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Abstract: Lamb wave-based structural health monitoring techniques have the ability to scan a large
area with relatively few sensors. Lamb wave imaging is a signal processing strategy that generates
an image for locating scatterers according to the received Lamb waves. This paper presents a Lamb
wave imaging method, which is formulated as a weighted structured sparse reconstruction problem.
A dictionary is constructed by an analytical Lamb wave scattering model and an edge reflection
prediction technique, which is used to decompose the experimental scattering signals under the
constraint of weighted structured sparsity. The weights are generated from the correlation coefficients
between the scattering signals and the predicted ones. Simulation and experimental results from
an aluminum plate verify the effectiveness of the present method, which can generate images with
sparse pixel values even with very limited number of sensors.

Keywords: lamb wave; structured sparse reconstruction; imaging algorithm; defect detection;
structural health monitoring

1. Introduction

Lamb waves are ultrasonic guided waves in thin plates and have received great attention
from researchers in the field of structural health monitoring (SHM) and nondestructive evaluation
(NDE) [1-3]. Lamb waves are an attractive tool for SHM and NDE because of their ability to achieve
large-scale and long-distance detection as well as their sensitivity to several types of damage such as
crack, delamination and corrosion [4-7]. A typical Lamb wave-based SHM or NDE system usually
consists of a sensor array to receive the responses to a specific excitation. The structural health condition
is evaluated based on the current measured data and the baseline data which is recorded when the
structure is damage-free. Usually, the evaluation is more precise if more data collected from different
receivers is available, but it also means a higher cost at the same time.

Flaws or damage in structures can be seen as scatterers that scatter the incoming waves in different
directions. Then a variety of strategies can be developed to process the scattering signals to detect and
locate the flaws or damage. Guided wave imaging method is one of those strategies that can generate
an image indicating the number and locations of damage. One of such well-known methods is the
delay-and-sum imaging method developed by Wang et al. [8]. This method uses the wave velocity
and the time-of-flight to locate the positions of damage. Another imaging method, the minimum
variance distortionless response imaging method [9], is a variation of the delay-and-sum, in which
adaptive weights are introduced to improve imaging performance. Zhao et al. developed an imaging
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method known as the reconstruction algorithm for probabilistic inspection of defects (RAPID) [10],
which can be included in the category of statistical imaging methods. The RAPID uses the signal
difference coefficient between the current measured data and the baseline data as damage index (DI).
Since the RAPID does not require the wave velocity for imaging, it is suitable for complex structures
such as wind turbine blades, aircraft wings and variable thickness plates. Other statistical imaging
methods may use the difference of the fractal dimension [11] and the signal entropy [12] between two
signals to be DIs. However, the above imaging methods have limited imaging performance unless
dense transmitter-receiver pairs are available.

Dictionary-based approaches are another kind of imaging methods that usually use an analytical
or finite element-based guided wave propagation models to generate lots of scattering signals as the
atoms of a dictionary. Alguri et al. used guided wave data collected from surrogate structures to
learn a dictionary and then reconstructed the wave field of the structure under test [13]. Levine et al.
sparsely decomposed the scattering signals in a dictionary generated by an analytical Lamb wave
propagation model, which formulated the Lamb wave imaging as a sparse or block-sparse reconstruction
problem [14,15]. With the use of more prior knowledge, super-resolution imaging can be achieved by
introducing the sparse reconstruction theory. Hua et al. presented a sparse reconstruction imaging
for Lamb wave simultaneous excitation system based on a dictionary [16]. Golato et al. constructed
a dictionary composed of multimodal scattering Lamb waves and solved a sparse reconstruction
problem to achieve Lamb wave imaging [17]. However, the above approaches did not consider the
edge reflections in the process of dictionary construction. Zuo et al. used the model-based predicted
signal and the experimental scattering signal to compute the covariance matrix and then used the
two-dimensional MUSIC algorithm for Lamb wave imaging in composite laminates [18]. However,
this method is only suitable for one dimensional uniform linear array.

In this paper, a weighted structured sparse reconstruction-based Lamb wave imaging method
is presented. Lamb wave imaging is formulated as a weighted structured sparse reconstruction
problem using a model-based Lamb wave dictionary. In the construction of this dictionary, not only
the scattering signal from the excitation source to a potential scatterer to the receiver but also the
edge reflections are considered and incorporated. The scattering signals are preprocessed by a
model-based sparse decomposition approach so as to reconstruct the scattering signals with desired
number of wave packets. This processing can remove some wave packets in the scattering signals and
improve the signal-to-noise ratio. The correlation coefficients between the experimental scattering
signals and predicted signals are used to construct the weights of the weighted structured sparse
reconstruction model.

The rest of the paper is organized as follows. In Section 2, background of the Lamb wave scattering
model and the prediction of edge reflections are given. In Section 3, the details of the methodology
for Lamb wave imaging is presented. In Sections 4 and 5, simulation and experimental studies are
implemented to validate the present method. Finally, conclusions are drawn in Section 6.

2. Background

2.1. Lamb Wave Scattering Model

Lamb waves are multimodal and dispersive. A thin plate supports at least two Lamb wave modes
at any frequencies. Under the cutoff frequency, only the fundamental A0 and SO modes will appear in
the plate. In addition, a desired single fundamental Lamb wave mode can be transmitted by means of
dual wafers energized in-phase/out-of-phase or wavelength turning techniques [19,20]. Due to the
dispersion, a Lamb wave packet will spread out in time and space as it propagates. In an infinite
thin plate, the single-mode Lamb wave response of a receiver d away from a point-like source to an
excitation S(w) can be expressed as [21]

do 1 (7% it —jk(w)d
u(t) = Eﬂ[ S(w)ee dw 1)
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where u(t) is the response signal in the time domain, dj is an reference distance, t is the time, w is the
angular frequency, S(w) is the excitation signal in the frequency domain, k(w) is the wavenumber of
the specific Lamb wave mode, and j is the imaginary unit. The frequency form of Equation (1) can be

written as
U(w) = +f %S(a))e_jk(“’)d @

where U(w) is the frequency form of u(t).
Suppose there is a scatterer in the plate, and the distance from the excitation source to the scatterer
to the receiver is ds, then the scattering signal Y(w) in the frequency domain can be expressed as

do

Ys(w) = a(w) 7.

S(w)e k(@) 3)
where the frequency dependent parameter a(w) is the corresponding scattering coefficient.

In Lamb wave-based SHM, a windowed tone burst centered at a specific frequency is usually
selected to be the excitation signal to suppress the dispersion. In such situation, the excitation is a
narrowband signal, then the frequency dependent scattering coefficient a(w) in Equation (3) can be
approximated as the value a(w.). When there are multiple scatterers in the plate, the corresponding
scattering signal Y (w) can be approximately expressed as a linear superposition of each single scatterer
case without considering the scattering between any two scatterers

Ys(w) = ) ai(w) \/Z—?s(w)e—jk<w>dg @

where a;(w) is the scattering coefficient corresponding to the ith scatterer, and d: is the distance from
the excitation source to the ith scatterer to the receiver.

2.2. Prediction of Edge Reflections

In practice, the plate-like structures under test or monitored are all of limited size. Therefore,
the recorded Lamb waves by the receiver contains not only the direct scattering signal (direct arrival),
but also the edge reflections related to the scatterer. Compared with the direct arrival, the edge
reflections arrives later, containing information of the scatterer, and can be incorporated into imaging
algorithms to improve imaging performance. The direct arrivals between any two points on the plate
can be predicted by Equation (3), and the scatterering signal from the transmitter to the scatter to the
receiver can also be predicted by considering the scatterer as a point-like secondary acoustic source if
the location of the scatterer is known. The edge reflections also can be predicted by Equation (4) if the
traveling distance d. of each edge reflection is known.

The ray tracking technique [22] is a geometric algorithm that can be used to calculate the traveling
paths of edge reflections. There are lots of traveling paths for an acoustic wave from a source to a
specific point, including direct arrival paths and edge reflection paths, as shown in Figure 1. An acoustic
wave can reflect at the edges of a structure one or several times, and can be recorded by a receiver
finally. Figure 1 shows two 1st order (the number of reflections between two points is equal to 1) and
one 2nd order (the number of reflections between two points is equal to 2) reflection paths. The angle
of incident wave and the angle of reflected wave at an edge satisfy the Snell’s law

kisin(6;) = kysin(6;) ()

where k;, k, are the wavenumbers of the incident and reflected waves, and 0;, 0, are the angles of the
incident and reflected waves. If the mode conversion of edge reflections is not considered, k; will be
equal to k;. Accordingly, the angles of the incident and reflected waves are the same, i.e., 0; = 0,.
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In this paper, the mode conversion is not considered so that the edge reflections can be predicted by
the following steps:

e  Step 1: Calculate the corresponding positions of mirror points for the transmitter (T), scatterer (S),
and receiver (R) by considering an edge of the structure as a mirror. For example, the point T" is
the mirror point for the transmitter T corresponding to the mirror, “Edge I”, as show in Figure 1.

e  Step 2: Calculate the position of each reflected point. The intersection of an edge and the line
between a source or its mirror point to a received point or its mirror point is a reflected point.

e  Step 3: Calculate each order reflection paths by connecting the source, the corresponding reflected
point, and the receiver in turn. Please note that there can be multiple reflected points for a
reflection path. For example, the 2nd order reflection path in Figure 1 has two reflected points.

e  Step 4: Calculate the length of each path and substitute the lengths into Equation (4). The edge
reflections can be predicted by Equation (4) when the scattering coefficients are all determined.

Felge | —— Direct arrival paths
—— 1! order reflection paths
_T T _—>— 2" order reflection paths

i, 5 ¥ e R e S S e SR

Reflected point

I
S
Reflected point / \T"
v

Figure 1. Schematic diagram of the traveling paths of some scattering wave packets from the transmitter
to the scatterer to the receiver. The symbol “T” denotes the transmitter, “S” denotes the scatterer,
and “R” denotes the receiver. “T’”, “R’”, and “S’” denote the corresponding mirror points of “T”,
IISII and IIR/I.

Given the positions of the transmitter, the scatterer, and the receiver, the desired paths of scattering
wave packets can be calculated by the ray tracking technique so that the scattering wave packets can
be predicted by the four steps above. In application, the scattering signal is obtained by subtracting
the “health signal” or “baseline signal” recorded at damage-free state from the measured signal.
As the scattering signals obtained from experiments contains direct arrivals as well as edge reflections
and those wave packets may also overlap in the time domain, it is not easy to separate those wave
packets, which means that the existence of edge reflections in scattering signal is inevitable. Therefore,
the predicted scattering signal including edge reflections can better match the scattering signal obtained
from experiments, which is useful in the improvement of imaging performance for model-based Lamb
wave imaging methods.

3. Methodology

3.1. Scattering Signal Processing

The scattering signals obtained from experiments can be represented by several predicted scattering
wave packets. A scattering signal ys(t) obtained from experiments under the narrowband excitation
can be expressed as [3,14]
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P .
ys(t) = 7‘"—1{2 a; Z—?S(a))e‘ik(“’)dé} +n(t) (6)

i=1 s

where 7 ~1{} represents the inverse Fourier transform, P is the number of scattering wave packets
including direct arrivals and edge reflections, n(t) is noise. Suppose the discrete form of ys(t) is a
column vector y, € RV, then y, can be expressed as a linear weighted combination of the atoms in a
2-D dictionary @ [3]

y, = ®x+n (7)

where ® € RNVMi (M, >> P) is a matrix, x € RM1 is a coefficient column vector, and n € RN is a noise
term. The ith column of dictionary ®, a;, is determined by

a; = 7"_1{ \/%S(a))e_jk(‘”)di} (8)

where d' is a user-specified traveling distance corresponding to the ith atom a;.

Equation (7) is an ill-posed problem and it will have infinite solutions if there is no prior information
about x. If the number of atoms, M, is large enough and the traveling distances 4. (1 <i < P, i € N*)
are totally covered by the given traveling distances d’ (1 < i < My, i € N*), the scattering signal y, can
be sparsely decomposed in the dictionary ® by solving the following sparse decomposition problem

.1
min  Jly, = ®xIi3 + Al ©)

where A > 0 is a regularization parameter, which balances the sparsity (¢;-norm) and fidelity ({,-norm)
and is related to the variance of noise. In addition, x is a sparse coefficient vector and its ith element x; is
the scattering coefficient corresponding to the ith atom a; whose traveling distance is d'. Every scattering
wave packet in y, with a unique traveling distance can be recovered using the solution of Equation
(9) and the dictionary ®. So a new scattering signal y , composed of the P’ (P’ < P) scattering wave
packets corresponding to the first P’ smallest traveling distances can be reconstructed by

’ ’

ys = ®X (10)

where & contains P’ scattering coefficients corresponding to the first P’ smallest traveling distances.
Through signal sparse decomposition and reconstruction, the number of scattering wave packets in
the new scattering signal y , can be user-specified so that the predicted scattering signal with the same
number of wave packets can better match y'.

3.2. Lamb Wave Imaging Formulated as A Weighted Structured Sparse Reconstruction Problem

Suppose that there is a total of L unique measured signals recorded from the sensor network in the
Lamb wave-based SHM system. So L scattering signals are obtained by subtracting the corresponding
L “baseline signals” from the L measured signals. In addition, L new scattering signals labeled as
Y15 Y 25 - -+ ¥ 15 can be calculated by Equations (9) and (10), and can be used for imaging. The ith
new scattering signal y ;, corresponds to the ith “transmitter-receiver” pair, which is composed of a
transmitter and a receiver.

For imaging, the interested area in the monitored structure is discretized into M grids, and each
grid is regarded as a potential scattering source. Usually, the number of grids within damaged area is far
less than that within damage-free area. For the ith “transmitter-receiver” pair, the corresponding ith new
scattering signal y ;, can be decomposed in a 2-D dictionary ¥; € RNM2 (M, > N, 1 <i <L, i e N¥)

y,is =%z, +e (11)



Sensors 2020, 20, 3502 6 0of 17

. . T .
where e; € RN is a noise term, z;= [z1;, 20, - -, Zmi, - -, zle-] eRM2(1<i<L,1<m< M, meNT)
is a coefficient column vector, and ¥;=[a1;, a2, ..., @ i, ..., 2 Mzi] is a matrix whose mth atom

(column) a',,;; € RN is defined as

P’

’ _ d _: mi

a,=F! E d—}EiS(a))e ji(w)dy (12)
p=1 P

where dZ” is the traveling distance corresponding to the pth scattering wave packet calculated by the
ray tracking technique when the scatterer is located at the mth grid. In Equation (11), the coefficient
z,i in the vector z; quantifies the contribution of the atom a’,,; to the signal y ;. So the probability of
damage in the mth grid can be characterized using the absolute value of z,;.

As there are a total of L new scattering signals, the same operation like Equation (11) can be
applied to each signal. So one can obtain the following L equations

Y1, =Yiz1 e
Yo = Yozo e

(13)
Yo=Yz +er
The L equations above can be formulated as
y ¥ z e
—— —_— —_—
y Is ‘Ifl 0 oo 0 7 e
y 0 Y Ce V) e
Y B N (14)
, | : :
Y Ls 0o 0 - ¥ |lz er
where y € RV is a column vector including all the new scattering signals and can be calculated from

experimental signals, ¥ € RIN*IMz jg 3 2-D dictionary (matrix) constructed using the Lamb wave
scattering model and the ray tracking technique, and z € R'™2 is an unknown column vector whose
elements characterize the probability of damage for the total of M, grids.

If there is a scatterer located in the mth grid, the mth elements of z;, zy, . . ., z, all should be nonzero.
Or rather, the vectors z1, z, . . ., and z; should have the same sparse structure, i.e., the nonzero elements
of z1, zy, ..., and zr should locate at the same positions. Therefore, the vector z has the characteristic of
structured sparsity. A solution of Equation (14) can be obtained by solving the following weighted
structured sparse reconstruction problem [23]

M,
min Y wyllp(m,z)ll, s.t. lly — ¥zl < o (15)

m=1

where ¢(m,z) = (21, Zm2, - - - ,sz]T € RL is a vector composed of the mth elements of z1, zy, ..., [,

02 is a regularization parameter that is equal to the variance of the noise term e, and wy, is a positive

weight coefficient. The wy, is defined as

Oy Ogm

— |8 16
Coo(y, g,,) (16)

Wi
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where oy and og = are the standard deviations of vectors y and g,,,, respectively; Coov(-) is the covariance

T
. T T T .
function, and g,,= (a1, @y, ..., @ mL] € RN is a column vector composed of the mth atoms of

Y1, ¥, ..., ¥1. The value of w, is equal to the reciprocal of the correlation coefficient of y and g,,,.
It should be noted that large weights in the £;-norm term of Equation (15) will encourage zero entries,
while small weights will encourage nonzero entries according to the theory of compressed sensing [23].
The weights defined by Equation (16) can improve imaging performance with fewer artifacts, especially
the “corner lighting” effect (artifacts with high magnitude appear at the corners of the interested
imaging area) [14,24].

The problem of Equation (15) can be solved by many existing £;-norm minimization algorithms,
for example, a Matlab software tool box named SPGL1 [25]. Suppose that the solution of Equation (15)
is2= {211, ..., 2my1, 212, -+, EMy2s - B1Ls - s 2M2L]T, then the probability of damage in the mth grid
under all L new scattering signals can be characterized as

pxm = llp(m, 2)|l, (17)

In many Lamb wave imaging algorithms, such as delay-and-sum [8], minimum variance
distortionless response [9] and dictionary-based imaging methods [14,24], usually the envelopes
of the scattering signals instead of the original scattering signals are used because phase information
contained in the scattering signals is difficult to be processed and predicted. It is found that imaging
performance can be improved by replacing the original scattering signals with their corresponding
envelopes [14]. Therefore, the corresponding envelopes are used to replace the original signal and
atoms in Equation (15).

y < ly+iH(y)l, ¥ « [¥ +jH(Y)I (18)

where H () is the column-wise Hilbert transform function. The schematic of the weighted structured
sparse reconstruction-based Lamb wave imaging method is shown in Figure 2.

PRV Scattering signal processing -

|
I | %
| Sparse decomposition for ¥,: :l Lamb wave scattering model
= 1 ' v
: min — ||y, -@x |} +4 ] x]| | — ——
! 2 | Predictions of edge reflections
|
. v |
: Extraction of interested : . v - '
! scattering wave packets v, ! Subdictionary W, construction
| v ! ¥
: Append Vi, to ¥ : Dictionary construction
| | ¥, 0 0
I | i
: | 0,
i | : : .0
I
! ! o 0 - VY
ly+iHWI =y | Column-wise Hilbert envelopes ¥ ¥+ jH('P)

v

Weighted structured sparse reconstruction problem

M,
mi“ZWm | ¢(m,z)|, s.t. ||y_q;Z”§£Jz
m=|

g .0

Y B

Weights w, =|—1 %
B Cov(y.g,)

Figure 2. Schematic of the weighted structured sparse reconstruction-based Lamb wave imaging method.
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4. Simulation Validation

Simulations are implemented on an aluminum plate with the material properties listed in Table 1.
The dimensions of the plate is 500 mm x 500 mm X 2 mm. A five-cycle Hanning-windowed tone burst
centered at 80 kHz is excited on the center of the aluminum plate in a direction perpendicular to the
surface of the plate. In this way, only A0 mode Lamb wave is excited. The wavelength of the A0 mode
at the center frequency of 80 kHz is around 14.86 mm on the 2-mm aluminum plate. A square sensor
array consisting of four measuring points is used to capture the response signals. Firstly, the baseline
data is recorded on the intact plate without any defects. Then the scattering signals are obtained by
subtracting the baseline from the response signals recorded after cracks introduced. Two different
cracks with different lengths and locations are introduced in two separate simulations. Figure 3 shows
the snapshots of the interactions between incident wave and cracks in the two separate simulations.
It can be seen that the propagation of scattering waves is directional and the cracks designated are no
longer ideal isotropic scattering source.

Table 1. Material properties of the experimental aluminum plate.

Young’s Modulus (E) Poisson’s Ratio (v) Density (p)
68.9 Gpa 0.33 2690 kg/m?

Crack I Crack IT

Sacttering waves /

Sacttering waves

t=1.4005E-4 s t=1.6005E-4 5
@) (b)
Figure 3. Snapshots of A0 mode Lamb wave propagation in an aluminum plate with different cracks:

(a) crack I with a length of 20 mm and a width of 2 mm (simulation I); (b) crack II with a length of
10 mm and a width of 2 mm (simulation II). The excitation source is located on the center of the plate.

The plate is divided into 4 mm x 4 mm grids for imaging. The imaging results using the present
method for the two cases are shown in Figures 4a and 5a, respectively. The corresponding imaging
results using the delay-and-sum method are also given in Figures 4b and 5b. From the results one can
see that although cracks do not act as isotropic scattering sources, the present method can still locate
the cracks using data from the four measuring points. In addition, compared with the delay-and-sum
method, the present method can obtain an image with few artifacts and smaller location error which is
defined as the distance between the center of the crack and the location of maximum pixel value in the
imaging result.
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=5 -5
100 100
B E)
.E 0 -10 E‘ 0 -10
> >
-100 -100
-15 -15
=200 -200
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(@) (b)

Figure 4. Imaging results in simulation I using: (a) the weighted structured sparse reconstruction-based
Lamb wave imaging method (the location error is 17 mm); (b) the delay-and-sum imaging method (the
location error is 195 mm). White dots denote locations of measuring points, the white circle denotes the
location of excitation source, and the white triangle denotes the center of the crack L.

200 200
100 100
)
£ 0 0
-
-100 r-l -100
=200 LY -200
180 200 230 y
=200 -100 0 100 200 -200  -100 0 100 200
X[mm] X[mm]
(a) (b)

Figure 5. Imaging results in simulation IT using: (a) the weighted structured sparse reconstruction-based
Lamb wave imaging method (the location error is 34 mm); (b) the delay-and-sum imaging method
(the location error is 179 mm). White dots denote locations of measuring points, the white circle denotes
the location of excitation source, and the white triangle denotes the center of the crack II.

5. Experimental Validation

5.1. Experimental Setup

Experiments are performed on an aluminum plate with the dimensions of 1000 mm length,
1000 mm width, and 2 mm thickness. The material properties of the experimental aluminum plate
are the same as those used in the simulations. A step-pulse signal is generated by an NI PXI-5412
arbitrary waveform generator (National Instruments, Austin, USA), amplified to 60 V (peak-to-peak
value) by a linear amplifier (Piezo EPA-104, Piezo Systems, Woburn, USA), and finally reaches to a
Lead Zirconate Titanate (PZT) disk located on the center of the plate, which is 0.5 mm thick and 8 mm
in diameter. The photograph of the experimental setup is shown in Figure 6a, and the experimental
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aluminum plate with PZTs and simulated defects is shown in Figure 6b. The resonant frequency
fr of the PZT in thickness direction is 3.8 MHz and the frequency constant N; is 1900. Signals are
received by eight PZTs with the same parameters as the exciting PZT and recorded by four NI PXI-5122
oscilloscopes(National Instruments, Austin, USA) with a sampling frequency f;=10 MHz. Narrowband
responses to a five-cycle Hanning-windowed tone burst centered at 80 kHz are recovered from the
original step-pulse responses using the post-processing technique [26]

U(w) = S(w)F18" (1)} (19)

where U(w) is the desired narrowband response, {-} is the Fourier transform, g(t) is the step-pulse
response and ¢’(t) is the first-order time derivative of g(t). The signal-to-noise ratio is increased
through the above strategy of using the step-pulse excitation and post-processing technique [27].
The recovered narrowband responses to the tone burst centered at 80 kHz frequency are A0 mode
dominant [28].

Generator:

£
=
o
(=
=)
=

(@) (b)

Figure 6. (a) Photograph of the experimental setup; (b) the experimental aluminum plate with PZTs.

Cylindrical magnets with a diameter of 10 mm and a height of 10 mm are adsorbed on the same
position of the opposite surfaces of the aluminum plate to simulate the scatterers with a uniform
scattering feature. The magnets adsorbed on the plate act as an added mass loading that changes the
boundary condition of the point. If the size of the cylindrical magnets is close to or larger than the
wavelength of the incident wave, they can effectively scatter the incoming Lamb waves. Otherwise,
the scattering waves caused by the cylindrical magnets will be very weak or even absent, and thus could
not be recorded by the PZTs. In the experiment examination, the wavelength of the excited A0 mode is
around 14.86 mm which is comparable to the diameter of the cylindrical magnets. Response signals are
recorded first from the pristine plate, and scattering signals are obtained by subtracting the baseline
signals from the corresponding ones recorded from the plate with added mass (cylindrical magnets).
Figure 7a shows the received signal by PZT 1 after defect #1 is introduced, and the corresponding
scattering signal is shown in Figure 7b. All scattering signals are finally down-sampled at a new
sampling frequency, 1 MHz, to reduce data dimension.
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Figure 7. (a) The signal received by PZT 1 in the presence of defect #1; (b) the scattering signal obtained

by subtracting the baseline from the signal shown in (a).

5.2. Results and Discussion

The interested area is a square area with the dimensions of 600 mm x 600 mm located at the
center of the plate, and is discretized to grids of 4 mm X 4 mm for imaging. The regularization
parameters in Equations (9) and (15) are selected to be A = Apax/10 = maxICIJTysl /10 and 02 = 0.5||y||%,
respectively. The desired number of scattering wave packets P’ in Equations (10) and (12) is selected to
be 3. All imaging results are normalized to their corresponding maximum pixel values and displayed
on a 20 dB color scale. For comparison, the corresponding results of the delay-and-sum imaging
method are also given. Figure 8a shows the imaging result of the present method using data from the
whole eight receivers. The scatterer is located in the image with a small spot size and without visible
artifacts in 0 dB to —20 dB scale. The corresponding imaging result of the delay-and-sum imaging
method is shown in Figure 8b, which exhibits some visible artifacts as well as a relatively larger spot
size in the displayed scale. Figure 9a,b are the imaging results of the two methods for two scatterers,

which are similar to the case of one scatterer.

dB
300 0
200
-5
100
El
£ 0 -10
>
-100
-15
-200
300 100 1250 W
=300 =200 -100 O 100 200 300
X[mm]
(a)

Y[mm)]

300
200

100 [

-100

-200

-300
-300 -200 -100 O 100 200 300

X[mm]
(b)

Figure 8. (a) Imaging result of the weighted structured sparse reconstruction-based Lamb wave
imaging method using data from eight receivers (the location error is 3 mm); (b) Imaging result of the
delay-and-sum imaging method using data from eight receivers (the location error is 3 mm). White dots
denote locations of PZT receivers, the white circle denotes the location of excitation source, and the

white triangle denotes the location of the scatterer.
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Figure 9. (a) Imaging result of the weighted structured sparse reconstruction-based Lamb wave imaging
method using data from eight receivers for two scatterers (the location error is 3 mm for defect #1,
and 8 mm for defect #2); (b) Imaging result of the delay-and-sum imaging method using data from
eight receivers for two scatterers (the location error is 3 mm for defect #1, and 8 mm for defect #2).
White dots denote locations of PZT receivers, the white circle denotes the location of excitation source,

and the white triangles denote the locations of the scatterers.

Imaging results of the present method and the delay-and-sum imaging method are also given in
order to test the imaging performance of the two methods in the case of fewer receivers. As shown in
Figures 10-12, are the corresponding imaging results of the two methods using data from four receivers,
two receivers and only one receiver, respectively. From the results, one can see that when the number of
receivers is decreased, the performance of the delay-and-sum imaging method is decreased as the number
of artifacts is increased. The imaging performance slightly decreases with the reduction in the number of
the receivers for the present method. However, the change with the decrease in the number of the receivers
is not so more obvious in the images of the present method compared with that of the delay-and-sum
imaging method. The above results show that the delay-and-sum imaging method relies on the number
of the receivers while the present method can achieve more sparse results with few artifacts.

300 300
200 200
100 100 &
El El
E 0 g o0
- >
-100 -100
2200 200
-300 24 20 -300 H-
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Figure 10. (a) Imaging result of the weighted structured sparse reconstruction-based Lamb wave
imaging method using data from four receivers (the location error is 3 mm); (b) Imaging result of the
delay-and-sum imaging method using data from four receivers (the location error is 3 mm). White dots
denote locations of PZT receivers, the white circle denotes the location of excitation source, and the

white triangle denotes the location of the scatterer.
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Figure 11. (a) Imaging result of the weighted structured sparse reconstruction-based Lamb wave
imaging method using data from two receivers (the location error is 8 mm); (b) Imaging result of
the delay-and-sum imaging method using data from two receivers (the location error is 324 mm).
White dots denote locations of PZT receivers, the white circle denotes the location of the excitation
source, and the white triangle denotes the location of the scatterer.
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Figure 12. (a) Imaging result of the weighted structured sparse reconstruction-based Lamb wave
imaging method using data from one receiver (the location error is 20 mm); (b) Imaging result of the
delay-and-sum imaging method using data from one receiver (the scatter cannot be located). White dots
denote locations of PZT receivers, the white circle denotes the location of the excitation source, and the
white triangle denotes the location of the scatterer.

Imaging result of the present method using uniform weights, i.e., the weights defined in
Equation (16) is not used and replaced with w;,, = 1 (1 < m < M,), is shown in Figure 13a. The result
using uniform weights exhibits an artifact with small amplitude. In addition, Figure 13b shows the
result of the present method using uniform weights and original scattering signals (signals without
processed by Equations (9) and (10). In this case, the scattering signal processing operations described
in Section 3.1 is not implemented. It can be seen from Figure 13b that the scatterer is not located correctly
and the image exhibits the “corner lighting” effect. The corresponding reciprocals of weights are shown
in Figure 14. As illustrated in Figure 14, the weights corresponding to the upper corners are relatively
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large, which encourage zero entries at those two areas (see the result in Figure 11a). On the contrary,
the imaging methods using uniform weights cannot adaptively penalize the entries corresponding to
the grids of the imaging area according to prior information, resulting in the degradation of imaging
performance. Therefore, both the cases shown in Figure 13 verify the effectiveness of the weights
defined in Equation (16) and the necessity of the scattering signal processing operation described in
Section 3.1.

dB
300 g 0 300
2 200 3 . oo
o " “corner lighting” effect
100 100
— — A
= E
E 0 0 E 0
> e
-100 -100
Artifact 1 BB
=200 -200
2300 -20 -300
=300 -200 -100 0O 100 200 300 -300 -200 -100 O 100 200 300
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Figure 13. (a) Imaging result of the weighted structured sparse reconstruction-based Lamb wave
imaging method using uniform weights (the location error is 20 mm); (b) Imaging result of the weighted
structured sparse reconstruction-based Lamb wave imaging method using uniform weights and
original scattering signals (the scatter cannot be located). White dots denote locations of PZT receivers,
the white circle denotes the location of the excitation source, and the white triangle denotes the location

of the scatterer.
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Figure 14. The images generated by the reciprocals of weights, i.e., px;;= 1/wy,, using data from two
receivers. White dots denote locations of PZT receivers, the white circle denotes the location of the

excitation source, and the white triangle denotes the location of the scatterer.

Lamb wave imaging method based on dictionary and unweighted sparse reconstruction can
obtain results with smaller spot sizes because the {;-norm optimization can lead to a sparse solution.
However, it may not accurately locate the scatterers and even lead to the increase of artifacts when
the atoms of the dictionary cannot precisely match scattering signal components (model mismatch)
or an improper regularization parameter is used. The “corner lighting” effect can be suppressed in
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the present method because the defined weights corresponding to the corner area are relatively large
(large weights will encourage zero entries in sparse reconstruction algorithms). Some of artifacts in
the unweighted sparse reconstruction-based imaging method may also turn to be zero entries in the
weighted one if the defined weights corresponding to those artifacts are large. More precise weights
will lead to more accurate imaging results. However, it is hard to define the precise weights due to
the unknown of the locations of scatterers. Fortunately, although precise weights are not available,
the weights defined with the correlation coefficients between the atoms of the dictionary and the
scattering signals can roughly locate scatterers. Therefore, imaging results with few artifacts and
smaller spot sizes can be obtained using the weighted sparse reconstruction algorithm.

It is necessary to point out the limitations and requirements of the present method in the practical
NDE. Because the present method is a £;-norm optimization-based method, the computational
complexity and storage is higher than the traditional delay-and-sum imaging method. In addition,
the present method in current state aims at Lamb wave imaging for structures with regular shape,
and it may not work for engineering structures with complex geometry because scattering waves and
edge reflections in those structures are hard to be predicted

6. Conclusions

In this paper, a weighted structured sparse reconstruction-based Lamb wave imaging method is
presented. Edge reflections are incorporated in the atoms of the dictionary, which is used to sparsely
decompose the scattering signals. The Lamb wave imaging is formulated as a weighted structured
sparse reconstruction problem. Several conclusions are drawn as follows:

1.  Compared with the delay-and-sum imaging method, the present method can locate a scatterer
using few receivers.

2. The imaging results of the present method exhibit few artifacts and smaller spot sizes compared
with that of the delay-and-sum imaging method.

3.  The defined weights in the present method can adaptively penalize the entries corresponding
to the grids of the imaging area, which is helpful to alleviate the “corner lighting” effect and
reduce artifacts.

However, the scattering coefficients of the edges are homogenized and still cannot accurately
modeled, which produces errors in the prediction of edge reflections. In addition, more computation is
needed to solve the weighted structured sparse reconstruction problem than that of the delay-and-sum
method. Future work will focus on developing a more accurate prediction model for edge reflections.
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