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Abstract: The distinction between subject-dependent and subject-independent performance is
ubiquitous in the human activity recognition (HAR) literature. We assess whether HAR models really
do achieve better subject-dependent performance than subject-independent performance, whether a
model trained with data from many users achieves better subject-independent performance than one
trained with data from a single person, and whether one trained with data from a single specific target
user performs better for that user than one trained with data from many. To those ends, we compare
four popular machine learning algorithms’ subject-dependent and subject-independent performances
across eight datasets using three different personalisation–generalisation approaches, which we term
person-independent models (PIMs), person-specific models (PSMs), and ensembles of PSMs (EPSMs).
We further consider three different ways to construct such an ensemble: unweighted, κ-weighted,
and baseline-feature-weighted. Our analysis shows that PSMs outperform PIMs by 43.5% in terms of
their subject-dependent performances, whereas PIMs outperform PSMs by 55.9% and κ-weighted
EPSMs—the best-performing EPSM type—by 16.4% in terms of the subject-independent performance.

Keywords: human activity recognition; machine learning; ensemble methods; boosting; bagging;
inertial sensors

1. Introduction

This is an extended version of a paper we presented at the 6th international Workshop on
Sensor-based Activity Recognition and Interaction (iWOAR’19) [1]. In addition to the experiments,
results, and analyses presented in that paper, this paper covers more of the literature in more depth,
considers additional ways to combine person-specific models into ensembles, sharpens and deepens
the statistical analysis, and expands the discussion by relating our findings to the pertinent literature.

Human activity recognition (HAR) systems are typically evaluated for their ability to generalise to
either unknown users (people not represented in the HAR algorithm’s training data) or to known users
(people represented in the training data); the former is known as subject-independent and the latter as
subject-dependent performance. The subject-independent performance can be estimated by performing
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a leave-one-subject-out cross-validation across all users in the dataset, and the subject-dependent
performance by performing a separate k-fold cross-validation for each user. Which performance should
be optimised when developing a HAR system depends on how it is going to be commissioned and
deployed. If commissioning a HAR system entails obtaining examples of the activities of interest
from its end users—the people whose activities are to be recognised by the deployed system—then
we should optimise the subject-dependent performance. Intuitively, this suggests that we train a
personalised HAR inference model for each user. We refer to models obtained in this manner as
person-specific models (PSMs), because they are tuned for a specific person. If, on the other hand, the
system is to be deployed without prior commissioning (i.e., without being trained on data from its
end users), then it must ship with a HAR model that has been pre-trained on data from a (presumably
representative) sample of users. We refer to a model obtained in this manner as a person-independent
model (PIM), because its performance is assumed to be independent of the person using it. PIMs are
usually evaluated on subject-independent performance (i.e., unknown users), but it is not uncommon
to see them evaluated on subject-dependent performance (known users), an approach that corresponds
to a scenario wherein it is possible to obtain sample data from (some of) the system’s end users during
commissioning, but not possible to identify users (and hence the appropriate PSM) once the system
has been deployed. In addition to PIMs and PSMs, we also consider three different types of ensembles
of PSMs to assess whether such ensembles can compete with PIMs in terms of subject-independent
performance. The advantage of an ensemble of PSMs (EPSM) is that an EPSM can be improved by
exploiting data from new users without accessing the dataset that was used to develop the initial
model, simply by fitting a PSM for each new user and adding them to the ensemble. This is not
the case for a PIM, which requires the dataset used to develop the initial model to exploit data
from new users. The distinction between subject-dependent and subject-independent performance is
ubiquitous in the HAR literature, and most empirical evaluations of HAR algorithms make it clear
which performance measure is being assessed. Intuitively, we hypothesise that methods ought to do
better in terms of subject-dependent performance than in terms of subject-independent performance;
that PIMs outperform PSMs in subject-independent performance; and that PSMs outperform PIMs in
subject-dependent performance. Unfortunately, not many HAR papers report results for more than one
combination of the personalisation–generalisation approach (e.g., PIM or PSM), and subject-dependent
and subject-independent performance, and none of them report results for all four combinations,
making it impossible to verify whether these hypotheses are correct. This paper presents the first
empirical comparison of the subject-dependent and subject-independent performances achieved with
PIMs and PSMs on multiple (eight) HAR datasets, using four popular machine learning algorithms
that have been used extensively and successfully in the HAR literature. The remainder of this paper
proceeds as follows. Section 2 summarises the literature pertinent to the topic of subject-dependent
and subject-independent performance in HAR, and the state of the art for the benchmark datasets
used in this paper. Section 3 describes our methods, including the benchmark datasets, pre-processing,
segmentation, feature extraction, and activity inference and evaluation. Section 4 presents the results
of our experiments and their analysis. Section 5 discusses our findings in the context of the related
works from Section 2, and Section 6 concludes the paper.

2. Related Work

In a 2019 survey of 56 papers on deep learning—deep neural, convolutional, and recurrent
neural networks, auto-encoders, and restricted Boltzmann machines—for sensor-based human activity
recognition, Wang et al. [2] concluded that there is no single “model that outperforms all others in all
situations.” Comparing the results from the original studies for three HAR datasets, among them the
Opportunity [3] dataset also employed in this paper, their survey identifies four papers [4–7] as the
state of the art. The following paragraph summarises, in chronological order, the results from these
four papers with respect to the predictive performance on the HAR datasets also used in this paper.
The first of the four papers is the work by Jiang and Yin [4]. The deep convolutional neural network
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(DCNN) they proposed in 2015, termed DCNN+, recognises human activities from signal and activity
images which are obtained by transforming the signals from a single inertial measurement unit (IMU) via
the discrete Fourier transform or 2D wavelets. To disambiguate between pairs of classes with confused
predictions (i.e., classes with similar large predicted probabilities) they employ binary SVM classifiers.
The three considered models (DCNN, DCNN+, and SVM) all achieved a subject-dependent accuracy
of >99% on the FUSION dataset [8]. The second paper, published in the same year by Zhang et al. [5],
proposes a different DNN for human activity recognition. This DNN recognises human activities
from the raw signals acquired from a wearable IMU and the signal magnitude of the accelerometer’s
combined three axes. In an empirical comparison, the authors pit their DNN against traditional
(i.e., not deep learning) machine learning algorithms with default, untuned hyper-parameters that
operate on five statistical features (mean, standard deviation, energy, spectral entropy, and pairwise
correlations between the accelerometer axes) extracted from the raw IMU signals. Their results show
their DNN achieving a subject-dependent error rate of 18% on the Opportunity dataset, SVM being a
close runner-up with an error rate of 19%. The third paper is the work by Ordóñez and Roggen [6],
in which they propose a deep convolutional long short-term memory cell (LSTM) model for human
activity recognition. Their LSTM outperformed the baseline convolutional neural network (CNN) in
terms of subject-dependent performance (F-score: 93% vs. 91%) on the Opportunity dataset. The fourth
paper was published in 2016 by Hammerla et al. [7]. In it, the authors compare CNNs, DNNs, and three
different types of LSTMs across three benchmark HAR datasets, all of them consisting of data from
multiple IMUs per user. Among them are two datasets, the Opportunity and PAMAP2 [9] datasets,
which we also use in this paper. This paper is particularly elucidating because of its exploration of
how sensitive models are to the various hyper-parameters that determine a deep learning model’s
architecture, learning, and regularisation of parameters. The authors explore the hyper-parameter
space by randomly sampling hyper-parameter configurations in hundreds or thousands of experiments.
The results from these experiments clearly show that deep neural networks are extremely sensitive to
hyper-parameter settings, which is illustrated by the differences between each model’s median and
best performance. On the Opportunity dataset, the best model’s (LSTM) median score is 17 percentage
points lower than its best score, and on the PAMAP2 dataset the best model’s (CNN) median score
is seven percentage points lower than its best score. This latter number is the smallest discrepancy
between best and median scores across all models and datasets. In their conclusions, the authors concur
with Wang et al. [2] in that no single model dominates across all datasets. The best subject-dependent
performance on the Opportunity dataset, an F-score of 93%, was achieved with a bi-directional LSTM,
whereas the best subject-dependent performance on the PAMAP2 dataset, an F-score of 94%, was
achieved with a CNN. In 2019, Jordao et al. [10] evaluated seven state-of-the-art methods published
between 2010 and 2016, including the work by Jiang and Yin [4] discussed above, on six publicly
available HAR benchmark datasets, including the PAMAP2 and MHEALTH [11] datasets, which
are used in this paper. Three of the seven methods entirely rely on deep neural networks, while the
remaining four use handpicked features as inputs to classification algorithms. Each method was
evaluated with a different data segmentation strategy (overlapping and non-overlapping sliding
windows), and its predictive performance estimated via stratified k-fold, leave-one-subject-out, and
leave-trials-out cross-validation. Leave-trials-out cross-validation, which is discussed in more detail
in Section 3, segments data into overlapping sliding windows one trial at a time. A trial corresponds
to one individual’s performance of one activity or sequence of activities during the data acquisition.
The results show that naïve resampling methods, such as stratified k-fold cross-validation, tend
to inflate the predictive performance when used with overlapping sliding windows, because the
overlap between subsequent windows can appear in both the training and test data. Based on the
(unbiased) subject-dependent performance, estimated via leave-trials-out cross-validation, and the
subject-independent performance, estimated via leave-one-person-out cross-validation, the authors
identify two state-of-the-art methods for HAR with wearable sensor data. The first is an ensemble
classifier, consisting of a decision tree, logistic regression, and a shallow multi-layer perceptron,
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proposed in 2015 by Catal et al. [12]. This ensemble achieved subject-dependent accuracy of 92% and
81% on MHEALTH and PAMAP2, respectively, with an average of 76% across all six datasets, and
subject-independent accuracy of 95% and 85% on MHEALTH and PAMAP2, respectively, with an
average of 69%. The second method that emerged as the state-of-the-art is the convolutional neural
network (CNN) proposed in 2015 by Chen and Xue [13]. This CNN achieved subject-dependent
accuracy of 90% and 82% on MHEALTH and PAMAP2, respectively, with an average of 83%, and
subject-independent accuracy of 89% and 83% on MHEALTH and PAMAP2, respectively, with an
average of 78%. Note that the 7–10 percentage points difference between the averages is largely due to the
ensemble’s poor performance on the dataset to which the study’s authors could not apply the CNN. The
authors’ analysis concludes that, although deep neural networks such as CNNs have achieved remarkable
results in HAR with wearable sensor data, machine learning algorithms operating on handpicked features
can in many cases achieve comparable results. In 2019, Abdu-Aguye and Gomaa [14] proposed an
approach to feature extraction for sensor-based HAR. Their approach applies a wavelet transform
and subjects the resulting decompositions to spatial pyramid pooling [15] to obtain fixed-length
features which preserve both local and global patterns of the input signals. They used these features
as inputs to a random forest, and compared the performance against a CNN. They estimated the
subject-dependent performance by averaging over 15 repeated 75%/25% train/test splits. Their
method achieved a subject-dependent accuracy of 89% and an F-score of 90%, while the CNN achieved
an accuracy of 87% and an F-score of 87% on the REALWORLD dataset [16]. In 2020, Vakili et al. [17]
evaluated seven machine learning algorithms, presumably operating on a set of extracted features, an
artificial and a convolutional neural network, and a long short-term memory (LSTM) model on a range
of internet-of-things datasets. The datasets’ application domains range from occupancy detection
from environmental sensors, to rain prediction from weather station data, to HAR from wearable
IMUs. They found that random forests outperformed the other methods on the SIMFALL [18] dataset
with an average subject-dependent accuracy of 76%, estimated via 10-fold cross-validation. In 2018,
Alharbi and Farrahi [19] proposed a CNN to recognise smoking activities from a smartphone and
smartwatch’s inertial measurement units. They evaluated their approach on the UTSMOKE [20]
dataset, but excluded the walking, sitting, and standing activities “because they were very simple to
classify using the CNN.” They report an average subject-independent F1 score of 90%, estimated via
a 70%/15%/15% train/validation/test split, but do not clarify how these splits can be construed in
a subject-independent manner. This concludes our review of the state of the art in human activity
recognition with respect to the datasets also used in this paper. We conclude our discussion of related
work by reviewing the few papers that directly investigate the relationship between subject-dependent
and subject-independent HAR performance.

Bao and Intille [21] assessed the subject-dependent performance of PSMs for recognising 20
activities of daily living (ADLs) across 20 users by training four learning algorithms on a set of
semi-controlled laboratory data and evaluating them on a set of semi-naturalistic data, and the
subject-independent performance of a PIM by performing a leave-one-subject-out cross-validation
on the combined data from both sets. In a second experiment, they assess the subject-dependent
performance of a PSM trained on three additional users’ laboratory data, and the subject-independent
performance of a PIM trained on five different users’ laboratory data, using the three new users’
semi-naturalistic data for evaluation. Unfortunately, the differences in the protocols for estimating
subject-dependent and subject-independent performance in the first experiment means that we
cannot compare them directly (the latter accuracies are 18% to 50% higher than the former). Their
second experiment, which affords a fairer comparison, directly contradicts these findings: the
subject-dependent PSM accuracy (77%) exceeds the subject-independent PIM accuracy (73%) by
6%. Weiss and Lockhart [22] assessed the subject-independent and subject-dependent performances
of PIMs, and the subject-dependent performances of PSMs for recognising six ADLs across 59 users
and eight learning algorithms. They report that PSMs outperform a PIM by 2% to 30% on
subject-dependent accuracy, and that a PIM achieves an 11% to 41% higher subject-dependent than
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subject-independent accuracy. These results suggest that, all else being equal, HAR methods will
indeed perform better on data from known users than on data from unknown users. However, they
tell us little about the size of the difference for a given personalisation–generalisation approach or
about how the trade-off between subject-dependent and independent performance relates to the
personalisation–generalisation approach.

3. Methods

We follow the standard approach to human activity recognition comprised of data pre-processing,
segmentation into windows, feature extraction from those windows, and activity inference on
them based on their features [23]—where the inference step is implemented with machine
learning algorithms. We estimate and compare the performance of four popular machine learning
algorithms—L2 (Ridge) regularised logistic regression, k-nearest neighbours (kNN), support vector
machines (SVM), and a gradient boosted ensemble of decision trees (GBT)—using a set of features
extracted from eight HAR datasets, which are summarised in Table 1.

Table 1. Number of (act)ivities and (ind)ividuals, trials/activity (±standard error), and sampling
frequency (Hz) for each of the datasets.

Dataset Act Ind Trials/Act Hz

[8] FUSION 7 10 90 ± 0 50
[11] MHEALTH 11 10 38 ± 0 50
[3] OPPORT 4 4 590 ± 258 30
[9] PAMAP2 12 9 81 ± 8 100
[16] REALWORLD 8 15 318 ± 42 50
[24] SAFESENS 17 11 91 ± 13 33
[18] SIMFALL 16 17 128 ± 8 25
[20] UTSMOKE 7 11 859 ± 7 50

For each dataset, Table 1 cites the relevant publication, and lists the number of activities (act)
and people (ind), and the average number of trials per activity (±standard error) and sampling
frequency (Hz). We chose datasets that were acquired via wearable inertial measurement units (IMU)
comprised of an acceleration and angular velocity sensor, and worn either on the chest or the
wrist. When sensors were to be worn on both wrists we chose the one associated with the right
wrist. Unfortunately, the information about whether a user is right or left handed is unavailable
for most datasets, making it impossible to choose the dominant wrist consistently. All datasets,
except REALWORLD and SAFESENS which used a chest-worn sensor only, used a wrist-worn sensor,
and only two datasets—PAMAP2 and SIMFALL—employed both a wrist and a chest-worn sensor.
Figure 1 illustrates how the instances—each of which corresponds to the features extracted from one
window—are distributed among the activities. Note that instead of distinguishing falls from ADLs in
the SIMFALL dataset, which [18] were able to do with sensitivity, specificity, and accuracy all >99%,
we focus on the 16 ADLs shown in the figure. Most of the activity labels are self-explanatory, but
some of the activities in the UTSMOKE dataset merit further explanation. “SmokeST” denotes “Smoke
Sitting”—smoking (presumably a cigarette) while sitting down—while “SmokeSD” denotes “Smoke
Standing”—smoking while standing up. Similarly, “DrinkST” and “DrinkSD” denote “Drink Sitting”
(drinking while sitting down) and “Drink Standing” (drinking while standing up), respectively.
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Figure 1. Number of instances per activity for each dataset.

The various cross-validation strategies, machine learning algorithms, and calculations of
performance measures were implemented in Python (version 3.7.3), using the scipy ([25] version 1.1.0),
numpy ([26] version 1.16.2), pandas ([27] version 0.23.3), and sklearn ([28] version 0.20.2) libraries, and
parallelised via GNU parallel ([29] version 20161222). Analysis—t-tests, mixed effects models, and
estimated marginal means—and all visualisations, were implemented in R ([30] version 3.6.1), wherein
we used the mixed effects model implementation from the lme4 library by ([31] version 1.1), and the
estimated marginal means implementation from the emmeans library by ([32] version 1.3.2).

We propose and consider another personalisation–generalisation approach in addition to the
person-independent model (PIM) and person-specific model (PSM), which we term an ensemble of
PSMs (EPSM). An EPSM maintains a PSM for each known user. When an instance for a known user
needs to be classified, an EPSM simply applies that user’s PSM, but when an instance originates
with an unknown user, it applies each user’s PSM to obtain confidence scores (e.g., the estimated
probability) for each activity of interest. Then the EPSM calculates each activity’s mean score, and
classifies the instance to the activity with the maximum mean score. To deal with the (very few) users
for whom the data do not cover all the activities of interest, and whose PSMs are therefore unaware of
some activities and hence unable to generate a confidence score for those activities, we assume that
those activities have a probability of zero. This is not unreasonable if we accept that some people will
never perform certain activities (e.g., smoking, military crawling).

In addition to the basic, unweighted EPSM described above, this paper proposes two flavours of
weighted EPSMs. A weighted EPSM makes predictions for known users in the same manner as the
basic EPSM described above, but when making predictions for unknown users, a WEPSM combines its
constituent models’ predictions via a weighted average. The two types of weighted EPSMs proposed in
this paper differ in how the weights are determined. The first type is the κ-weighted EPSM (WEPSM).
A WEPSM weights its constituents’ predictions according to each PSM’s average κ across all the
other training users—i.e., all users except the one whose data are held out for testing and the one
whose data (were) used for fitting the PSM. The second type is the baseline-feature-weighted EPSM
(WEPSMbf). A baseline-feature-weighted EPSM weights its constituents’ predictions according to
the mean euclidean distance between the PSM (training) user’s baseline features and the test user’s
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baseline features. A user’s baseline features are the features extracted from a random instance (window)
of standing or sitting. To obtain the weight for a given training-user and test-user, we calculate the
pairwise distances between the two users’ baseline features, and take the mean of these distances to
weight the training user’s PSM predictions for the test user when aggregating them.

Figure 2 provides a graphical overview of the experiment we conducted, whose details are
explained in the following subsections. The raw sensor signals from each dataset and sensor are
first subjected to pre-processing. The pre-processed data—extracted features and labels, along with
metadata identifying the originating dataset, sensor, and user—are then used to evaluate each learning
algorithm’s ability to infer human activities in terms of subject-dependent (the figure’s left-hand branch)
and subject-independent (the right-hand branch) performance. The figure also illustrates the difference
between PSMs, unweighted EPSMs, κ-weighted EPSMs (WEPSM), and baseline-feature-weighted
EPSMs (labelled "WEPSM_BF" in the figure).

Pre-processing

Split into trials on activity change and gaps >= 1.5 seconds

Split each trial into 15-second batches

Separate body and gravity acceleration

Extract features along 3-second window with 50% overlap

for each batch

Subject-dependent
predictions

Subject-independent
predictions

PIM PSM

k-fold
Leave-Trials-Out
CV across
all users k-fold

Leave-Trials-Out
CV on user's data

for each
user

PIM PSM/EPSM/WEPSM/WEPSM_BF

Leave-1-User-Out
CV

Leave-All-But-1-User-Out CV:
- Fit a PSM for each user
- Use PSM to predict for all other users

PSM EPSM

Average PSM
predictions for
the test user

for each
test user

WEPSM WEPSM_BF

Mean kappa across
non-test users
for each PSM

Average PSM
predictions for
the test user,
weight = kappa

for each
test user

Calculate mean
distance between
test and PSM user's
baseline features

Average PSM
predictions for
the test user,
weight = 1/mean
distance

for each
test user

Figure 2. Graphical summary of the experiment. Each dataset is pre-processed once, and then used to
obtain the subject-dependent and subject-independent predictions with each learning algorithm and
personalisation–generalisation approach (person-independent models (PIMs), person-specific models
(PSMs), etc.). Note that an ensemble of PSMs is identical to a PSM in the case of subject-dependent
predictions (i.e., for known users).

3.1. Pre-Processing, Segmentation, and Feature Extraction

Some datasets come with a constant timestamp for each trial—presumably introduced when
attempting to store POSIX® epoch timestamps in (sub)millisecond resolution in Microsoft® Excel®

spreadsheets. For these datasets we generate timestamps with a fixed inter-arrival time equal to
the dataset’s nominal sampling frequency. Then, we (automatically) separate the raw data into
non-overlapping natural trials by splitting the signal whenever the activity (label) changes or the
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inter-arrival time (i.e., the time between two subsequent samples) exceeds 1.5 s. To ensure that we
have at least two trials per user and activity, each of the natural trials is then split into non-overlapping
batches of 15 s. Next, the body and gravity components of each trial’s accelerometer signal are
separated by the elliptical infinite-impulse response (IIR) low pass filter separates described by [33].
After discarding the original accelerometer data—which do not contain any information beyond
that in the gravity and body components—we are left with three tri-axial signals: the gyroscope
signal, the body acceleration signal, and the gravity acceleration signal. Finally, a set of time and
frequency-domain features is extracted along a sliding 3 s window with 50% (1.5 s) overlap from each
trial. From the angular velocity signal and both acceleration components we extract the mean, standard
deviation, skew, and kurtosis, and from the angular velocity and body acceleration signal, the spectral
power entropy, peak-power frequency, signal magnitude area, and the pairwise correlations between
each signal’s axes. This amounts to a total of 84 features that are extracted from each window.

3.2. Activity Inference and Evaluation

We use logistic ridge regression with C = 0.98, a kNN classifier with k = 2 and weighted voting,
a SVM classifier with a radial basis function with kernel coefficient γ = 0.001 and cost penalty C = 316,
and a GBT with a learning rate α = 0.02 and comprised of 750 trees. The parameters for kNN, SVM,
and GBT are taken from [24], who tuned them for subject-independent performance on the 17 activities
in the SAFESENS dataset. The ridge parameter of C = 0.98 corresponds to weak regularisation, and
was chosen to counteract the impact of correlated features. All features are standardised ([x − x̄]/s)
according to each feature’s mean (x̄) and standard deviation (s) in the training data. We use Cohen’s
kappa (κ) to quantify the predictive performance because—unlike other performance metrics such as
sensitivity, specificity, and accuracy—it corrects for the probability of obtaining the observed level of
agreement between the ground truth and predicted labels by chance, and because it is designed to
measure predictive performance for multi-class classification.

To estimate an algorithm’s subject-dependent performance, the trials are used to generate the folds
in a k-fold cross validation, a method we call leave-trials-out cross-validation [10]. Leave-trials-out
cross-validation ensures that the raw data used to derive an instance in a training split are never
used to derive the instances that constitute the corresponding test split, an issue that is bound to
occur when working with instances derived from partially overlapping sliding windows [10], as we
do here. PIM performance for known users is estimated by carrying out a k-fold leave-trials-out
cross-validation across all the users in each dataset, and PSM performance by carrying out a separate
k-fold leave-trials-out cross-validation for each user. In both cases k = n, where n denotes the
number of people in the dataset. To estimate the subject-independent performance, we carry out a
leave-m-users-out cross-validation with m = 1 for EPSM and PIM, and m = n − 1 for PSM.

4. Results and Analysis

Figure 3 illustrates the trade-off between the subject-dependent performance—i.e., the
performance for users who were represented in the data used for training the model—on the horizontal
axis, and the subject-independent performance—the performance for users who were not represented
in the training data—on the vertical axis. In this figure, each datum corresponds to a single person
(user), except in the case of person-specific models, where it corresponds to the median performance a
model trained on data from the known user achieved on the other users in the dataset. The symbol
and colour indicate which personalisation–generalisation approach (PIM, PSM, EPSM, WEPSM,
or WEPSMbf) was used. Table 2 summarises the results depicted in Figure 3, but using the PSM
performance for all rather than, as shown in the figure, only that for the average unknown user. The
table lists the mean κ (in %) ± standard error for each personalisation–generalisation approach, machine
learning algorithm, dataset, and sensor location. To make the results more comparable with other
results for these same datasets, the appendix presents the same tables with the accuracy (Table A1),
error rate (Table A2), and weighted F-score (Table A3).
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Subject−independent vs. subject−dependent performance
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Figure 3. Subject-independent (vertical axis) versus subject-dependent (horizontal axis) κ (%) across
all learning algorithms. Axes have been scaled to encompass the data for improved visibility. Note
how the subject-dependent performance of (E)PSMs tends to be better (further to the right) than that of
PIMs, and there is a clear difference in subject-independent performance between PIMs and PSMs.

Inspecting these results, it is clear that the subject-independent performance is systematically and
substantially worse than the subject-dependent performance. It is also clear that PSMs perform worse
than PIMs in terms of their subject-independent performance. Furthermore, it is clear that a gradient
boosted ensemble of decision trees (GBT) generally outperforms logistic regression (logreg) and
k-nearest neighbours (kNN), with few exceptions. The most notable of these is the subject-independent
performance with PSM, EPSM, WEPSM, and WEPSMbf on the SAFESENS dataset, where both kNN
and logistic regression outperform gradient boosted trees, in some cases by more than one standard
error. However, things are less clear when it comes to comparing PIMs and PSMs in terms of their
subject-dependent performance, comparing PIMs and EPSMs in terms of their subject-independent
performance, or comparing the different types of EPSMs against each other. To elucidate these matters,
and to quantify the obvious differences mentioned above, we turn to statistical analyses which are
discussed in the remainder of this section.
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Table 2. Subject-dependent and subject-independent κ (%) ± standard error when learning algorithms (mla) are combined with a person-independent model (PIM), a
person-specific model (PSM), an unweighted ensemble of PSMs (EPSM), a κ-weighted EPSM (WEPSM), or a baseline-feature-weighted EPSM (WEPSMbf).

Subject-Dependent Subject-Independent

Dataset Sensor mla PIM (E)PSM PIM PSM EPSM WEPSM WEPSMbf

FUSION wrist gbt 97.9 ± 0.3 97.6 ± 0.4 92.4 ± 2.2 81.4 ± 2.1 90.6 ± 2.6 90.7 ± 2.5 90.2 ± 2.6
knn 94.0 ± 0.9 94.2 ± 1.0 85.9 ± 2.0 74.9 ± 2.6 87.5 ± 2.8 87.5 ± 2.8 87.3 ± 2.8
logreg 96.7 ± 0.6 97.4 ± 0.4 91.9 ± 2.1 79.4 ± 2.7 89.5 ± 2.8 89.5 ± 2.8 89.0 ± 2.7
svm 98.0 ± 0.3 97.8 ± 0.4 90.9 ± 2.1 80.0 ± 2.3 90.3 ± 2.7 90.4 ± 2.7 90.0 ± 2.6

MHEALTH wrist gbt 97.5 ± 0.8 97.2 ± 1.2 82.4 ± 3.6 59.5 ± 2.3 72.2 ± 3.5 72.4 ± 3.4 71.5 ± 3.5
knn 92.9 ± 1.3 93.7 ± 1.4 76.1 ± 3.1 56.0 ± 2.1 71.4 ± 2.6 71.6 ± 2.6 72.8 ± 2.5
logreg 93.2 ± 1.4 95.8 ± 1.4 78.9 ± 3.3 54.1 ± 2.4 70.0 ± 2.9 70.2 ± 2.9 70.8 ± 2.9
svm 95.5 ± 1.0 96.8 ± 1.0 82.0 ± 2.6 58.0 ± 2.1 72.0 ± 3.9 72.1 ± 3.9 71.4 ± 4.0

OPPORT wrist gbt 81.5 ± 2.8 83.5 ± 2.4 69.0 ± 7.2 57.9 ± 5.8 66.5 ± 8.1 66.2 ± 8.4 66.7 ± 7.9
knn 71.1 ± 2.7 74.8 ± 2.7 51.4 ± 4.2 42.9 ± 3.3 54.5 ± 5.4 53.6 ± 5.1 54.8 ± 4.6
logreg 71.9 ± 3.7 76.7 ± 3.0 59.9 ± 7.0 46.2 ± 3.4 56.7 ± 6.7 56.4 ± 7.0 57.2 ± 6.4
svm 80.3 ± 2.6 81.0 ± 2.4 65.4 ± 6.7 48.4 ± 2.8 61.7 ± 6.6 61.3 ± 7.0 62.3 ± 6.2

PAMAP2 chest gbt 87.5 ± 0.5 87.7 ± 0.6 77.4 ± 4.3 54.7 ± 2.9 72.4 ± 4.1 72.9 ± 4.2 72.0 ± 3.8
knn 75.5 ± 1.0 78.4 ± 1.2 63.7 ± 2.5 49.0 ± 1.8 67.7 ± 3.2 68.2 ± 3.4 66.3 ± 3.1
logreg 82.5 ± 1.0 85.4 ± 0.9 72.2 ± 3.8 48.8 ± 2.4 69.4 ± 4.9 69.4 ± 4.9 68.6 ± 4.8
svm 86.0 ± 0.7 85.1 ± 0.8 73.7 ± 4.5 49.7 ± 2.6 69.4 ± 5.1 70.0 ± 5.1 68.5 ± 5.1

PAMAP2 wrist gbt 86.8 ± 1.1 86.0 ± 0.9 78.5 ± 2.8 56.8 ± 2.3 71.7 ± 2.7 72.2 ± 2.6 72.0 ± 2.8
knn 77.4 ± 1.5 78.9 ± 1.6 65.2 ± 4.1 47.5 ± 2.7 68.1 ± 3.9 68.5 ± 4.0 67.6 ± 3.8
logreg 82.4 ± 1.7 83.5 ± 1.3 74.7 ± 4.1 49.9 ± 3.5 68.8 ± 4.9 69.3 ± 4.9 69.0 ± 4.8
svm 84.9 ± 1.3 83.3 ± 1.3 73.1 ± 5.1 46.6 ± 3.0 68.3 ± 4.5 68.8 ± 4.5 68.2 ± 4.3

REALWORLD chest gbt 93.3 ± 0.6 96.1 ± 0.4 71.7 ± 4.4 37.5 ± 1.9 62.7 ± 4.0 64.1 ± 3.8 63.2 ± 3.9
knn 85.3 ± 1.5 91.3 ± 1.0 59.3 ± 3.4 37.9 ± 2.4 61.8 ± 3.7 62.8 ± 3.6 62.0 ± 3.8
logreg 83.8 ± 1.8 95.4 ± 0.5 60.6 ± 5.8 30.3 ± 2.1 57.1 ± 4.2 58.7 ± 4.2 57.1 ± 4.3
svm 92.0 ± 0.7 95.5 ± 0.4 62.2 ± 5.1 30.4 ± 2.1 54.8 ± 4.5 56.5 ± 4.3 55.0 ± 4.7
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Table 2. Cont.

Subject-Dependent Subject-Independent

Dataset Sensor mla PIM (E)PSM PIM PSM EPSM WEPSM WEPSMbf

SAFESENS chest gbt 93.9 ± 0.9 97.0 ± 0.8 67.6 ± 3.3 27.9 ± 2.0 48.9 ± 4.8 48.7 ± 5.4 53.9 ± 3.3
knn 81.3 ± 1.9 87.8 ± 1.5 55.7 ± 3.5 30.2 ± 1.7 54.7 ± 3.2 54.6 ± 3.3 54.2 ± 2.7
logreg 78.7 ± 1.6 93.1 ± 1.0 64.1 ± 3.0 27.4 ± 1.8 54.0 ± 2.7 53.3 ± 2.7 54.1 ± 2.8
svm 88.1 ± 1.2 95.2 ± 0.8 66.9 ± 2.7 29.9 ± 1.8 51.9 ± 2.6 53.0 ± 2.4 51.9 ± 2.9

SIMFALL chest gbt 57.2 ± 1.2 65.9 ± 1.3 43.9 ± 1.6 19.3 ± 0.7 33.5 ± 1.6 33.5 ± 1.6 32.6 ± 1.5
knn 45.0 ± 0.9 49.5 ± 1.2 30.3 ± 0.7 19.8 ± 0.6 33.3 ± 1.0 33.2 ± 1.1 32.2 ± 0.9
logreg 38.3 ± 0.9 52.3 ± 1.2 34.5 ± 1.1 14.5 ± 0.5 29.1 ± 1.0 29.1 ± 1.0 28.2 ± 1.0
svm 50.1 ± 0.7 49.5 ± 1.6 38.2 ± 1.4 14.1 ± 0.4 25.9 ± 1.0 26.2 ± 0.9 24.8 ± 1.0

SIMFALL wrist gbt 55.4 ± 1.5 62.7 ± 1.5 40.8 ± 2.3 19.1 ± 1.0 32.9 ± 2.2 33.0 ± 2.2 32.0 ± 2.2
knn 44.6 ± 1.2 48.8 ± 1.2 29.2 ± 1.5 19.2 ± 1.0 31.8 ± 1.6 31.9 ± 1.6 31.0 ± 1.6
logreg 37.3 ± 1.4 49.6 ± 1.3 32.7 ± 2.1 16.2 ± 0.9 27.9 ± 1.7 28.4 ± 1.7 27.6 ± 1.8
svm 48.2 ± 1.3 45.9 ± 1.5 36.0 ± 2.3 13.7 ± 0.7 27.1 ± 1.5 27.3 ± 1.6 26.5 ± 1.7

UTSMOKE wrist gbt 80.9 ± 1.5 90.8 ± 0.9 68.7 ± 2.9 54.8 ± 1.8 65.4 ± 3.2 65.4 ± 3.3 65.3 ± 3.1
knn 76.3 ± 1.3 81.2 ± 1.2 61.6 ± 2.4 50.8 ± 1.7 60.7 ± 2.8 60.8 ± 2.9 60.5 ± 2.7
logreg 68.9 ± 2.1 84.1 ± 1.2 63.2 ± 2.5 50.5 ± 1.6 59.4 ± 2.5 59.4 ± 2.5 59.6 ± 2.4
svm 83.6 ± 1.3 89.1 ± 0.9 69.2 ± 2.7 52.9 ± 1.8 63.6 ± 2.9 63.8 ± 3.0 63.8 ± 2.7
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4.1. Analysis of the Subject-Dependent Performance

We can pair the performance when a person-specific model (PSM) is combined with a machine
learning algorithm and applied to the data from a known person for a given dataset and sensor,
to the performance when the same algorithm is combined with a person-independent model (PIM)
and applied to the same dataset, sensor, and person. A paired t-test of these data yields a 95%
confidence interval (C.I.) of 4.1 to 5.2 percentage points (hereafter, points) for the difference between
the κ achieved with PSMs and that achieved with PIM, with a mean difference of 4.6 points (t442 = 16.2,
p < 2.2 × 10–16), suggesting that we can be 95% confident that a PSM outperforms a PIM on data
from known users by 4.1 to 5.2 points. However, it is unlikely that the t-test’s underlying
assumption of identically and independently distributed (IID) data is met, because the difference in the
subject-dependent performance between PIM and PSM might depend not only on the dataset—which
is expected due to the different activities of interest, and evident in Figure 3—but also on the
learning algorithm.

A more appropriate tool for analysing data, such as these, which are not IID, is the linear mixed
effects model (LMM). A LMM extends linear regression with so-called random effects which allow us to
impose structure on the residuals. We can, for example, specify that the performances within datasets
are correlated, or even that the difference in performance between personalisation–generalisation
approaches varies depending on the dataset. The random effects are assumed to add up to zero, and
hence the fixed effects (which are analogous to linear regression coefficients) can be estimated via
(restricted) maximum likelihood. A LMM, like the linear regression model which it is based on, is
built on the assumption of normally distributed residuals. The generalised linear mixed effects model
(GLMM) extends the LMM to non-normal data, analogously to the generalised linear model (GLM).
Like the GLM, it employs a link function, such as the logit, and error distribution (from the exponential
family) to model non-normal data. We use logistic GLMMs—a GLMM with a logistic link function, and
a binomial error distribution—to analyse the subject-dependent performance and subject-independent
performance, and the difference between them. The explanatory variables considered as fixed effects
were those of the personalisation–generalisation approach (PGA)—e.g., PIM, PSM, EPSM, and WEPSM;
those of the machine learning algorithm (MLA); and the random effects of the dataset and sensor. For
a detailed treatment of LMMs and GLMMs we refer interested readers to [34].

We use a GLMM to model the subject-dependent performance as a combination of (fixed) effects
for the machine learning algorithm and personalisation–generalisation approach—either PIM or PSM,
since subject-dependent EPSM performance is identical to that of its constituent PSMs—and a random
effect to control for the variation of the personalisation–generalisation approach effect between datasets.
This model explains the observed variation in the response with a residual standard deviation of 1.0157
between datasets, and with a standard deviation of 0.0255 between datasets’ sensors. This model
reveals that the (random) effect of applying PSM varies with a standard deviation of 0.2929 between
datasets, where it is very weakly negatively correlated (−0.11) with PIM performance, and with a
standard deviation of 0.0407 between datasets’ sensors, where it is strongly positively correlated (0.75)
with PIM performance. This confirms the intuition that a PSM likely confers less advantage when
applied to a dataset on which a PIM performs well. The maximum likelihood estimates of the fixed
effects, which are shown in Table 3, indicate that GBT—with an estimated κ of 89.4% and a 95% C.I. of
80.6% to 94.4% when used as a PIM—outperforms SVM by 19.5% (18.5% to 20.5%), logistic regression
by 45.5% (44.9% to 46.2%), and kNN by 46% (45.3% to 46.6%), regardless of whether they are combined
with a PIM or a PSM. They further show that PSMs outperform the corresponding PIM by 43.5% (17%
to 76%, p = 0.00058) on subject-dependent performance.
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Table 3. GLMM (Generalised Linear Mixed Effects Model) estimates (β), 95% confidence intervals, and
p-values of the fixed effects on subject-dependent performance associated with learning algorithms
and personalisation–generalisation approaches.

Coefficient 2.5% β 97.5% p

(Intercept) 1.425 2.129 2.833 3.1 × 10−9

kNN −0.628 −0.616 −0.604 <2.0 × 10−16

logreg −0.620 −0.608 −0.596 <2.0 × 10−16

SVM −0.229 −0.217 −0.204 <2.0 × 10−16

PSM 0.155 0.361 0.566 5.8 × 10−4

Both the paired t-test and the GLMM agree that PSMs outperform PIMs in terms of
subject-dependent performance. The GLMM estimates that PSMs outperform PIMs by 17% to 76%
(with a mean of 43.5%) on subject-dependent performance in terms of the odds-ratio, the t-test estimates
that difference as 4.1 to 5.2 points with a mean of 4.6 points. These estimates are consistent with each
other. The GLMM estimate for GBT with PSM is κ = 92.3% with a C.I. of 85.5% to 96.1%. With PIM it is
κ = 89.4% with a C.I. of 80.6% to 94.4%; 89.4% + 4.6 points equates to 94%, which is only 1.7 points
above the GLMM estimate and well within the C.I. of 85.5% to 96.1% postulated by the GLMM. For
kNN, the GLMM estimates the κ achieved with PSM at 86.7% with a C.I. of 76.2% to 93%, while the
κ achieved with PIM is estimated at 82% with a C.I. of 69.2% to 90.2%; 82% + 4.6 equates to 86.6%,
which not only lies well within the C.I. postulated by the GLMM, but is exceedingly close to the point
estimate of 86.7%. It is similar for logistic regression: the GLMM estimates the κ achieved with PSM at
86.8% with a C.I. of 76.3% to 93.1%, and with PIM at 82.1% with a C.I. of 69.4% to 90.3%; 82.1% + 4.6
equates to 86.7%, which is only 0.1 point below the GLMM point estimate (and well withing the C.I.
postulated by the GLMM). For SVM, the GLMM estimates the κ achieved with PSM at 90.7% with a
C.I. of 82.6% to 95.2%, and the κ achieved with PIM at 87.1% with a C.I. of 77% to 93.2%; 87.1% + 4.6
equates to 91.7%, which is only one point above the GLMM point estimate, and well within the 95%
C.I. postulated by the GLMM.

Both the t-test and GLMM rely on statistical assumptions. To compare the evaluated methods
without relying on statistical assumptions, we rank the methods by their κ within each user, dataset,
and sensor. Figure 4 illustrates the distribution of each method’s (learning algorithm + PSM or PIM)
ranks across all datasets, sensors, and users. While no single method dominates across all users, the
figure shows that person-specific models with gradient boosted ensembles of decision trees (GBT)
perform better than all other methods for nearly 80% of users, and better than all but one method for
over 10% of users, which confirms our statistical analysis. It is also clear that PSMs more often than
not outperform a PIM for any given algorithm.
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Figure 4. Distribution of the user-wise subject-dependent ranks of each learning algorithm +
personalisation–generalisation approach. A person-specific gradient boosted ensemble of decision
trees (GBT + PSM) outperforms the other methods for over 70% of users.

4.2. Analysis of the Subject-Independent Performance

A binomial logistic GLMM with fixed effects for the learning algorithm and
personalisation–generalisation approach, and a random effect for sensors nested within datasets
explains the variation in subject-independent performance with a residual error that varies with a
standard deviation of 0.781 between datasets and with a standard deviation of 0.0218 between datasets’
sensors. The maximum likelihood estimates of the fixed effects, which are shown in Table 4, indicate
that GBT—with an estimated κ of 71.3% (59.2% to 81.0%, p = 0.001) when used as a PIM—outperforms
kNN by 20.2% (19.7% to 20.6%), logistic regression by 21.7% (21.3% to 22.2%), and SVM by 15.8%
(15.3% to 16.3%). PIM outperforms PSM by 55.9% (55.3% to 56.2%), EPSM by 17.5% (17% to 18.1%),
WEPSM by 16.4% (15.8% to 16.9%), and WEPSMbf by 18.4% (17.8% to 18.9%). All p-values < 2 × 10−16.
This analysis clearly shows that PIM performs better for unknown users (i.e., on subject-independent
performance) than the other personalisation–generalisation approaches, and that ensembles of PSMs
perform better than a PSM. However, because the fixed effects for the different EPSMs—unweighted
(EPSM), κ-weighted (WEPSM), or baseline-feature-weighted (WEPSMbf)—estimate the difference
between the particular EPSM and PIMs, and because their estimates are quite similar, this analysis on
its own cannot compare the different types of EPSMs. To compare the different types of EPSMs we
employ paired t-tests and estimated marginal means (also known as least-squares means) analysis.

Table 4. GLMM (Generalised Linear Mixed Effects Model) estimates (β), 95% confidence intervals, and
p-values of the fixed effects on subject-independent performance associated with learning algorithms
and personalisation–generalisation approaches.

Coefficient 2.5% β 97.5% p

(Intercept) 0.367 0.907 1.448 1.0 × 10−3

kNN −0.231 −0.225 −0.219 <2.0 × 10−16

logreg −0.251 −0.245 −0.239 <2.0 × 10−16

SVM −0.178 −0.172 −0.166 <2.0 × 10−16

PSM −0.825 −0.818 −0.812 <2.0 × 10−16

EPSM −0.199 −0.193 −0.186 <2.0 × 10−16

WEPSM −0.186 −0.179 −0.172 <2.0 × 10−16

WEPSMbf −0.210 −0.203 −0.196 <2.0 × 10−16

According to the estimated marginal means, which are shown in Figure 5, the odds achieved by
κ-weighted EPSMs are 1.4% higher than those achieved by unweighted EPSMs (p = 0.0009), which in
turn are 1.1% higher than those achieved by EPSMs weighted by the inverse distance between the train
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and test user’s baseline features (p = 0.0159). A paired t-test of the difference in the subject-independent
performance between WEPSM and EPSM yields a mean difference of 0.32 points with a 95% C.I. of
0.20 to 0.44 points, and a t-value of 17 on 443 degrees of freedom, which corresponds to a p-value
of 3.48 × 10−7. This shows that a weighted EPSM significantly (albeit by less than one third of a
point) outperforms an unweighted EPSM. A paired t-test of the difference in the subject-independent
performance between EPSM and WEPSMbf yields a mean difference of 0.38 points, a 95% C.I. of 0.21 to
0.55 points, and a t-value of 4.45 on 435 degrees of freedom, corresponding to a p-value of 1.1 × 10−5.
This shows that using baseline features for weighting the PSM predictions performs significantly worse
(albeit by little more than one third of a point) than an unweighted EPSM. Both the estimated marginal
means and paired t-tests lead to the conclusion that κ-weighted EPSMs significantly outperform
unweighted EPSMs, which in turn significantly outperform EPSMs that are weighted by the inverse
mean distance between the train and test user’s baseline features.

Analogously to the subject-dependent ranks shown in Figure 4, Figure 6 illustrates the distribution
of each method’s (personalisation–generalisation approach + learning algorithm) subject-independent
ranks across all datasets, sensors, and users. The figure clearly shows that PIM + GBT ranks first or
second for over 60% of users—more often than any other method—and third or fourth for over 20% of
users, which confirms the statistical analysis’s finding that PIM + GBT outperforms other methods
on subject-independent performance. They also show that PIMs tend to perform better than other
personalisation–generalisation approaches, in particular PSM, whose ranks are mostly in the bottom
third. We can also see how a κ-weighted EPSM tends to shift the rather flat distribution of unweighted
EPSMs slightly towards the left, towards the better (lower) ranks, particularly when combined with
kNN or GBT.
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Figure 5. Estimated marginal means for comparing the subject-independent performance
of personalisation–generalisation approaches across learning algorithms. Person-independent
models (PIM) clearly outperform the other personalisation–generalisation approaches for any learning
algorithm, and ensembles of person-specific models (particularly WEPSMs) clearly outperform its
constituent person-specific models (PSM).
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Figure 6. Distribution of the user-wise subject-independent ranks of each
personalisation–generalisation approach + learning algorithm. PIM + GBT outperforms the
other methods for over 60% of users, and performs second-best for over 20% of users.

4.3. Comparison of Subject-Dependent and Independent Performance

We use a binomial logistic GLMM with a fixed effect for the performance type (subject-dependent
or subject-independent), one for the personalisation–generalisation approach (PIM, PSM, EPSM, etc.),
and one for the interaction between them. There are two random effects, one for sensors nested within
datasets, and one for the four learning algorithms. The reference level (intercept) corresponds to the
subject-dependent performance achieved by PIMs. This model shows that the subject-dependent
performance varies with a standard deviation of 0.1770 between learning algorithms, 0.825 between
datasets, and 0.0382 between datasets’ sensors. The model’s estimates for the fixed effects are shown
in Table 5, along with their 95% C.I.s and p-values. According to these estimates, PIMs achieve a
subject-dependent κ, averaged over learning algorithms, of 82.2% (71.8% to 89.3%, p = 4.8 × 10−7) and
PSMs outperform PIMs by 46% (44.9% to 47.2%, p < 2 × 10−16) in terms of the subject-dependent odds,
with an estimated mean κ of 87.1% and a C.I. of 78.9% to 89.3% (according to the estimated marginal
means shown in Figure 7). The subject-independent odds of PIMs are estimated at 48.1% (47.7% to
48.4%) of their subject-dependent odds, with a κ of 69% and an (estimated marginal means) C.I. of
55.1% to 80.1%. The subject-independent odds of PSMs are 13.6% of their subject-dependent odds, with
a κ of 47.9% and an estimated marginal means C.I. of 33.7% to 62.4%. The subject-independent odds of
EPSMs are 27% of their subject-dependent odds, with a κ of 64.6% and estimated marginal means C.I. of
50.2% to 76.8%. The subject-independent odds of WEPSMs are 27.4% of their subject-dependent odds,
with a κ of 64.9% and an estimated marginal means C.I. of 50.6% to 77%. The subject-independent odds
of WEPSMbf are 26.8% of their subject-dependent odds, with a κ of 64.4% and an estimated marginal
means C.I. of 50% to 76.6%.
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Table 5. GLMM (Generalised Linear Mixed Effects Model) estimates (β), 95% confidence
intervals, and p-values of the fixed effects associated with subject-independent (SI) performance
and personalisation–generalisation approaches.

Coefficient 2.5% β 97.5% p

(Intercept) 0.930 1.530 2.130 5.8 × 10−7

PSM/(E)PSM(bf) 0.371 0.379 0.387 <2.0 × 10−16

SI −0.739 −0.732 −0.725 <2.0 × 10−16

SI + EPSM −0.586 −0.575 −0.564 <2.0 × 10−16

SI + PSM −1.272 −1.261 −1.250 <2.0 × 10−16

SI + WEPSM −0.572 −0.561 −0.551 <2.0 × 10−16

SI + WEPSMbf −0.595 −0.584 −0.574 <2.0 × 10−16
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Figure 7. Estimated marginal means for the (average) difference between subject-dependent
(SD) and subject-independent (SI) performance across personalisation–generalisation approaches.
Subject-dependent performance is clearly better than subject-independent performance, a discrepancy
that is minimised with person-independent models (PIM). The confidence intervals for the
subject-independent performances of PIMs and ensembles of PSMs, particularly WEPSMs, overlap.

5. Discussion

Our analysis of the results shows that, on average, the best subject-dependent performance is
achieved with PSMs and the best subject-independent performance with PIMs. Hence, in order to
simultaneously optimise subject-dependent and subject-independent performance, we should use a
PIM for unknown users and PSMs for known users wherever possible. If we use a PIM, rather than
a PSM, to make predictions for known users we forego an expected improvement of over 43% in
terms of the odds of a correct classification. For the datasets and models investigated in this paper,
this corresponds to 4.1 to 5.6 percentage points difference in Cohen’s κ. If, on the other hand, we use
a PSM rather than a PIM for unknown users we forego an expected improvement of nearly 56% in
terms of the odds of a correct classification. If a PIM is not practicable—e.g., because we do not have
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access to the original training data when the time comes to integrate new users’ data into the HAR
model—then an ensemble of PSMs can be employed. Among the three approaches for forming an
EPSM which we considered in this paper, the κ-weighted EPSM emerged as a slightly, but significantly,
better method for forming an EPSM than an unweighted EPSM, or a baseline-feature-weighted EPSM.
Although a PIM performs significantly better than a κ-weighted EPSM (WEPSM), the difference in
odds is estimated at a mere 16.4%, which is only 0.6 percentage points bigger than the difference in
subject-independent κ between GBT and SVM, the two best-performing learning algorithms. Our
analysis further shows that GBT significantly outperforms kNN, L2-regularised logistic regression,
and SVM, but the latter by only 15.2%.

The state of the art for the FUSION dataset achieves a subject-dependent accuracy of > 99% [4].
Our GBT PIM achieves an accuracy of 98.3% ± 0.3 and our GBT PSM an accuracy of 98% ± 0.3 on this
dataset. On the OPPORT dataset, the state of the art achieves a subject-dependent error rate of 18% [5]
and F-score of 93% [6,7]. Our GBT PSM achieves a subject-dependent error rate of 10.9% ± 1.5 (GBT
PIM: 12.2% ± 1.9) and F-score of 89.1% ± 1.5 (GBT PIM: 87.8% ± 1.9) on this dataset. According to
Jordao et al. [10], the state of the art for the MHEALTH dataset achieves a subject-dependent accuracy
of 92% (with a C.I. of 88% to 96%), and a subject-independent accuracy of 95% (C.I.: 91% to 98%).
Our GBT PIM achieves a subject-dependent accuracy of 97.8% ± 0.7 (GBT PSM: 97.5% ± 1.1), and a
subject-independent accuracy of 84% ± 3.3 on this dataset. Following the same paper [10], the state of
the art for the PAMAP2 dataset achieves a subject-dependent accuracy of 82% (C.I.: 77% to 88%) and a
subject-independent accuracy of 85% (C.I.: 76% to 94%). Our GBT PSM achieves a subject-dependent
accuracy of 88.9% ± 0.6 (GBT PIM: 88.8% ± 0.4) when using the chest-mounted sensor, and our GBT
PIM a subject-independent accuracy of 80.6% ± 2.6 when using the wrist-mounted sensor from this
dataset. On the REALWORLD dataset, the state of the art achieves a subject-dependent accuracy of
89% and F-score of 90% [16]. Our GBT PSM achieves a subject-dependent accuracy of 96.9% ± 0.3 (GBT
PIM: 94.5% ± 0.5) and F-score of 96.8% ± 0.5 (GBT PIM: 94.7% ± 0.5) on this dataset. The state of the art
for the SIMFALL dataset achieves a subject-dependent accuracy of 76% [17]. Our GBT PSM achieves a
subject-dependent accuracy of 68.1% ± 1.2 (GBT PIM: 60% ± 1.1) when using the chest-mounted sensor
and 65.1% ± 1.4 (GBT PIM: 58.3% ± 1.4) when using the wrist-mounted sensor from this dataset. On the
UTSMOKE dataset, the state of the art achieves a subject-independent accuracy of 90% [19]. Our GBT
PIM achieves a subject-independent accuracy of 73.2% ± 2.5 (SVM PIM: 73.6% ± 2.3) on this dataset.
To summarise, our approach performs comparable (i.e., within the margin of error) to the state of the
art for all but one (UTSMOKE) dataset in terms of the subject-independent performance. In terms of
the subject-dependent performance, our approach performs clearly worse than the state of the art (by
about 8 points) for one dataset (SIMFALL), within one percentage point for another (FUSION), and
better than the state of the art for four datasets—namely the REALWORLD, UTSMOKE, MHEALTH,
and PAMAP2 datasets. This shows that our gradient boosted ensemble of decision trees, combined
with PSMs for subject-dependent or a PIM for subject-independent performance, performs comparably
to the state-of-the-art for a wide range of HAR problems, without problem-specific feature engineering
or tuning of model hyper-parameters.

6. Conclusions

This paper compared the subject-dependent and subject-independent performances of
person-independent models (PIMs), person-specific models (PSMs), and three types of ensembles of
PSMs (EPSMs)—unweighted, κ-weighted, and baseline-feature-weighted—when combined with
four popular HAR algorithms across eight publicly available HAR datasets. An analysis with
generalised linear mixed effects models (GLMM) showed that GBT significantly outperforms the other
algorithms on both subject-dependent and subject-independent performance; that PSMs outperform
a PIM by 43.5% (in terms of the odds of correct versus incorrect classification) in subject-dependent
performance; and that a PIM outperforms PSMs by 55.9% and κ-weighted EPSM by 16.4% on
subject-independent performance. Furthermore, our analysis of the subject-independent performance
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shows that κ-weighted EPSMs significantly outperform unweighted EPSMs, albeit by as little as 0.32
percentage points and 1.4% in terms of the odds, and that unweighted EPSMs in turn significantly
outperform baseline-feature-weighted EPSMs by about the same amount.

Our approach—a gradient boosted ensemble of decision trees combined with person-specific
models for known users and with a PIM for unknown users—performs comparably to the state of the
art on one dataset and outperforms the state of the art on four datasets in terms of subject-dependent
performance. In terms of the subject-independent performance, our approach performs comparably
to the state of the art on all but one of the datasets, for which published results that include the
subject-independent performance exist.
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Appendix A. Alternative Performance Metrics

Table A1 lists the mean subject-dependent and -independent accuracy score (in percent, ± standard
error) achieved with PIM, PSM, unweighted EPSM, and EPSMs weighted by their constituents’
estimated subject-independent κ (WEPSM), and by the mean distance between constituent’s baseline
features and the test user’s baseline features (WEPSMbf). Table A2 lists the mean error rate (zero-one
loss) and Table A3 the mean weighted F-score for same.
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Table A1. Subject-dependent and subject-independent accuracy (%) ± standard error when learning algorithms (mla) are combined with a person-independent model
(PIM) a person-specific model (PSM), an unweighted ensemble of PSMs (EPSM), a κ-weighted EPSM (WEPSM), or a baseline-feature-weigthed EPSM (WEPSMbf).

Subject-Dependent Subject-Independent

Dataset Sensor mla PIM (E)PSM PIM PSM EPSM WEPSM WEPSMbf

FUSION wrist gbt 98.3 ± 0.3 98.0 ± 0.3 93.5 ± 1.8 84.1 ± 1.8 91.9 ± 2.2 92.1 ± 2.2 91.7 ± 2.2
knn 94.9 ± 0.8 95.0 ± 0.9 87.9 ± 1.7 78.5 ± 2.2 89.3 ± 2.4 89.3 ± 2.4 89.1 ± 2.4
logreg 97.2 ± 0.5 97.8 ± 0.3 93.0 ± 1.8 82.3 ± 2.3 91.0 ± 2.4 91.0 ± 2.4 90.6 ± 2.3
svm 98.2 ± 0.3 98.1 ± 0.3 92.2 ± 1.8 82.9 ± 2.0 91.7 ± 2.3 91.8 ± 2.3 91.4 ± 2.3

MHEALTH wrist gbt 97.8 ± 0.7 97.5 ± 1.1 84.0 ± 3.3 63.2 ± 2.1 74.7 ± 3.2 74.9 ± 3.1 74.2 ± 3.2
knn 93.6 ± 1.2 94.3 ± 1.3 78.3 ± 2.8 60.0 ± 1.9 74.0 ± 2.3 74.2 ± 2.4 75.3 ± 2.3
logreg 93.8 ± 1.2 96.1 ± 1.3 80.9 ± 3.0 58.3 ± 2.2 72.8 ± 2.6 72.9 ± 2.6 73.4 ± 2.6
svm 95.9 ± 0.9 97.0 ± 0.9 83.6 ± 2.4 61.8 ± 1.9 74.5 ± 3.6 74.7 ± 3.6 74.1 ± 3.6

OPPORT wrist gbt 87.8 ± 1.9 89.1 ± 1.5 79.8 ± 4.6 72.4 ± 3.4 78.7 ± 4.9 78.5 ± 5.0 78.7 ± 4.8
knn 80.7 ± 1.8 83.2 ± 1.8 67.7 ± 2.7 61.6 ± 2.2 70.0 ± 3.4 69.5 ± 3.1 70.1 ± 2.8
logreg 81.5 ± 2.5 84.6 ± 1.9 73.8 ± 4.3 63.9 ± 2.1 72.0 ± 4.0 71.8 ± 4.2 72.2 ± 3.8
svm 87.0 ± 1.7 87.4 ± 1.6 77.4 ± 4.3 65.6 ± 1.8 75.3 ± 4.0 75.1 ± 4.1 75.6 ± 3.7

PAMAP2 chest gbt 88.8 ± 0.4 88.9 ± 0.6 79.6 ± 3.9 59.2 ± 2.7 75.2 ± 3.8 75.6 ± 3.9 74.8 ± 3.5
knn 78.0 ± 0.9 80.6 ± 1.1 67.3 ± 2.3 54.1 ± 1.7 71.0 ± 3.0 71.4 ± 3.1 69.8 ± 2.8
logreg 84.3 ± 1.0 86.9 ± 0.8 75.0 ± 3.4 53.9 ± 2.2 72.4 ± 4.4 72.4 ± 4.5 71.7 ± 4.4
svm 87.4 ± 0.7 86.6 ± 0.7 76.3 ± 4.1 54.6 ± 2.5 72.4 ± 4.7 72.9 ± 4.7 71.6 ± 4.7

PAMAP2 wrist gbt 88.1 ± 1.0 87.4 ± 0.8 80.6 ± 2.6 61.1 ± 2.2 74.6 ± 2.4 75.0 ± 2.4 74.8 ± 2.6
knn 79.7 ± 1.3 81.1 ± 1.4 68.7 ± 3.7 52.6 ± 2.5 71.4 ± 3.5 71.7 ± 3.6 70.9 ± 3.4
logreg 84.2 ± 1.6 85.2 ± 1.2 77.2 ± 3.7 54.8 ± 3.3 72.0 ± 4.5 72.4 ± 4.5 72.1 ± 4.4
svm 86.5 ± 1.1 85.0 ± 1.1 75.6 ± 4.8 51.6 ± 2.8 71.5 ± 4.1 72.0 ± 4.1 71.3 ± 3.9
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Table A1. Cont.

Subject-Dependent Subject-Independent

Dataset Sensor mla PIM (E)PSM PIM PSM EPSM WEPSM WEPSMbf

REALWORLD chest gbt 94.5 ± 0.5 96.9 ± 0.3 76.4 ± 3.7 47.1 ± 1.7 68.7 ± 3.4 69.9 ± 3.3 69.2 ± 3.4
knn 88.1 ± 1.1 92.9 ± 0.8 66.1 ± 2.9 47.2 ± 2.1 68.3 ± 3.2 69.2 ± 3.1 68.5 ± 3.3
logreg 86.8 ± 1.4 96.3 ± 0.4 66.4 ± 5.5 40.7 ± 2.0 64.0 ± 3.8 65.3 ± 3.8 64.0 ± 4.0
svm 93.6 ± 0.6 96.4 ± 0.4 68.1 ± 4.6 40.6 ± 2.0 62.0 ± 4.2 63.3 ± 4.0 62.2 ± 4.3

SAFESENS chest gbt 94.7 ± 0.7 97.3 ± 0.8 71.2 ± 2.6 33.3 ± 1.9 53.1 ± 4.5 52.7 ± 5.3 57.9 ± 3.1
knn 83.0 ± 1.8 89.0 ± 1.4 59.9 ± 3.6 35.8 ± 1.8 58.9 ± 3.3 58.9 ± 3.4 58.0 ± 2.5
logreg 80.9 ± 1.6 93.7 ± 1.0 67.7 ± 2.8 33.1 ± 1.7 58.6 ± 2.5 58.0 ± 2.4 58.0 ± 2.6
svm 89.2 ± 1.2 95.7 ± 0.8 70.2 ± 2.6 35.8 ± 1.8 56.7 ± 2.4 57.8 ± 2.3 56.1 ± 2.8

SIMFALL chest gbt 60.0 ± 1.1 68.1 ± 1.2 47.5 ± 1.5 24.6 ± 0.6 37.8 ± 1.4 37.8 ± 1.4 37.0 ± 1.4
knn 48.6 ± 0.9 52.8 ± 1.2 34.8 ± 0.7 25.0 ± 0.6 37.7 ± 1.0 37.5 ± 1.0 36.5 ± 0.9
logreg 42.3 ± 0.8 55.4 ± 1.1 38.8 ± 1.1 20.0 ± 0.4 33.6 ± 0.9 33.6 ± 0.9 32.7 ± 0.9
svm 53.4 ± 0.7 52.8 ± 1.5 42.2 ± 1.3 19.7 ± 0.4 30.7 ± 0.9 31.0 ± 0.9 29.6 ± 0.9

SIMFALL wrist gbt 58.3 ± 1.4 65.1 ± 1.4 44.6 ± 2.2 24.4 ± 0.9 37.3 ± 2.0 37.4 ± 2.0 36.4 ± 2.1
knn 48.2 ± 1.1 52.1 ± 1.1 33.8 ± 1.4 24.4 ± 0.9 36.2 ± 1.5 36.3 ± 1.5 35.4 ± 1.6
logreg 41.3 ± 1.3 52.9 ± 1.2 37.0 ± 1.9 21.5 ± 0.8 32.3 ± 1.6 32.8 ± 1.6 32.1 ± 1.7
svm 51.5 ± 1.2 49.4 ± 1.4 40.1 ± 2.2 19.2 ± 0.7 31.6 ± 1.4 31.9 ± 1.5 31.1 ± 1.6

UTSMOKE wrist gbt 83.6 ± 1.3 92.1 ± 0.8 73.2 ± 2.5 61.3 ± 1.6 70.3 ± 2.8 70.4 ± 2.8 70.2 ± 2.7
knn 79.7 ± 1.1 83.9 ± 1.0 67.1 ± 2.1 57.8 ± 1.5 66.3 ± 2.4 66.4 ± 2.5 66.1 ± 2.3
logreg 73.3 ± 1.8 86.4 ± 1.0 68.5 ± 2.2 57.6 ± 1.4 65.1 ± 2.1 65.2 ± 2.2 65.3 ± 2.0
svm 86.0 ± 1.1 90.7 ± 0.8 73.6 ± 2.3 59.6 ± 1.6 68.8 ± 2.5 68.9 ± 2.5 69.0 ± 2.3
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Table A2. Subject-dependent and subject-independent error rate (%) ± standard error when learning algorithms (mla) are combined with a person-independent model
(PIM), a person-specific model (PSM), an unweighted ensemble of PSMs (EPSM), a κ-weighted EPSM (WEPSM), or a baseline-feature-weighted EPSM (WEPSMbf).

Subject-Dependent Subject-Independent

Dataset Sensor mla PIM (E)PSM PIM PSM EPSM WEPSM WEPSMbf

FUSION wrist gbt 1.8 ± 0.3 2.0 ± 0.3 92.7 ± 2.3 82.3 ± 2.1 90.6 ± 2.8 90.8 ± 2.8 90.4 ± 2.8
knn 5.1 ± 0.8 5.0 ± 0.9 87.7 ± 1.8 77.4 ± 2.5 88.2 ± 2.9 88.4 ± 2.9 88.2 ± 2.9
logreg 2.8 ± 0.5 2.2 ± 0.3 92.5 ± 2.2 80.7 ± 2.5 89.8 ± 2.9 89.9 ± 2.9 89.4 ± 2.9
svm 1.8 ± 0.3 1.9 ± 0.3 91.6 ± 2.1 81.2 ± 2.3 90.4 ± 2.9 90.5 ± 3.0 90.1 ± 2.9

MHEALTH wrist gbt 2.2 ± 0.7 2.5 ± 1.1 81.9 ± 4.0 58.3 ± 2.2 69.8 ± 3.6 70.1 ± 3.5 69.2 ± 3.6
knn 6.4 ± 1.2 5.7 ± 1.3 76.6 ± 2.8 56.3 ± 1.9 70.9 ± 2.7 71.2 ± 2.7 72.6 ± 2.6
logreg 6.2 ± 1.2 3.9 ± 1.3 78.9 ± 3.3 53.0 ± 2.1 67.6 ± 3.2 67.8 ± 3.2 68.2 ± 3.2
svm 4.1 ± 0.9 3.0 ± 0.9 81.9 ± 2.7 56.6 ± 2.0 70.0 ± 4.1 70.2 ± 4.1 69.3 ± 4.1

OPPORT wrist gbt 12.2 ± 1.9 10.9 ± 1.5 79.3 ± 5.0 71.4 ± 4.2 77.3 ± 5.7 77.0 ± 5.8 77.4 ± 5.5
knn 19.3 ± 1.8 16.9 ± 1.8 67.2 ± 2.9 61.1 ± 2.3 69.2 ± 3.6 68.7 ± 3.4 69.5 ± 3.0
logreg 18.5 ± 2.5 15.5 ± 1.9 72.7 ± 4.9 63.0 ± 2.6 70.3 ± 4.7 70.2 ± 4.9 70.8 ± 4.5
svm 13.0 ± 1.7 12.6 ± 1.6 76.6 ± 4.8 64.5 ± 2.2 73.9 ± 4.7 73.6 ± 5.0 74.4 ± 4.4

PAMAP2 chest gbt 11.2 ± 0.4 11.1 ± 0.6 79.2 ± 4.6 56.2 ± 3.3 74.3 ± 4.5 74.8 ± 4.6 73.9 ± 4.2
knn 21.9 ± 0.9 19.4 ± 1.1 67.7 ± 2.5 52.4 ± 2.1 70.9 ± 3.4 71.3 ± 3.5 69.5 ± 3.2
logreg 15.7 ± 1.0 13.1 ± 0.8 74.1 ± 4.1 50.4 ± 2.7 71.4 ± 5.1 71.4 ± 5.2 70.4 ± 5.1
svm 12.6 ± 0.7 13.4 ± 0.7 75.9 ± 4.6 51.5 ± 3.0 71.2 ± 5.6 71.7 ± 5.5 70.3 ± 5.5

PAMAP2 wrist gbt 11.9 ± 1.0 12.6 ± 0.8 79.9 ± 3.0 58.2 ± 2.4 73.1 ± 2.6 73.5 ± 2.6 73.3 ± 2.8
knn 20.3 ± 1.3 18.9 ± 1.4 68.2 ± 4.1 50.5 ± 2.8 70.3 ± 3.9 70.7 ± 3.9 69.5 ± 3.8
logreg 15.8 ± 1.6 14.8 ± 1.2 76.5 ± 4.2 51.5 ± 3.7 70.0 ± 5.3 70.6 ± 5.2 70.1 ± 5.2
svm 13.6 ± 1.1 14.9 ± 1.1 75.0 ± 5.3 48.3 ± 3.3 69.7 ± 4.8 70.3 ± 4.8 69.4 ± 4.7
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Table A2. Cont.

Subject-Dependent Subject-Independent

Dataset Sensor mla PIM (E)PSM PIM PSM EPSM WEPSM WEPSMbf

REALWORLD chest gbt 5.5 ± 0.5 3.1 ± 0.3 76.5 ± 3.6 43.4 ± 1.6 68.4 ± 3.4 70.0 ± 3.2 68.7 ± 3.2
knn 11.9 ± 1.1 7.1 ± 0.8 67.5 ± 2.9 45.3 ± 2.1 67.9 ± 3.5 69.0 ± 3.3 68.4 ± 3.4
logreg 13.2 ± 1.4 3.7 ± 0.4 66.3 ± 5.6 37.2 ± 2.2 62.0 ± 3.9 63.8 ± 3.9 62.1 ± 3.9
svm 6.4 ± 0.6 3.6 ± 0.4 67.8 ± 4.9 36.9 ± 2.0 59.4 ± 4.4 61.5 ± 4.2 59.8 ± 4.4

SAFESENS chest gbt 5.3 ± 0.7 2.7 ± 0.8 70.8 ± 2.6 29.0 ± 1.7 52.5 ± 3.9 51.3 ± 4.8 55.1 ± 3.6
knn 17.0 ± 1.8 11.0 ± 1.4 61.0 ± 4.0 33.3 ± 2.2 59.7 ± 3.9 59.6 ± 4.0 57.1 ± 3.1
logreg 19.1 ± 1.6 6.3 ± 1.0 67.7 ± 3.0 29.9 ± 2.1 58.1 ± 2.8 57.6 ± 2.9 56.3 ± 3.1
svm 10.8 ± 1.2 4.3 ± 0.8 70.5 ± 3.0 31.8 ± 2.2 56.8 ± 2.9 57.7 ± 3.0 54.0 ± 3.3

SIMFALL chest gbt 40.0 ± 1.1 31.9 ± 1.2 46.9 ± 1.5 22.4 ± 0.6 34.7 ± 1.5 34.9 ± 1.5 33.9 ± 1.5
knn 51.4 ± 0.9 47.2 ± 1.2 34.6 ± 0.7 23.7 ± 0.6 36.0 ± 1.0 36.1 ± 1.1 34.9 ± 0.9
logreg 57.7 ± 0.8 44.6 ± 1.1 38.2 ± 1.1 17.7 ± 0.5 31.0 ± 1.0 31.1 ± 1.0 30.0 ± 1.0
svm 46.6 ± 0.7 47.2 ± 1.5 41.8 ± 1.3 17.4 ± 0.4 27.8 ± 1.1 28.3 ± 1.0 26.4 ± 1.1

SIMFALL wrist gbt 41.7 ± 1.4 34.9 ± 1.4 44.2 ± 2.1 22.1 ± 0.9 35.7 ± 1.9 35.9 ± 1.9 34.7 ± 1.9
knn 51.8 ± 1.1 47.9 ± 1.1 33.5 ± 1.4 23.5 ± 0.9 35.5 ± 1.5 35.7 ± 1.5 34.5 ± 1.6
logreg 58.7 ± 1.3 47.1 ± 1.2 36.5 ± 1.9 19.6 ± 0.8 30.8 ± 1.5 31.3 ± 1.6 29.9 ± 1.6
svm 48.5 ± 1.2 50.6 ± 1.4 39.8 ± 2.2 17.3 ± 0.6 29.1 ± 1.2 29.5 ± 1.3 28.2 ± 1.4

UTSMOKE wrist gbt 16.4 ± 1.3 7.9 ± 0.8 72.3 ± 2.6 59.2 ± 1.6 69.1 ± 2.8 69.1 ± 2.8 69.0 ± 2.7
knn 20.3 ± 1.1 16.1 ± 1.0 66.6 ± 2.1 55.6 ± 1.5 64.0 ± 2.5 64.1 ± 2.5 63.7 ± 2.4
logreg 26.7 ± 1.8 13.6 ± 1.0 67.2 ± 2.2 54.7 ± 1.4 62.7 ± 2.2 62.8 ± 2.2 63.0 ± 2.2
svm 14.0 ± 1.1 9.3 ± 0.8 73.0 ± 2.3 57.1 ± 1.6 67.0 ± 2.5 67.1 ± 2.6 67.2 ± 2.4
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Table A3. Weighted subject-dependent and subject-independent F-score (%) ± standard error when learning algorithms (mla) are combined with a person-independent
model (PIM), a person-specific model (PSM), an unweighted ensemble of PSMs (EPSM), a κ-weighted EPSM (WEPSM), or a baseline-feature-weighted EPSM
(WEPSMbf).

Subject-Dependent Subject-Independent

Dataset Sensor mla PIM (E)PSM PIM PSM EPSM WEPSM WEPSMbf

FUSION wrist gbt 98.2 ± 0.3 98.0 ± 0.3 92.7 ± 2.3 82.3 ± 2.1 90.6 ± 2.8 90.8 ± 2.8 90.4 ± 2.8
knn 94.9 ± 0.8 95.0 ± 0.9 87.7 ± 1.8 77.4 ± 2.5 88.2 ± 2.9 88.4 ± 2.9 88.2 ± 2.9
logreg 97.2 ± 0.5 97.8 ± 0.3 92.5 ± 2.2 80.7 ± 2.5 89.8 ± 2.9 89.9 ± 2.9 89.4 ± 2.9
svm 98.2 ± 0.3 98.1 ± 0.3 91.6 ± 2.1 81.2 ± 2.3 90.4 ± 2.9 90.5 ± 3.0 90.1 ± 2.9

MHEALTH wrist gbt 97.7 ± 0.7 97.5 ± 1.1 81.9 ± 4.0 58.3 ± 2.2 69.8 ± 3.6 70.1 ± 3.5 69.2 ± 3.6
knn 93.5 ± 1.2 94.1 ± 1.3 76.6 ± 2.8 56.3 ± 1.9 70.9 ± 2.7 71.2 ± 2.7 72.6 ± 2.6
logreg 93.7 ± 1.3 96.1 ± 1.3 78.9 ± 3.3 53.0 ± 2.1 67.6 ± 3.2 67.8 ± 3.2 68.2 ± 3.2
svm 95.9 ± 0.9 97.0 ± 0.9 81.9 ± 2.7 56.6 ± 2.0 70.0 ± 4.1 70.2 ± 4.1 69.3 ± 4.1

OPPORT wrist gbt 87.8 ± 1.9 89.1 ± 1.5 79.3 ± 5.0 71.4 ± 4.2 77.3 ± 5.7 77.0 ± 5.8 77.4 ± 5.5
knn 80.7 ± 1.8 83.2 ± 1.8 67.2 ± 2.9 61.1 ± 2.3 69.2 ± 3.6 68.7 ± 3.4 69.5 ± 3.0
logreg 81.3 ± 2.4 84.5 ± 1.9 72.7 ± 4.9 63.0 ± 2.6 70.3 ± 4.7 70.2 ± 4.9 70.8 ± 4.5
svm 87.0 ± 1.8 87.4 ± 1.6 76.6 ± 4.8 64.5 ± 2.2 73.9 ± 4.7 73.6 ± 5.0 74.4 ± 4.4

PAMAP2 chest gbt 89.0 ± 0.4 89.1 ± 0.6 79.2 ± 4.6 56.2 ± 3.3 74.3 ± 4.5 74.8 ± 4.6 73.9 ± 4.2
knn 78.2 ± 1.0 80.6 ± 1.1 67.7 ± 2.5 52.4 ± 2.1 70.9 ± 3.4 71.3 ± 3.5 69.5 ± 3.2
logreg 84.3 ± 1.1 87.0 ± 0.8 74.1 ± 4.1 50.4 ± 2.7 71.4 ± 5.1 71.4 ± 5.2 70.4 ± 5.1
svm 87.6 ± 0.7 86.6 ± 0.7 75.9 ± 4.6 51.5 ± 3.0 71.2 ± 5.6 71.7 ± 5.5 70.3 ± 5.5

PAMAP2 wrist gbt 88.3 ± 1.0 87.6 ± 0.8 79.9 ± 3.0 58.2 ± 2.4 73.1 ± 2.6 73.5 ± 2.6 73.3 ± 2.8
knn 79.7 ± 1.3 81.0 ± 1.4 68.2 ± 4.1 50.5 ± 2.8 70.3 ± 3.9 70.7 ± 3.9 69.5 ± 3.8
logreg 84.2 ± 1.6 85.3 ± 1.2 76.5 ± 4.2 51.5 ± 3.7 70.0 ± 5.3 70.6 ± 5.2 70.1 ± 5.2
svm 86.6 ± 1.1 85.1 ± 1.1 75.0 ± 5.3 48.3 ± 3.3 69.7 ± 4.8 70.3 ± 4.8 69.4 ± 4.7
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Table A3. Cont.

Subject-Dependent Subject-Independent

Dataset Sensor mla PIM (E)PSM PIM PSM EPSM WEPSM WEPSMbf

REALWORLD chest gbt 94.7 ± 0.5 96.8 ± 0.3 76.5 ± 3.6 43.4 ± 1.6 68.4 ± 3.4 70.0 ± 3.2 68.7 ± 3.2
knn 88.8 ± 1.0 92.9 ± 0.8 67.5 ± 2.9 45.3 ± 2.1 67.9 ± 3.5 69.0 ± 3.3 68.4 ± 3.4
logreg 87.5 ± 1.4 96.2 ± 0.4 66.3 ± 5.6 37.2 ± 2.2 62.0 ± 3.9 63.8 ± 3.9 62.1 ± 3.9
svm 93.9 ± 0.5 96.3 ± 0.4 67.8 ± 4.9 36.9 ± 2.0 59.4 ± 4.4 61.5 ± 4.2 59.8 ± 4.4

SAFESENS chest gbt 95.1 ± 0.7 97.3 ± 0.8 70.8 ± 2.6 29.0 ± 1.7 52.5 ± 3.9 51.3 ± 4.8 55.1 ± 3.6
knn 83.5 ± 1.9 88.9 ± 1.4 61.0 ± 4.0 33.3 ± 2.2 59.7 ± 3.9 59.6 ± 4.0 57.1 ± 3.1
logreg 81.4 ± 1.8 93.6 ± 1.0 67.7 ± 3.0 29.9 ± 2.1 58.1 ± 2.8 57.6 ± 2.9 56.3 ± 3.1
svm 89.6 ± 1.2 95.6 ± 0.8 70.5 ± 3.0 31.8 ± 2.2 56.8 ± 2.9 57.7 ± 3.0 54.0 ± 3.3

SIMFALL chest gbt 59.8 ± 1.1 68.3 ± 1.2 46.9 ± 1.5 22.4 ± 0.6 34.7 ± 1.5 34.9 ± 1.5 33.9 ± 1.5
knn 48.7 ± 0.9 52.9 ± 1.2 34.6 ± 0.7 23.7 ± 0.6 36.0 ± 1.0 36.1 ± 1.1 34.9 ± 0.9
logreg 41.9 ± 0.9 55.3 ± 1.2 38.2 ± 1.1 17.7 ± 0.5 31.0 ± 1.0 31.1 ± 1.0 30.0 ± 1.0
svm 53.6 ± 0.7 52.7 ± 1.5 41.8 ± 1.3 17.4 ± 0.4 27.8 ± 1.1 28.3 ± 1.0 26.4 ± 1.1

SIMFALL wrist gbt 58.2 ± 1.4 65.2 ± 1.4 44.2 ± 2.1 22.1 ± 0.9 35.7 ± 1.9 35.9 ± 1.9 34.7 ± 1.9
knn 48.2 ± 1.1 52.2 ± 1.1 33.5 ± 1.4 23.5 ± 0.9 35.5 ± 1.5 35.7 ± 1.5 34.5 ± 1.6
logreg 41.0 ± 1.3 52.8 ± 1.2 36.5 ± 1.9 19.6 ± 0.8 30.8 ± 1.5 31.3 ± 1.6 29.9 ± 1.6
svm 51.8 ± 1.2 49.4 ± 1.4 39.8 ± 2.2 17.3 ± 0.6 29.1 ± 1.2 29.5 ± 1.3 28.2 ± 1.4

UTSMOKE wrist gbt 83.3 ± 1.3 92.2 ± 0.8 72.3 ± 2.6 59.2 ± 1.6 69.1 ± 2.8 69.1 ± 2.8 69.0 ± 2.7
knn 79.5 ± 1.2 83.8 ± 1.0 66.6 ± 2.1 55.6 ± 1.5 64.0 ± 2.5 64.1 ± 2.5 63.7 ± 2.4
logreg 72.4 ± 1.9 86.2 ± 1.1 67.2 ± 2.2 54.7 ± 1.4 62.7 ± 2.2 62.8 ± 2.2 63.0 ± 2.2
svm 85.9 ± 1.1 90.7 ± 0.8 73.0 ± 2.3 57.1 ± 1.6 67.0 ± 2.5 67.1 ± 2.6 67.2 ± 2.4
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