnosis of the disease, we used RIPS dataset which is the only publicly available
real dataset [46]. The same RIPS dataset was solely used by previous studies [33,46,47]. Moreover,
to validate the performance of RPS-Net, 4-fold cross-validation is used with different patients for
training and testing. In details, the RIPS dataset consists of images from four different patients
captured using a Canon CR4-45NM retinal camera; the data of each patient are called one fold. Each
fold contains 30 images (of 1440 × 2160 pixels), resulting in a total of 120 images for four patients.
Therefore, for each patient, five images each of the left and right eye are taken in three different sessions,
which creates 30 images for each patient (5 images × 3 sessions = 15 images for each eye). The period
between two consecutive sessions varied from one to six months, where the total period between
first and last sessions always exceeded one year. Of the 120 images, 99 images were of RP (retinal
pigments), whereas 21 images were of healthy eyes. Two ophthalmologists provided separate manual
segmentation masks (G1 and G2) for PS, where the further details for manual mask generation can be
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found in [46]. Figure 3 shows an example of a retinal image and the corresponding ground truth (G1
and G2) mask from the RIPS.

In this study, to reduce memory usage during training and testing, the images and labels were
resized to 300 × 400 pixels for both original images and the ground-truth images. To train the RPS-Net,
from the total of four folds, three folds were used for training and the remaining one fold was applied
for testing with 4-fold cross-validation criteria similar to that used by [46]. Data augmentation was
applied to artificially increase the amount of training data, to ensure better training. The procedure of
data augmentation is explained in Section 4.2.

The RPS-Net was trained and tested using a desktop computer with Intel Core i7-3770K CPU with
3.50 GHz clock speed (4 cores), 28 GB RAM, and an NVIDIA GeForce GTX Titan X graphical processing
unit (GPU with 12 GB of graphics memory and 3072 CUDA cores) [56]. In this study, the RPS-Net
experiments were performed from scratch using MATLAB 2019b [57]. Note that the RPS-Net was
trained with our training dataset, which did not undergo fine-tuning or weight initialization from
other networks.

4.2. Data Augmentation

As mentioned in Section 4.1, the RPS-Net was trained with three-fold images and tested with
the fourth fold of different patients using 4-fold cross-validation. The three folds consist of 90 images,
which are not sufficient to train the RPS-Net. Therefore, artificial images were generated using the
training images (90 for each fold) through the data augmentation process. In detail, the three folds
were combined to make 90 images, and these images were horizontally and vertically flipped (H-flip
and V-flip) to create 90 images each, which made a total of 270 images (90 (three folds)+ 90 (H-flip) +

90 (V-flip) = 270). These 270 images are then XY translated (X = 5, Y = −5) to make 540 images. In the
next step, these 540 images were then XY translated (X = −5, Y = 5) again with a horizontal flip to
create 1080 images. In the final step, the 1080 images from the previous stage were then XY translated
(X = 10, Y = 10) with a vertical flip to create a total of 2160 images. A detailed visualization of the
augmentation process is represented in Figure 4.

4.3. RPS-Net Training

RPS-Net focuses on immediate information transfer between layers by dense connectivity.
Each dense block in the encoder-decoder block provides dense connectivity. This type of connectivity
helps the network to converge with rich features to detect PS. The RPS-Net was trained using augmented
data of three folds (explained in Section 4.2). The RPS-Net backbone (encoder-decoder) was designed
by us and trained from scratch without any weight sharing or initialization from other networks.
To ensure that the benefits of the Adam optimizer [58] are retained over those of conventional stochastic
gradient descent, Adam was chosen as the optimizer which has a learning rate of 0.0001. The RPS-Net is
trained for 20 epochs with 43,200 iterations with a minibatch size of 10 images per iteration. To provide
variant features during training, the images were shuffled in each epoch. The mentioned learning rate
was kept constant during the training with an epsilon value of 0.000001 with global L2 normalization,
which is smooth and rotationally invariant. As shown in Figure 3c,d, there is a considerable difference
between pixel numbers of both classes (“pigment” and “background”). The PS has very few pixels,
whereas the backgrounds have a large number of pixels. To maintain fast network converge, the weight
balancing was used by median frequency balancing. Further details of frequency balancing can be
found in [51,52].
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4.4. Testing of the Proposed Method

4.4.1. RPS-Net Testing for Pigment Sign Segmentation

RPS-Net is based on dense block-level feature concatenation to internally empower the feature
maps. In contrast, the RPS-Net encoder provides the outer dense paths, which provide immediate
information directly to the corresponding layers, and allows the network to learn rich information.
RPS-Net is a densely powered semantic segmentation network that does not require prior image
preprocessing to detect retinal pigments. The RPS-Net takes an image of 300 × 400 × 3 pixels as input
directly and performs continuous convolutional operations to recognize the pigment spots in the
retinal images in a feed-forward fashion. In detail, RPS-Net is based on eight local dense connections
for the encoder and decoder (4 each), which connect both convolutional layers of each block densely.
In addition, there are four outer dense connections which densely connect each first convolutional
layer of each block with corresponding layers directly in the decoder. At the output, RPS-Net provides
two predicted binary masks for each “pigment” and ”background” class based on trained knowledge.
Furthermore [46], RPS-Net was evaluated based on sensitivity (Sen), specificity (Spe), precision (P),
accuracy (Acc), and F-score (F) which are given by the following equations:

Sen =
TP

TP + FN
(5)

Spe =
TN

TN + FP
(6)

P =
TP

TP + FP
(7)

Acc =
TP + TN

TP + TN + FP + FN
(8)

F− score =
2TP

2TP + FP + FN
(9)
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where TP, FN, FP, and TN are the number of true positive, false negative, false positive, and true negative
pixels, respectively. TP is the pixel that is listed as the “Pigment” pixel in the ground-truth image and
is predicted as “Pigment” by our method. FN is the pixel listed as “pigment” in the ground-truth
image and predicted as “background” by our method. FP is the pixel listed as “background” in
the ground-truth image and is predicted as “pigment” by our method. TN is the pixel listed as
“background” in the ground-truth image and is correctly predicted as “background” by our method.

4.4.2. Retinal Pigment Sign Segmentation Results by RPS-Net

The visual results for the retinal pigment segmentation by RPS-Net are shown in Figure 5, which
follows the standard of FP (indicated in green), FN (indicated in red), and TP (indicated in blue).
Figure 6a,b represents the ROC curve for the proposed method based on G1 and G2 of Tables 5 and 6,
respectively. They represent the relation between sensitivity and 1-Specificity. Therefore, the black
straight line is the equal error rate (EER) line, and the intersection position of the EER line to the ROC
curve represents that where sensitivity is equal to specificity. In Tables 5 and 6, we compared the
accuracies by our method with those by previous methods based on their reported accuracies because
we followed the same experimental protocol with the same dataset and their algorithms are not open.
Therefore, we cannot draw the ROC curves of the previous methods, and include only the curves of
our method. The ROC curves by the proposed RPS-Net represents the area under curve (AUC) of
0.80947 and 0.80485 for G1 and G2, respectively.

Sensors 2020, 20, 3454 14 of 20 

 

4.4.2. Retinal Pigment Sign Segmentation Results by RPS-Net 

The visual results for the retinal pigment segmentation by RPS-Net are shown in Figure 5, 
which follows the standard of FP (indicated in green), FN (indicated in red), and TP (indicated in 
blue). Figure 6a,b represents the ROC curve for the proposed method based on G1 and G2 of Tables 
5 and 6, respectively. They represent the relation between sensitivity and 1-Specificity. Therefore, 
the black straight line is the equal error rate (EER) line, and the intersection position of the EER line 
to the ROC curve represents that where sensitivity is equal to specificity. In Tables 5 and 6, we 
compared the accuracies by our method with those by previous methods based on their reported 
accuracies because we followed the same experimental protocol with the same dataset and their 
algorithms are not open. Therefore, we cannot draw the ROC curves of the previous methods, and 
include only the curves of our method. The ROC curves by the proposed RPS-Net represents the 
area under curve (AUC) of 0.80947 and 0.80485 for G1 and G2, respectively. 

 
(a)      (b)     (c)     (d) 

Figure 5. Examples of RPS-Net results for pigment sign segmentation for the Retinal Images for 
Pigment Signs (RIPS) dataset: (a) original retinal image; (b) ground-truth mask G1; (c) ground-truth 
mask G2; (d) predicted retinal pigment mask by RPS-Net, where FP is indicated in green, FN in red, 
and TP in blue. 

 

Figure 5. Examples of RPS-Net results for pigment sign segmentation for the Retinal Images for
Pigment Signs (RIPS) dataset: (a) original retinal image; (b) ground-truth mask G1; (c) ground-truth
mask G2; (d) predicted retinal pigment mask by RPS-Net, where FP is indicated in green, FN in red,
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Table 5. Accuracies of retinal pigment sign segmentation by RPS-Net for the RIPS dataset based on the
ground-truth mask by the second expert G2 (unit: %).

Type Method Sen Spe P F Acc

Handcrafted local
feature-based methods * Ravichandran et al. [33] 72.0 97.0 - 62.0 96.0

Learned/deep-feature-based
methods

Random Forest [46] 58.26 99.46 46.18 47.93 99.14
AdaBoost M1 [46] 64.29 99.30 42.45 46.76 99.01
U-Net 48 × 48 [47] 55.70 99.40 48.00 50.60 99.00
U-Net 72 × 72 [47] 62.60 99.30 46.50 52.80 99.00
U-Net 96 × 96 [47] 55.20 99.60 56.10 55.10 99.20

RPS-Net (proposed method) 80.54 99.60 54.05 61.54 99.52

Table 6. Accuracies of retinal pigment sign segmentation by RPS-Net for the RIPS dataset based on the
ground-truth mask by the second expert G2 (unit: %).

Type Method Sen Spe P F Acc

Learned/deep-feature-based
methods

Random Forest [46] 56.20 99.48 50.49 49.29 99.11
AdaBoost M1 [46] 61.76 99.33 46.29 48.30 98.99

RPS-Net (proposed method) 78.09 99.62 56.84 62.62 99.51
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4.4.3. Comparison of RPS-Net with Other Methods

In this section, the performance of RPS-Net is compared with those of existing methods based on
sensitivity (Sen), specificity (Spe), precision (P), accuracy (Acc), and F-score (F), as shown in Section 4.4.1
using Equations (5)–(9). Considering the original image size of 1440 × 2160, it is very difficult to train
the network due to the limitation of GPU memory. Therefore, the images were resized to 400 × 300
size for the training and testing of the RPS-Net. However, we resized the segmented image on our
network to 1440 × 2160 pixels by bi-linear interpolation to compare it with the original G1 and G2
of size 1440 × 2160 pixels and made fair comparisons with [33,46,47]. Table 5 presents the numerical
results for retinal pigment sign detection based on G1, whereas Table 6 presents the same results based
on G2. As shown in Table 5, most accuracies including Sen, Spe, F, and Acc by our method are higher
than those by the state-of-the-art methods although P by our method is a little lower than that of the
previous method [47]. In addition, our method outperforms the previous method [46] as shown in
Table 6, and receiver operating characteristic (ROC) curves by our method are shown in Figure 6.

False negatives are much more serious than false positives, and the false negative pixels are judged
by the sensitivity given by Equation (5). According to Tables 5 and 6, the RPS-Net has high sensitivity,
which represents the low number of false negative pixels.
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5. Discussion

The detection of RP is based on the detection of PS. Medical practitioners analyze retinal images to
note the progression of the disease [3]. These pigment migrations can be detected using the proposed
method, which provides the option of computer-aided diagnosis to aid the ophthalmologist in the
timely detection of RP. RPS-Net is based on dense feature empowerment which helps the network
detect smaller pigment spots. The possible clinical outcomes from the proposed method are explained
briefly in Sections 4.1 and 4.2

5.1. Detection/Counting and Size Analysis of Retinal Pigments

The presence of RP can be detected with the segmentation of pigment spots, and if these pigment
spots are detected over retinal images, they can be counted and analyzed for size by RPS-Net. Figure 7a
shows an example of the original image in which the pigment signs are hardly visible. However,
because of powerful dense connectivity, the RPS-Net detected two PS that are shown in yellow and
pink in Figure 7b. Even the smaller PS were detected, and their sizes were found to be 24 and 48 pixels
for the first (P-1) and second pigments (P-2), respectively. The sizes can be checked in consecutive
visits of the patient to analyze disease progression.
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Figure 7. Sample image for retinal pigment sign detection, count, and size analysis. (a) Original image;
(b) detected pigment spots with sizes.

5.2. Location Analysis for PS

The location of the retinal pigment is an important constraint for considering the progression
and migration of spots [3,4]. In the retinal image, the X-Y location coordinates of the PS can be found
for analysis of RP. For example, the X-Y coordinates of the pigments shown in yellow and pink are
X = 159.4167 and Y = 12.2083 and X = 33.0238 and Y = 71.5714, respectively. The distance between the
pigments observed between different visits of the patient can be another piece of information that can
be useful for migration analysis of the PS. As shown in Figure 8a,b, the distance between the two spots
can be found, which is approximately 69 pixels for this specific example.
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6. Conclusions

In this study, we proposed RPS-Net, which is empowered by dense block-level deep-feature
concatenation and external dense connections for immediate information transfer. The method can
segment the retinal pigments with a low number of pixels. There are three important principles on
which RPS-Net was based and designed: First, the dense block-level feature concatenation improves
the quality of the features, and its dimensions are controlled by bottleneck layers to limit memory
usage. Second, convolutions cause information loss; thus, to reduce the overall convolutions, only four
blocks are used for each encoder and decoder. Third, conventional encoder-decoder-based networks do
not pass edge information from the encoder to the decoder, which deteriorates feature maps in terms
of edges and minor information. RPS-Net provides dense paths from the initial layers of the encoder
to the decoder to fulfill the feature empowerment to segment minor level information. RPS-Net with
immediate information flow inside and outside the encoder-decoder allows the network to converge
quickly, in only 43,200 iterations. The proposed network provides good estimation of the size, location,
counting, and distance information of the retinal pigments with correct segmentation for analysis of
RP. This segmentation can assist medical practitioners or ophthalmologists to analyze the progression
and intensity of the disease in a timely manner.

RPS-Net can detect and segment the retinal PS for diagnosis of RP. RPS-Net is a learning-based
method, so robustness depends on the trained knowledge. The method can be used as a second-opinion
system to aid doctors and ophthalmologists in the diagnosis and analysis of RP. In the future, we will
enhance the accuracy of RP further. Using another low-cost network version, we will consider the
diagnosis of other retinal diseases using artificial intelligence. Moreover, we intend to develop another
method that can perform the segmentation with full image based on original image size.
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