
sensors

Article

Open Set Audio Classification Using Autoencoders
Trained on Few Data

Javier Naranjo-Alcazar 1,2,* , Sergi Perez-Castanos 1, Pedro Zuccarello 1 , Fabio Antonacci 3

and Maximo Cobos 2

1 Visualfy, 46181 Benisanó, Spain; sergi.perez@visualfy.com (S.P.-C.); pedro.zuccarello@visualfy.com (P.Z.)
2 Computer Science Department, Universitat de València, 46100 Burjassot, Spain; maximo.cobos@uv.es
3 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133 Milan, Italy;

fabio.antonacci@polimi.it
* Correspondence: janal2@alumni.uv.es; Tel.: +34-669-287-584

Received: 22 May 2020; Accepted: 1 July 2020; Published: 3 July 2020
����������
�������

Abstract: Open-set recognition (OSR) is a challenging machine learning problem that appears when
classifiers are faced with test instances from classes not seen during training. It can be summarized
as the problem of correctly identifying instances from a known class (seen during training) while
rejecting any unknown or unwanted samples (those belonging to unseen classes). Another problem
arising in practical scenarios is few-shot learning (FSL), which appears when there is no availability
of a large number of positive samples for training a recognition system. Taking these two limitations
into account, a new dataset for OSR and FSL for audio data was recently released to promote research
on solutions aimed at addressing both limitations. This paper proposes an audio OSR/FSL system
divided into three steps: a high-level audio representation, feature embedding using two different
autoencoder architectures and a multi-layer perceptron (MLP) trained on latent space representations
to detect known classes and reject unwanted ones. An extensive set of experiments is carried
out considering multiple combinations of openness factors (OSR condition) and number of shots
(FSL condition), showing the validity of the proposed approach and confirming superior performance
with respect to a baseline system based on transfer learning.

Keywords: open set recognition; open set classification; audio classification; autoencoders;
few-shot learning

1. Introduction

Machine listening is the branch of artificial intelligence that aims to create intelligent systems
that are capable of extracting relevant information from audio data. Acoustic event classification
(AEC) and acoustic scene classification (ASC) are two areas that have grown significantly in the last
years [1–4], often included within the machine listening field. The increase in research proposals related
to these areas is motivated by the number of applications that can benefit from automation systems
incorporating audio-based solutions, such as home assistants or autonomous driving. This interest is
also evidenced by the multiple editions of the successful international DCASE challenge (Detection
and Classification of Acoustic Scenes and Events). From its very first edition in 2013 [5], different ASC
and AEC tasks have been presented during the past years (2013, 2016, 2017 and 2018). In fact, the 2019
edition incorporated an open-set recognition (OSR) task within the scope of ASC, where the idea was
to classify an audio clip to a known scene type or to reject it when it belonged to an unknown scene.

In general terms, OSR is a problem that appears when an intelligent system has to classify
(in inference stage) a sample from an unknown class, i.e., a class that has not been seen during training.
The complexity of the OSR problem can be quantified by using the openness factor (O∗) presented

Sensors 2020, 20, 3741; doi:10.3390/s20133741 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7503-1272
https://orcid.org/0000-0003-3494-9954
https://orcid.org/0000-0003-4545-0315
https://orcid.org/0000-0001-7318-3192
http://dx.doi.org/10.3390/s20133741
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/13/3741?type=check_update&version=2


Sensors 2020, 20, 3741 2 of 19

in [6], which measures the relationship between the number of classes seen during training and the
number of classes seen during the inference stage only. The objective of a system that is deployed
to face an OSR environment is to classify correctly the samples that belong to classes that have been
seen during training, while properly rejecting samples from unknown classes. The most popular
solutions aimed at solving OSR problems make use of classic machine learning algorithms such as
support vector machines [7] or nearest neighbors [8]. In this context, deep learning solutions are not so
common in this problem, showing the need for further investigation in this direction [9,10].

Few-shot learning (FSL) is another phenomenon related to real-world applications that aims to
detect a specific pattern or class with little amount of data for training the classification system,
i.e., using few examples per class. FSL has been widely investigated in face recognition tasks.
However, contributions in the audio domain are not so common and are mostly related to music fraud
detection [11] or speaker identification [12,13]. A main feature of FSL has to do with the “intra-class”
behavior of coarse categories. As an example, assume that a general class “bell” groups samples from
different types of bells. The goal of FSL would be to discern among the different bell types, even if
all of them can be categorized into a general “bell” class. Two different approaches can be followed
to tackle FSL. On the one hand, the transfer learning (TL) approach [14] tries to solve the problem of
having only few samples by using prior knowledge. This prior-knowledge is usually represented by
the use of a neural network pre-trained on external data that is employed as a feature extractor [15].
The other approach lies on novel neural network architectures such as Siamese [16,17], facenet (trained
with triplets) [18,19] or on classical networks trained with novel loss functions such as ring loss [20]
or center loss [21]. The main problem with these networks is that a relatively large amount of data is
required to properly generalize FSL tasks, i.e., the need to consider many different classes even if only
few samples are available per each class.

Recently, a dataset that takes into account both limitations (OSR and FSL) has been made public
by the authors [22]. This dataset is composed by two coarse classes: pattern and unwanted sounds.
The pattern sounds class is made up of 24 subclasses. These subclasses correspond to specific patterns
of different domestic alarms such as bells or fire alarms. Therefore, all these 24 subclasses can be
considered as a coarse, more general, “domestic alarm” class, but providing intra-class differentiation
within it. On the other hand, the unwanted sounds are grouped into 10 different subclasses with more
general and likely to appear domestic sounds, such as keyboard tapping, cough or music among others.
These samples must be rejected by an OSR classification algorithm. All these subclasses, either pattern
and unwanted, contain 40 samples. The dataset is provided with different configurations depending
on the openness factor or the number of shots. In turn, these configurations are divided into different
k-fold configurations depending on the number of training examples to facilitate the analysis of the
generalization of the proposed solutions.

This paper proposes a novel deep learning approach to tackle OSR and FSL problems within
an AEC context, based on a combined two-stage method. As a first step, an embedded or
bottleneck representation from the audio log-Mel spectrogram is obtained by means of an autoencoder
architecture. Once the autoencoder is trained, the bottleneck representation is used to train a simple
multi-layer perceptron (MLP) classifier with sigmoid activation for OSR classification. The autoencoder
part aims at solving the FSL limitation, while the MLP classifier mitigates the OSR problem.
Moreover, two autoencoder alternatives are suggested within the considered framework, considering
both semi-supervised and unsupervised training. Thus, the contributions of this paper reside on the
proposal of a full framework for AEC OSR/FSL tasks, the analysis of this framework in different
OSR/FSL conditions (different openness values and number of training samples) and the comparison
with the baseline method presented in the dataset release [22], showing significant improvement
without the need to use prior knowledge from external data.

The rest of the paper is organized as follows. The required background describing OSR openness
and autoencoders can be found in Section 2. The proposed system and its different parts are presented
in Section 3. The experimental details, including datasets and parameter configuration are described



Sensors 2020, 20, 3741 3 of 19

in Section 4, while the results are discussed in Section 5. Finally, conclusions and future work are
summarized in Section 6.

2. Background

This section reviews the background and previous works related to the proposed framework,
including FSL, OSR and the use of autoencoders in audio-related tasks.

2.1. Few-Shot Learning

Few-shot learning (FSL) is the problem that appears in machine learning applications when
a small amount of data is provided per class. In fact, machine learning techniques have become
state-of-the-art solutions in many domains due to the huge data sets available.

The FSL limitation can be addressed in three different strategies according to [23].
The three possible approaches are: modifying the available data (increasing the training data),
choosing a particular model with FSL considerations during the training and testing stages or using
prior knowledge solutions. In this work, FSL was approached by the creation of a specific model
making use of autoencoders. Within the strategy of creating specific models for FSL there are, in turn,
different approximations. In our particular case, the use of autoencoders represents a solution based
on embedding learning, that is, a model that is capable of discovering important structure within
the input data by forcing a reduction of dimensionality. For a complete review of FSL approaches,
the reader is referred to [23].

One of the first appearances of an architecture to solve an FSL task with an embedding learning
approach was in signature recognition. The proposed architecture is known as the Siamese network [16].
The main feature of a framework based on Siamese networks is that it instances two networks having
the same architecture and tied weights, forcing the network to learn the similarities between the two
inputs. The purpose of this framework is to train a network that is able to embed the inputs into
a domain having lower dimensionality in a smart way. That means that if the two entries are very
similar, the embeddings must be similar. Once the network is trained, two entries are passed through
the network and a measurement metric is calculated to determine if both entries are in the same class.

Triplet networks appeared as a modification of Siamese networks [18]. In a similar way,
the framework is created by instantiating three networks with tied weights. In each step, the network
is fed with one example called anchor, one positive and one negative. The positive sample has
to belong to the same class as the anchor and the negative one to a different class. In both cases
(Siamese or triplet networks), the selection of pairs or triplets is crucial for an efficient training process.

A different approach to address the FSL issue is to modify the network loss function to emphasize
the distance between classes in the feature map space during training [24]. Some examples are ring
loss [20], center loss [21] or prototypical networks [25]. Ring loss and center loss can be understood
as a modified softmax that tries to obtain more discriminative features with a modification during
loss calculation. The objective of prototypical networks is to obtain a cluster center for each class.
During the inference stage, the classification is carried out by using the distances to each center.

The above solutions have shown promising results in the field of image and computer vision.
Note, however, that although there are few samples per class, the datasets are considerably large.
For example, in [26], there are about 13,500 examples in total. This number of examples might be
enough to train the above kind of solutions. However, as far as this group is concerned, in the
audio domain, there are not FSL datasets with such amount of data. As a result, the proposed
autoencoder-based approach accommodates better the scenario considered in this work.

2.2. Open-Set Recognition

In realistic scenarios there is usually an incomplete knowledge of all the possible surrounding
classes at the time of training, and a trained classifier may face unknown classes during testing.
As a result, algorithms need to accurately classify the known classes, but also to deal effectively with



Sensors 2020, 20, 3741 4 of 19

the unknown ones. OSR approaches are designed to do both things properly. When dealing with
OSR problems, certain considerations should be kept in mind when defining which classes are to be
recognized and which should be rejected. The evaluation of OSR systems is based on the concept of
openness factor O∗ [6], which introduces a categorization on the classes involved in the training and
testing stages:

• Known Known (KK) classes: classes that are used in the training and validation stage and that
must be correctly classified by the system.

• Known Unknown (KU) classes: classes that are available during the training stage but must not be
categorized into the specific class they belong to. In other words, they must be rejected by the
classifier. These classes are very useful since they allow the system to make representations and
generate boundaries that can help to discern samples from the unwanted category.

• Unknown Known (UK) classes: classes for which no samples are available during training
but side-information such as semantic/attribute information is available during training.
This category is not considered in this work.

• Unknown Unknown (UU) classes: classes that are not used nor in the training nor in the validation
stage and must obviously be rejected by the classifier. The system only sees these classes in the
test stage.

According to [27], the openness factor is defined as

O∗ = 1−

√
2× TTR

TTR + TTE
, (1)

where TTR corresponds to the total number of classes used in the training stage (either KK or KU) and
TTE corresponds to the number of classes used in inference stage. When O∗ = 0, TTR = TTE, meaning
that there is no UU class. On the other hand, when TTE becomes larger and TTE > TTR, O∗ −→ 1,
leading to a more complex OSR task. Note that, by definition, the openness factor is bounded to the
range 0 ≤ O∗ < 1.

Different approaches have been taken to address the issue of OSR, either with discriminative
models or generative models. Traditional machine learning frameworks have been used as enhanced
discriminatory models, such as those based on SVM solutions, including the Weibull-calibrated SVM
(W-SVM) [28] or PI-SVM [29]. Other approaches based on classic techniques are those based on sparse
representation (SROSR) [30]. As reported in the original paper, the training set must be large enough to
cover the conditions that may be present in the test stage. Distance-based methods with modifications
have also been proposed [8,27,31,32].

With regard to deep-learning-based solutions, there is the problem of their original close-set nature.
The first approach to create deep neural networks of open-set nature was to replace the commonly
used final Softmax layer with an OpenMax layer [9]. Other approaches are the deep open classifier
(DOC) [33] or the competitive overcomplete output layer (COOL) [34]. More solutions provided in the
context of DNN are discussed in [27].

While all the these approaches have shown to improve classification systems in OSR conditions,
they also have their limitations [27]. One of the main problems is that the classifier is not able to
understand the whole context when dealing with unknown classes. The framework presented in this
paper relies on the latent space distribution learned by autoencoders, which is assumed to compact the
information from the training classes into a space that can be more easily handled by a subsequent
decision stage. As it will be explained in Section 3, a DNN with sigmoid activation will be used for
this task.

2.3. Autoencoders in Audio Processing Tasks

The autoencoder is a machine learning solution made up of two blocks, encoder and decoder,
whose purpose is to obtain internal representations usually with smaller dimensionality than the



Sensors 2020, 20, 3741 5 of 19

input. This process is known as encoding. For this representation to be obtained, the decoding phase
is also necessary so that the system can encode efficiently the input data. The purpose of this block
of the autoencoder is to reconstruct the input signal from the intermediate representation obtained
by the encoder. The difference between the reconstructed signal by the autoencoder and the original
input signal is known as the reconstruction error. In essence, the autoencoder tries to learn an identity
function h(x) ≈ x, which makes the output x̂ be similar to the input x. By placing constraints on the
network, such a limitation in the number of hidden units, interesting structure about the data can be
discovered. Although there are different types of autoencoders (e.g., vanilla multi-layer autoencoders,
denoising autoencoders, convolutional autoencoders or variational autoencoders) the underlying
fundamental principle is the same. For example, convolutional autoencoders are designed to encode
the input into a set of simpler signals and reconstruct the input from them. The encoder layers are in
this case convolutional layers and the decoder layers are called deconvolution or upsampling layers.

In the audio domain, autoencoders have become the state-of-the-art solution for speech
translation applications [35]. Besides, other tasks such as learning more sophisticated or universal
audio representations or anomalous sound detection currently tend to solve their limitations
using autoencoders. The following paragraphs describe some previous work in this direction,
where autoencoders are used to solve the aforementioned problems.

In [36,37], different autoencoder architectures and approaches were presented to obtain robust
audio representations that can be used in a variety of audio tasks. In [36], audio representations are
learned by addressing a phase prediction task. The autoencoder in [37] was trained in an unsupervised
way using Audioset [38], one of the largest audio datasets. In this case, the autoencoder was
implemented with convolutional layers. The experimental work is performed considering small
encoder architectures that can be potentially deployed on mobile devices.

Another interesting audio application of autoencoders is anomalous sound detection, which is
the task of identifying whether a sound corresponds to a normal (known) or abnormal (unwanted)
class [39,40]. The main challenge of this problem is to detect the anomaly having only training samples
of normal behavior. The objective can be to detect machine faults only by monitoring the sound
produced by these machines. The mean squared error obtained when reconstructing the signal can
provide information on whether the sample is normal or abnormal.

The approach presented in this work uses an autoencoder in order to obtain discriminative
intra-class audio representations. The use of autoencoders to discriminate unwanted classes has already
been suggested in the literature. For example, in [41], a solution to detect known or unwanted scenes is
presented. In this method, an autoencoder is trained for each known class and the reconstruction error
is used to decide if the class is known or not. In contrast, our proposal considers a single autoencoder
trained on all the known classes (KK) and the intermediate layer or bottleneck is used to train a MLP
to distinguish unwanted samples.

3. Proposed Approach

This section presents the proposed solution to address the problems of FSL and OSR jointly,
which consists of three blocks: a high-level 2D time-frequency audio representation, a smaller
dimensional encoding of such representation using an autoencoder and a final MLP classifier aimed at
discerning whether the input corresponds to a known class or to an unknown class. The full framework
is depicted in Figure 1.



Sensors 2020, 20, 3741 6 of 19

b)

32

12
8 

Fu
lly

 C
on

ne
ct

ed

Bottleneck DecoderEncoder
8

16

32

8

16

Raw audio

MLP input

log-Mel Spectrogram Reconstructed
log-Mel Spectrograma)

128 units 128 units

KK units

512 units

MLP input

ReLU

ReLU Sigmoid
KK

Threshold

c)

Figure 1. Proposed open-set recognition (OSR)/few-shot learning (FSL) framework for audio
classification. In this scheme, an unsupervised autoencoder is considered. (a) Log-Mel spectrogram
representation. (b) Autoencoder. (c) multi-layer perceptron (MLP) classifier.

3.1. Input Audio Representation

To facilitate learning from few data, the raw audio input is first transformed into a meaningful
time-frequency audio representation. A state-of-the-art choice for many audio processing tasks is the
use of log-Mel spectrograms [3,42]. This representation is calculated with a window size of 40 ms and
an 50% overlap. The number of Mel filters is set to 64. Each frequency bin is normalized to zero mean
and unit standard deviation using all the available training data.

3.2. Convolutional Autoencoder

The proposed system considers the use of a convolutional autoencoder made up of convolutional
layers. In this work, a convolutional block is understood to consist of a convolutional layer, a
batch normalization layer (BN) and a non-linear activation, in our case rectified linear units (ReLU).
This same configuration is stacked again with an increasing number of filters and ends with an
average pooling layer (2, 2) [43]. Therefore, each convolutional block (ConvBlock) is made up
of seven layers (see Figure 2). The decoder follows a symmetric structure with respect to the
encoder, that is, the number of filters in each decoding ConvBlock decreases until reaching the
last convolutional layer, which has only a single filter and is in charge of obtaining the reconstructed
input. Another consideration is that average pooling layers are replaced by upsampling layers. The
ConvBlock architecture can be seen in Figure 2. The last convolutional layer is not accompanied by a
normalization or activation layer. The only layers with linear activation are the last convolutional layer
of the decoder and the bottleneck layer that corresponds to a dense layer. This dense layer acts as a
representation of the encoded audio and is made up of 128 neurons. To prevent the autoencoder from



Sensors 2020, 20, 3741 7 of 19

learning the identity function, a dropout layer is introduced at the start of the encoder [44,45]. The
autoencoder architecture is detailed in Table 1.

3 x 3

ReLU

BN

3 x 3

ReLU

BN

X

Encoder ConvBlock

l

Xl+1

Average Pooling (2,2)

3 x 3

ReLU

BN

3 x 3

ReLU

BN

X

Decoder ConvBlock

l

Xl+1

Upsampling (2,2)

Figure 2. Architecture of the ConvBlocks for the two parts of the autoencoder. Xl denotes the input to
the block, while Xl+1 denotes the output.

Table 1. Autoencoder architecture. Values preceded by # correspond to the number of filters and values
in parenthesis correspond to kernel size.

Autoencoder Architecture

Dropout(0.1)
Enc. ConvBlock(#8, (3, 3))
Enc. ConvBlock(#16,(3, 3))
Enc. ConvBlock(#32,(3, 3))

Flatten

Bottleneck/Dense(128, ‘linear’)

Upsampling
Reshape

Dec. ConvBlock(#32,(3, 3))
Dec. ConvBlock(#16,(3, 3))
Dec. ConvBlock(#8, (3, 3))
Conv2D (#1, (3, 3), ‘linear’)

3.2.1. Unsupervised Autoencoder

Autoencoders originally appeared as a solution to unsupervised problems [46], where no
information about the class to which each sample belonged was available. Autoencoders can not be
used for supervised classification problems and audio labels are not used in this stage of the training.
The objective of the autoencoder is only to extract meaningful internal representations of each audio
independently, leading to similar audio representations for samples belonging to the same class. In this
case, the loss function during training corresponds to the mean squared error (MSE):

Lmse =
1
N

N

∑
i=1

(
Xi − X̂i

)2 (2)



Sensors 2020, 20, 3741 8 of 19

where Xi corresponds to an original log-Mel spectrogram and X̂i to the one reconstructed by the
autoencoder. Finally, N represents the number of samples in the batch.

3.2.2. Semi-Supervised Autoencoder

In order to mitigate the assumption that samples of the same class have a similar representation
and try to achieve more similar representations within the same intra-class, the autoencoder has been
modified so that it not only takes into account the reconstruction error but also the classification error.
The goal is to force the encoder to approximate representations of the same class in the feature space.
Therefore, the bottleneck layer is stacked with a classification layer, a dense layer with the number
of neurons equal to the number of KK classes. A block diagram of this architecture can be found
in Figure 3. In this case, the total loss is a weighted sum of the reconstruction error (MSE) and the
classification error, which in our case is the binary cross-entropy (BCE):

Lbce = −
1
N

N

∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (3)

Lss =
1
2
Lmse +

1
2
Lbce (4)

where yi corresponds to the label of the original class instance and ŷi to the predicted label. Lss is
the loss used in the semi-supervised configuration. Each partial loss is multiplied by 1/2 to use a
uniform weighting between reconstruction and classification. The choice of these weights is designed
so that the framework is purely semi-supervised. If more weight is given to the reconstruction error,
the framework will be more likely to appear to be the unsupervised system. On the other hand, if more
weight is given to the classification error, the autoencoder will be more likely to address a closed-set
classification problem and the open-set consideration will not be properly handled.

Encoder

+

mse

ss

bce

Decoder L

L

L

C
la

ss
if
ic

a
ti

o
n
 L

a
y
er

B
o
tt

le
n
ec

k

Figure 3. Semi-supervised autoencoder architecture.

3.3. Multi-Layer Perceptron

Once the autoencoder has been trained, a MLP is trained on the learned latent space
representations. This block will be in charge of classifying a sample if it belongs to a KK class
(pattern category) or rejecting it either if it belongs to KU or UU classes (unwanted category). The
MLP is trained with the representations that are obtained in the bottleneck layer of the autoencoder.
Each audio sample is represented by 128 features. The MLP consists of three layers. The first two
layers have 512 and 128 units respectively with ReLU activation. The last layer has as many units as



Sensors 2020, 20, 3741 9 of 19

KK classes and its activation is a sigmoid function. The output of the sigmoid is used as a likelihood
score, so that a threshold is established for deciding if a given audio sample belongs to a KK class. This
threshold is set to 0.5. If none of the outputs corresponding to the KK classes is above the threshold,
the sample will be rejected. This MLP architecture is inspired in previous works, such as [15] or the
baseline method used in [22]. This also allows for emphasizing the contribution of the proposed
autoencoders, verifying their validity in a clearer way. In this context, the baseline method proposed
in [22] uses audio embeddings obtained from the L3net network [15]. As a result, while the baseline
employs transfer learning (the method relies on prior knowledge from a pre-trained network), we
only make use of the samples available in the training dataset. Training details will be presented in
Section 4.2.

4. Materials and Methods

This section describes the experimental framework considered in this paper, including the dataset
used, the FSL/OSR conditions, the performance metrics considered or the network training details.
Note that the proposed method is intended to address both the problem of OSR and the FSL problem.
State-of-the-art solutions for such learning problems may not be suitable when both problems appear
simultaneously. Therefore, special care must be taken when comparing systems not specifically
designed to tackle both aspects.

4.1. Dataset

The dataset used to validate the framework proposed in this paper was recently presented in [22].
The dataset contains audio samples of a domestic nature to address FSL audio event recognition in an
OSR context. The data set consists of two general classes or coarse categories defined as:

• Pattern sounds category: includes all the classes that must be recognized. Samples belonging to one
of these classes must be classified as such. In our scenario, this category is made up of KK classes.

• Unwanted category: includes all the classes that should not be classified. Samples from these classes
must be rejected by the system without labeling them. In this context, the unwanted category
consists of the KU and UU classes, depending on the openness configuration.

The pattern category contains 24 classes that correspond to different domestic alarms and the
unwanted category contains 10 classes of different nature such as cough, keyboard tapping or door slam
among others. The dataset comes prepared for different openness values and different shots during
training. As can be seen from Equation (1), the openness condition is affected by the number of KK
classes to be classified or the number of unwanted classes used for training. Therefore, two approaches
are presented within the dataset. In the first approach, the system is trained to recognize the full
set of pattern classes (24 KK classes). As far as the unwanted classes are concerned, the dataset is
designed so that the system is trained using all, half or no unwanted classes, leading to the set of
openness values O∗ ∈ {0, 0.04, 0.09}, respectively. Another scenario is the creation of known trios,
i.e., only 3 classes of KK are used for training/testing. With this configuration 8 different training
trios are created. By repeating the same process with respect to the unwanted ones, the resulting
openness values are 0∗ ∈ {0, 0.13, 0.39} with this configurations. The experiments that make up the
configuration O∗ = 0.39 were not carried out because it was not possible to get a feasible solution with
such an openness factor. The number of classes used during the training and inference stages that
correspond to the openness values previously explained are specified in Table 2.

On the other hand, all these settings can be trained with different shots. The dataset was
pre-configured for 4, 2 or 1-shot training. The number of shots modifies the k-fold cross-validation.
For example, when training with 4 shots a 10-fold configuration was used, while when training with
1 shot, a 40-fold configuration was employed.



Sensors 2020, 20, 3741 10 of 19

Table 2. Number of classes of each configuration and the corresponding openness value.

Pattern Sounds KK KU UU TTR TTE O∗

Full set 24
10 0 34 34 0
5 5 29 34 0.04
0 10 24 34 0.09

Trios 3
10 0 13 13 0
5 5 8 13 0.13
0 10 3 13 0.39

4.2. Training Procedure

The training setup was very similar for the autoencoder and the MLP. The optimizer used was
Adam and the batch size was set to 32 samples. The learning rate starts with an initial value of
0.001 and decreases when the validation metric had not improved for 20 epochs by a factor of 0.75.
The training was terminated if the validation metric did not improve for 50 epochs. The final selection
corresponds to the model that had obtained a better metric in validation. The difference was the
maximum number of epochs yet for the autoencoder is 500 epochs and for the MLP is 200 epochs.
It must be here considered that when training from the scratch with few samples the system can easily
converge to different local minima depending on its initialization. Therefore, each k-fold configuration
was also repeated 5 times in order to provide insight about its statistical behavior and robustness.

4.3. Performance Metrics

The metrics used to analyze the performance of the proposed systems are presented in [22] and
summarized here for the convenience of the reader. They are based on the weighted global accuracy,
ACCw, which is computed differently depending on the value of openness.

O∗ = 0 (without UU) :

ACCw = wACCKK + (1− w)ACCKU ,
(5a)

O∗ 6= 0 (with KU and UU) :

ACCw = wACCKK + (1− w)ACCKUU ,
(5b)

O∗ 6= 0 (with only UU) :

ACCw = wACCKK + (1− w)ACCUU ,
(5c)

where w represents a factor that weights the accuracy between the accuracy obtained over KK classes
and other unwanted classes (KU or UU). ACCKK corresponds to the accuracy with which the system
correctly classifies the KK samples into their respective classes. In this case, to accept a sample as
a valid KK class, the OSR threshold (0.5) must be exceeded.

The performance metrics involving the unwanted category (ACCKU , ACCKUU or ACCUU),
indicate the ability of the system to reject samples that do not belong to any KK class. For a sample to be
considered unwanted, none of the KK classes must exceed the OSR threshold. The reason why there are
three different metrics relates to the different openness conditions O∗. When the system sees all possible
unwanted classes during training, the unwanted category only consists of KU classes. On the other
extreme, if the system does not see any unwanted samples during training, the unwanted category is
only made up of UU classes. When the system sees some of the classes pertaining to the unwanted
category, the ACCKUU metric is used, which is defined as the average of ACCKU and ACCUU .



Sensors 2020, 20, 3741 11 of 19

5. Results and Discussion

This section discusses the results obtained for the different FSL/OSR configurations considered in
the described dataset. The performance of the two proposed autoencoder-based systems is compared
to the one obtained by the dataset baseline system. More detailed information about the number of
classes used in each experiment can be seen in Table 2.

5.1. Full Set (24 KK) Performance

All the results of this configuration can be seen in Table 3. In the one-shot case, a substantial
improvement over the baseline system for all the openness cases can be observed, with our two
proposed approaches achieving a considerably higher ACCw value. The lowest improvement is of
7 percentage points (O∗ = 0.04), while the highest is almost of 30 percentage points (O∗ = 0). With
this number of shots, both the ACCKK (in all cases) or the ACCUU (in O∗ = 0.09) are greatly improved.
As observed, the baseline is very likely to classify the pattern sounds (KK classes) into the unwanted
category, except when O∗ 6= 0.09. Using autoencoders, more reliable representations are obtained for
the KK classes, resulting in improved accuracy (see ACCKK and O∗ = 0). Something similar occurs
for ACCUU , where autoencoders can get more distant representations within the latent space for
unwanted classes. All the metrics remain very similar for the unwanted category when O∗ ∈ {0, 0.04}.

The behavior is very similar when the number of training samples is 2 or 4. When O∗ ∈ {0, 0.04}
most metrics are improved to a greater or lesser extent. Only the unsupervised autoencoder shows
worse behavior on the ACCKUU metric although it improves ACCUU . However, the most significant
contribution of the proposed frameworks can be seen when O∗ = 0.09. Just like for the one-shot
case, ACCUU is clearly enhanced with this framework. In this case, the ACCUU is considerably
improved with respect to the baseline, going from 33.3% to 72.5% (semi-supervised) and 26.1% to
69.9% (unsupervised).

Another factor to be analyzed is the standard deviation. That is to say, how the generalization
of the solution is affected by the fact that few training samples are available. Depending on the
initialization of the network, the results may differ. When a large data set is available, this fact is usually
not very decisive. This is not the case in an FSL context. If the standard deviation is analyzed, it must
be done taking into account the number of shots and the corresponding openness factor. Analyzing the
KK classes, when O∗ = 0 it can be seen how the framework with the semi-supervised autoencoder has
the lowest deviation in all possible cases depending on the number of shots. The unsupervised one has
a higher standard deviation than the baseline when the number of shots is 2 or 4. This may be due to
the fact that even though it is trained with more samples of the same class, the framework is not aware
of it since it does not have such an information. Also, when O∗ 6= 0 the standard deviation of the
unsupervised is higher than the baseline if the number of shots is greater than 1. Probably, the system
is becoming more prone to false negatives as the value of openness increases. When the framework
does have information about the sample class (semi-supervised architecture), and the number of shots
is bigger than one, the standard deviation is reduced. When O∗ > 0 and the number of shots is higher
than one, the semi-supervised architecture has lower standard deviation than the baseline. This does
not happen when the number of shots is equal to one since in this case the unsupervised has the lowest
deviation. Regarding the unwanted category, it can be observed how deviations increase for all the
methods as the value of openness increases. In this case, the framework with the semi-supervised
autoencoder shows better results than the unsupervised one except for a single case with ACCUU and
O∗ = 0.04. The reduction in standard deviation is much greater as the number of shots is increased,
as seem for ACCUU when O∗ ∈ {0.04, 0.09}.



Sensors 2020, 20, 3741 12 of 19

Table 3. Final classification results (%). Baseline results correspond to the L3 approach framework presented in [22]. The bold numbers indicate winning configurations
according to the number of shots.

Openness Coefficient

Shots Framework O∗ = 0 O∗ = 0.04 O∗ = 0.09

ACCKK ACCKU ACCw ACCKK ACCKUU ACCUU ACCw ACCKK ACCUU ACCw

1
Baseline 13.8 ± 12.9 99.8 ± 1.0 56.8 57.7 ± 8.4 90.4 ± 5.4 84.8 ± 9.8 74.1 60.1 ± 7.8 39.6 ± 13.4 49.9

Unsupervised 68.8 ± 10.3 95.4 ± 3.4 82.1 76.0 ± 7.6 90.1 ± 7.6 87.6 ± 10.9 83.1 78.5 ± 7.5 70.6 ± 15.5 74.5
Semi-supervised 73.5 ± 8.8 97.4 ± 2.8 85.4 73.1 ± 10.3 90.2 ± 7.4 86.9 ± 11.1 81.7 77.2 ± 9.7 69.7 ± 10.4 73.5

2
Baseline 81.1 ± 5.5 99.4 ± 0.8 90.3 83.2 ± 4.8 90.2 ± 5.1 82.5 ± 9.6 86.7 83.3 ± 5.6 33.3 ± 11.6 58.3

Unsupervised 82.4 ± 7.2 94.6 ± 3.2 88.5 86.0 ± 5.9 88.7 ± 6.3 84.4 ± 10.0 87.3 86.3 ± 6.6 59.3 ± 14.7 72.8
Semi-supervised 90.2 ± 4.9 98.6 ± 1.8 94.4 89.9 ± 4.4 93.4 ± 6.0 90.1 ± 9.5 91.6 90.7 ± 4.5 72.5 ± 8.6 81.6

4
Baseline 94.8 ± 2.2 99.6 ± 0.4 97.2 94.3 ± 2.2 88.3 ± 5.7 79.4 ± 9.5 91.3 94.8 ± 2.4 26.1 ± 10.1 60.5

Unsupervised 91.8 ± 3.8 94.6 ± 2.3 93.2 92.4 ± 4.4 85.8 ± 7.8 80.2 ± 12.0 89.1 91.1 ± 4.9 51.4 ± 17.1 71.2
Semi-supervised 97.7 ± 1.6 99.7 ± 0.5 98.7 97.7 ± 1.5 97.0 ± 3.1 95.0 ± 5.7 97.3 97.93 ± 1.3 69.9 ± 8.7 83.9



Sensors 2020, 20, 3741 13 of 19

5.2. Trio Performance

The results obtained with this configuration are presented in Tables 4 and 5. By looking first at the
results in Table 4 (O∗ = 0), it is observed that the baseline is very prone to false negatives, i.e., it tends
to reject examples from KK classes, as derived from its low ACCKK value. In contrast, the proposed
autoencoder-based approaches improve considerably the performance in all cases, discerning more
easily KK classes from the unwanted ones.

Table 4. Results with trios configuration and O∗ = 0. The number list under the trio number
corresponds to the number of patterns that make up that trio. The bold numbers indicate winning
configurations according to the number of shots.

Framework

Trio Shots Baseline Unsupervised Semi-Supervised

ACCKK ACCKU ACCw ACCKK ACCKU ACCw ACCKK ACCKU ACCw

1 65.1 ± 16.1 99.4 ± 1.1 82.3 97.4 ± 5.4 97.4 ± 2.5 97.4 91.5 ± 10.1 97.9 ± 2.2 94.7
0 2 80.2 ± 15.0 99.6 ± 0.5 89.9 98.4 ± 3.3 98.3 ± 1.5 98.4 96.2 ± 6.8 98.2 ± 2 97.2

(1, 9, 17) 4 90.1 ± 14.5 99.7 ± 0.4 94.9 99.0 ± 2.2 98.9 ± 1.0 98.9 98.8 ± 3.7 99.4 ± 0.7 99.1

1 68.9 ± 12.9 99.9 ± 0.2 84.4 96.9 ± 6.4 96.2 ± 3.8 96.6 94.8 ± 9.3 96.8 ± 3.7 95.8
1 2 84.7 ± 16.5 99.9 ± 0.4 92.3 99.0 ± 1.3 98.5 ± 1.5 96.8 98.4 ± 3.4 98.3 ± 2.1 98.4

(10, 12, 19) 4 88.0 ± 15.6 99.9 ± 0.4 93.9 99.5 ± 0.9 98.9 ± 1.2 99.2 99.2 ± 1.8 99.4 ± 1.1 99.3

1 55.5 ± 18.6 99.9 ± 1.0 77.7 92.1 ± 8.5 97.4 ± 3.1 94.8 86.4 ± 12.2 98.4 ± 2.9 92.4
2 2 76.1 ± 14.7 99.9 ± 0.1 88.0 95.9 ± 6.7 98.6 ± 1.6 97.3 94.8 ± 6.2 99.1 ± 1.3 97.0

(2, 14, 22) 4 83.1 ± 20.7 99.9 ± 0.1 91.5 97.8 ± 2.3 98.8 ± 1 98.3 98.6 ± 2.2 99.8 ± 0.8 99.2

1 53 ± 12.1 99.9 ± 0.4 76.5 90.0 ± 11.4 94.7 ± 3.7 92.3 83.5 ± 12.2 95.2 ± 3.6 89.3
3 2 64.6 ± 16.1 99.9 ± 0.3 82.2 93.8 ± 7.2 96.8 ± 2.2 95.3 89.8 ± 10.7 96.9 ± 2.4 93.4

(3, 6, 13) 4 77.4 ± 19.0 99.8 ± 0.9 88.6 96.9 ± 5.5 97.9 ± 1.4 97.4 97.1 ± 3.9 99.0 ± 1.1 98.0

1 71.7 ± 15.2 100 ± 0 85.8 91.2 ± 9.3 96.1 ± 3.1 93.7 87.3 ± 12.2 96.3 ± 3.2 91.8
4 2 86.8 ± 14.5 100 ± 0 93.4 94.7 ± 6.3 97.8 ± 1.7 95.3 93.2 ± 8.4 97.3 ± 2.1 95.3

(4, 5, 16) 4 88.1 ± 18.6 99.9 ± 0.6 94.0 96.3 ± 4.8 98.4 ± 1.5 97.4 99.1 ± 1.9 99.2 ± 1.0 99.1

1 76.5 ± 15.2 99.9 ± 0.2 88.2 92.3 ± 9.7 98.0 ± 2.3 95.2 92.4 ± 8.5 98.5 ± 2.6 95.4
5 2 85.1 ± 15.4 99.9 ± 0.1 92.5 95.4 ± 6.8 98.8 ± 1.6 97.1 96.0 ± 5.2 99.2 ± 1.2 97.6

(18, 21, 23) 4 89.3 ± 16.4 100 ± 0.1 94.6 98.0 ± 2.6 99.3 ± 0.9 98.6 99.0 ± 1.4 99.8 ± 0.3 99.4

1 87.0 ± 13.5 99.7 ± 0.5 93.4 95.3 ± 7.2 97.0 ± 3.1 96.1 94.4 ± 7.7 97.9 ± 2.7 96.2
6 2 87.6 ± 16.0 99.6 ± 0.6 93.6 96.2 ± 4.9 97.9 ± 1.9 97.1 97.1 ± 4.3 98.8 ± 1.5 98.0

(8, 11, 24) 4 89.9 ± 14.5 99.7 ± 0.5 94.8 99.1 ± 1.9 98.8 ± 1.2 98.9 99.3 ± 1.4 99.6 ± 0.6 99.4

1 66.4 ± 15.7 99.6 ± 0.6 83.0 89.0 ± 9.7 96.3 ± 3.0 92.7 77.4 ± 14.2 97.2 ± 3.1 87.3
7 2 82.1 ± 13.7 99.5 ± 0.7 90.8 92.8 ± 6.4 97.8 ± 1.8 95.3 86.4 ± 9.2 98.2 ± 1.9 92.3

(7, 15, 20) 4 83.7 ± 15.3 99.5 ± 0.9 91.6 95.5 ± 3.9 98.8 ± 1.1 97.2 91.0 ± 7.3 99.1 ± 1.1 95.1

A similar behavior is observed when looking at the results from the first five trios (from trio 0 to 4).
The unsupervised autoencoder shows better performance than the semi-supervised autoencoder with
few samples in training. When the number of training samples is four, the semi-supervised always
shows the best result. This may reflect that using classification error in the autoencoder training may
only have a relevant effect for a sufficient number of shots. Trios 5 and 6 show better results with
the semi-supervised autoencoder, especially for two and four shots. Finally, trio 7 shows a quite
different behavior, since the unsupervised autoencoder provides the best results for any number of
shots. This may be due to the closeness in the feature space of classes 7 and 20.

Regarding the analysis of trios with O∗ = 0.13 in Table 5, we can see that the semi-supervised
autoencoder obtains better performance in most cases. In this case, where not all unwanted classes are
seen in training, semi-supervision helps to obtain more discriminative representations even with few
samples. Note, however, that in this set of experiments, the baseline obtains the best result in some
cases, like in trios 4, 6 or in all the shots of the trio 7.

Comparing the results obtained in this section with those for the full set with the 24 KK
classes, a similar behavior is observed. When O∗ = 0 the system is more prone to false negatives,



Sensors 2020, 20, 3741 14 of 19

showing lower ACCKK with O∗ = 0 than with O∗ = 0.13. On the other hand, ACCKU and ACCKUU
show worse performance with O∗ = 0.13 than with O∗ = 0.

With respect to the performance concerning unwanted classes, Table 6 presents the analysis of
ACCKUU and ACCUU for the different trio configurations. Note that the former takes into account
both unwanted classes seen in training and those that are not. The second only corresponds to the
accuracy of the unwanted classes that are only seen in the test stage. The OSR system is expected
to have good generalization properties if both are similar. Thus, a more realistic behavior would
usually result in a slightly lower metric in ACCUU . It is observed that the accuracies are a little lower
for autoencoders than for the baseline. Note, however, that this lower performance is significantly
compensated by the tradeoff involving better accuracy in KK classes. This means that, although
the baseline may have better ability to reject unwanted classes, it is at the expense of rejecting as
well pattern sounds. Both the unsupervised and semi-supervised autoencoders show good rejection
generalization. Thus, these solutions can be competitive in OSR problems as long as some of the
classes to be rejected take part in the training stage.

Table 5. Results with trios configuration and O∗ = 0.13. The number list under the trio number
corresponds to the number of patterns that make up that trio. The bold numbers indicate winning
configurations according to the number of shots.

Framework

Trio Shots Baseline Unsupervised Semi-Supervised

ACCKK ACCKU ACCw ACCKK ACCKU ACCw ACCKK ACCKUU ACCw

1 85.88 ± 13.4 97.7 ± 4.6 91.8 97.7 ± 5.2 93.9 ± 5.7 95.8 95.4 ± 7.4 93.9 ± 6.6 94.6
0 2 89.2 ± 12.5 99.6 ± 0.5 94.4 99.1 ± 1.8 96.5 ± 3.7 97.8 97.7 ± 4.7 96.9 ± 3.7 97.3

(1, 9, 17) 4 97.5 ± 8.1 99.7 ± 0.4 98.6 99.4 ± 1.8 98.1 ± 2.5 98.7 99.2 ± 2.1 98.4 ± 1.9 98.8

1 88.8 ± 13.1 98.3 ± 2.8 93.5 98.5 ± 3.7 88.6 ± 9.4 93.6 97.6 ± 6.2 89.7 ± 9.8 93.7
1 2 89.0 ± 14.5 98.7 ± 2.4 93.8 99.4 ± 1.2 94.7 ± 5.8 97.0 98.6 ± 2.7 95.6 ± 4.7 97.2

(10, 12, 19) 4 96.2 ± 9.6 96.7 ± 3.1 96.5 99.5 ± 1.0 97.7 ± 3.0 99.6 99.4 ± 1.2 97.7 ± 4.4 98.6

1 78.4 ± 13.4 99.8 ± 0.9 89.1 95.2 ± 7.3 89.6 ± 9.0 92.4 94.1 ± 8.3 94.6 ± 6.4 94.3
2 2 82.6 ± 13.9 99.8 ± 0.5 91.2 97.6 ± 4.2 93.2 ± 7.1 95.4 97.7 ± 3.8 97.1 ± 5.1 97.4

(2, 14, 22) 4 91.9 ± 12.3 99.4 ± 0.9 95.6 98.9 ± 2.0 94.1 ± 6.9 96.5 98.6 ± 3.0 99.1 ± 1.8 98.9

1 72.3 ± 13.4 96.2 ± 4.2 84.3 94.2 ± 8.2 86.0 ± 8.7 90.1 90.4 ± 10.9 88.7 ± 8.3 89.6
3 2 78.37 ± 13.7 95.7 ± 4.6 87.2 96.9 ± 4.3 90.0 ± 7.9 93.5 94.8 ± 7.4 94.0 ± 5.9 94.4

(3, 6, 13) 4 90.3 ± 11.4 92.0 ± 3.2 91.1 97.1 ± 3.9 95.2 ± 4.6 96.1 97.0 ± 4.9 96.6 ± 3.6 96.8

1 88.5 ± 10.1 99.3 ± 1.3 93.9 94.6 ± 7.4 91.3 ± 6.7 92.9 94.2 ± 8.6 89.1 ± 9.9 91.6
4 2 93.2 ± 9.2 99.4 ± 1.1 96.3 96.2 ± 5.5 95.1 ± 4.8 95.6 97.1 ± 5.5 94.2 ± 5.8 95.7

(4, 5, 16) 4 97.0 ± 9.1 99.0 ± 1.2 98.0 98.2 ± 3.0 96.2 ± 3.8 97.2 99.1 ± 2.4 97.6 ± 2.9 98.4

1 87.9 ± 11.8 99.1 ± 1.2 93.5 96.2 ± 5.2 93.2 ± 6.1 94.7 95.9 ± 7.0 95.5 ± 6.2 95.7
5 2 93.4 ± 7.7 98.8 ± 1.2 96.1 98.0 ± 2.6 95.9 ± 4.0 97.0 98.8 ± 2.0 98.6 ± 2.9 98.7

(18, 21, 23) 4 97.2 ± 8.1 98.3 ± 1.2 97.7 98.8 ± 1.9 94.0 ± 5.9 96.4 99.6 ± 1.0 99.7 ± 0.6 99.6

1 96.0 ± 7.8 99.3 ± 0.8 97.6 96.4 ± 6.6 93.9 ± 5.07 95.1 97.00 ± 5.73 94.23 ± 6.35 95.6
6 2 95.8 ± 9.1 99.4 ± 0.7 97.6 98.6 ± 3.1 96.0 ± 3.9 97.3 99.0 ± 2.7 97.2 ± 3.9 98.1

(8, 11, 24) 4 96.8 ± 9.2 99.2 ± 0.8 98.0 99.5 ± 1.0 95.9 ± 4.4 97.7 99.5 ± 1.2 98.7 ± 2.1 99.1

1 87.0 ± 11.4 97.6 ± 2.9 92.3 91.1 ± 9.2 87.3 ± 7.8 89.2 84.9 ± 12.4 87.3 ± 8.9 86.1
7 2 90.0 ± 9.8 98.6 ± 1.7 94.3 94.8 ± 6.0 92.4 ± 5.6 93.6 89.2 ± 9.4 93.0 ± 6.2 91.1

(7, 15, 20) 4 94.4 ± 10.1 98.5 ± 1.5 96.5 96.0 ± 4.2 95.2 ± 4.2 95.6 93.8 ± 5.8 95.8 ± 4.2 94.8



Sensors 2020, 20, 3741 15 of 19

Table 6. Results of unwanted category with trios configuration and O∗ = 0.13. The number list under
the trio number corresponds to the number of patterns that make up that trio.

Framework

Trio Shots Baseline Unsupervised Semi-Supervised

ACCKUU ACCUU ACCKUU ACCUU ACCKUU ACCUU

1 97.7 ± 4.6 98.4 ± 4.1 93.9 ± 5.7 93.7 ± 8.8 93.9 ± 6.6 93.0 ± 9.2
0 2 99.6 ± 0.5 99.8 ± 0.6 96.5 ± 3.7 96.2 ± 5.6 96.9 ± 3.7 96.2 ± 6.5

(1, 9, 17) 4 99.7 ± 0.4 99.9 ± 0.4 98.1 ± 2.5 98.2 ± 3.7 98.4 ± 1.9 98.5 ± 2.8

1 98.3 ± 2.8 96.8 ± 5.6 88.6 ± 9.4 87.0 ± 12.5 89.7 ± 9.8 87.0 ± 13.5
1 2 98.7 ± 2.4 97.6 ± 4.7 94.7 ± 5.9 93.4 ± 8.9 95.6 ± 4.7 94.4 ± 7.1

(10, 12, 19) 4 96.7 ± 3.1 93.8 ± 5.8 97.7 ± 3.0 96.8 ± 4.6 97.7 ± 4.4 96.6 ± 6.8

1 99.8 ± 0.9 99.7 ± 1.7 89.6 ± 8.9 85.3 ± 13.9 94.6 ± 6.4 92.2 ± 9.7
2 2 99.8 ± 0.5 99.7 ± 0.6 93.2 ± 7.1 89.2 ± 11.7 97.1 ± 5.1 95.9 ± 7.7

(2, 14, 22) 4 99.4 ± 0.9 99.0 ± 1.5 94.1 ± 6.9 90.2 ± 12.3 99.1 ± 1.8 98.7 ± 3.3

1 96.2 ± 4.2 92.7 ± 8.2 86.0 ± 8.7 84.7 ± 13.4 88.7 ± 8.3 87.5 ± 12.6
3 2 95.7 ± 4.6 91.6 ± 8.7 90.0 ± 7.9 87.5 ± 13.3 94.0 ± 5.9 93.3 ± 9.5

(3, 6, 13) 4 92.0 ± 3.2 84.8 ± 6.0 95.2 ± 4.6 93.5 ± 7.3 96.6 ± 3.6 96.0 ± 5.7

1 99.3 ± 1.3 98.6 ± 2.5 91.3 ± 6.7 90.4 ± 9.5 89.1 ± 9.9 87.0 ± 13.6
4 2 99.4 ± 1.1 98.8 ± 2.2 95.1 ± 4.8 94.4 ± 7.1 94.2 ± 5.8 92.5 ± 9.8

(4, 5, 16) 4 99.0 ± 1.2 98.1 ± 2.2 96.2 ± 3.8 94.6 ± 6.6 97.7 ± 2.9 97.2 ± 4.7

1 99.1 ± 1.2 98.5 ± 2.2 93.2 ± 6.1 90.0 ± 9.7 95.5 ± 6.3 94.0 ± 9.0
5 2 98.8 ± 1.2 97.8 ± 2.3 95.9 ± 4.0 93.5 ± 6.9 98.6 ± 2.9 97.8 ± 5.1

(18, 21, 23) 4 98.3 ± 1.2 96.8 ± 2.1 94.0 ± 5.9 98.4 ± 10.9 99.7 ± 0.6 99.4 ± 1.2

1 99.3 ± 0.8 99.4 ± 0.6 93.9 ± 5.1 92.5 ± 7.9 94.2 ± 6.4 93.4 ± 8.9
6 2 99.4 ± 0.7 99.2 ± 1.0 96.0 ± 3.9 94.0 ± 7.0 97.2 ± 3.9 96.4 ± 6.8

(8, 11, 24) 4 99.2 ± 0.8 98.9 ± 1.0 95.9 ± 4.4 93.1 ± 8.0 98.7 ± 2.1 98.2 ± 3.0

1 97.6 ± 2.9 96.8 ± 5.4 87.3 ± 7.8 83.7 ± 12.1 87.3 ± 8.9 82.6 ± 13.6
7 2 98.6 ± 1.7 98.4 ± 3.0 92.4 ± 5.6 89.7 ± 9.3 93.0 ± 6.2 89.6 ± 9.9

(7, 15, 20) 4 98.5 ± 1.5 98.1 ± 2.7 95.2 ± 4.2 93.1 ± 7.6 95.8 ± 4.2 93.4 ± 7.4

5.3. Performance on ASC Task

Finally, to study the generalization capability of the proposed framework to other tasks not related
to the detection of specific sound patterns, we consider Task 1C of the DCASE 2019 [47] edition. This is
related to ASC in OSR conditions. The aim of the task is to classify a scene among one of the ten known
classes or to consider it as unknown (reject the sample) if it does not belong to any of them. The dataset
is designed so that unknown samples are available during training. Therefore, in this task, only the
AccKK and AccKU metrics are provided. The results are shown in Table 7.

Table 7. Results(%) of the proposed frameworks using DCASE (Detection and Classification of Acoustic
Scenes and Events) 2019 Task 1C dataset. The baseline results correspond to the one presented by the
task organization as a starting point.

Framework AccKK AccKU Accw

Baseline 54.2 43.1 48.7
Unsupervised 39.3 69.0 54.1

Semi-supervised 53.5 25.8 39.6

As it can be observed, the results for this task are considerably worse than those for the FSL/OSR
dataset. This is because even if there are many samples of a certain class, they are not necessarily very
similar or follow a certain spectro–temporal pattern. However, the unsupervised system improves the
trade-off of the system proposed as a baseline. It improves considerably the detection of unwanted



Sensors 2020, 20, 3741 16 of 19

sounds but worsens the classification of known classes. The semi-supervised system obtains practically
the same result of the baseline for the known classes but the detection capability of unwanted sounds
is lower. Such result is in line with our expectations. When the framework does not have information
about the class it is reconstructing, it tends to create independent internal representations that lead to
an improvement in the classification of unwanted ones. On the other hand, when it is forced to obtain
representations that do take into account the information of the class, the capability of classifying
known classes is improved to the detriment of the detection of unwanted classes.

6. Conclusions

This work presented a novel framework capable of classifying audio pattern samples with few
data within an open-set recognition context. The proposed system is based on the use of autoencoders
to learn latent space representations with few data and a multi-layer perceptron classifier to classify
target sound classes and reject unwanted ones. Both unsupervised and semi-supervised autoencoder
architectures were considered.

It has been confirmed that, by increasing the number of training samples, a smaller standard
deviation and a higher classification accuracy for target classes is obtained, reducing the number
of false negatives with respect to the baseline method. In this context, if the number of known
known classes is high, the semi-supervised autoencoder seems to perform best. On the other hand,
with a small number of known known classes, the autoencoder type has a bigger influence. In this
case, the semi-supervised approach usually outperforms the unsupervised one for most openness
conditions. Only for zero openness and very few training shots, the unsupervised approach showed
increased performance.

Author Contributions: The contribution of each author can be summarized as: “Conceptualization, J.N.-A., S.P.-C.
and P.Z.; methodology, J.N.-A.; software, J.N.-A. and S.P.-C.; validation, P.Z., F.A. and M.C.; formal analysis, J.N.-A.
and M.C.; investigation, J.N.-A.; resources, J.N.-A.; data curation, S.P.-C.; writing—original draft preparation,
J.N.-A. and M.C.; writing—review and editing, F.A. and M.C.; visualization, M.C.; supervision, F.A. and M.C.;
project administration, J.N.-A. and M.C.; funding acquisition, J.N.-A., P.Z. and M.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No 779158. The participation of Javier Naranjo-Alcazar and Pedro Zuccarello in
this work is partially supported by Torres Quevedo fellowships DIN2018-009982 and PTQ-17-09106 respectively
from the Spanish Ministry of Science, Innovation and Universities. The participation of Maximo Cobos
is supported by FEDER and the Spanish Ministry of Science, Innovation and Universities under Grant
RTI2018-097045-B-C21.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Piczak, K.J. Environmental sound classification with convolutional neural networks. In Proceedings of the
2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA,
USA, 17–20 September 2020; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6.

2. Cakır, E.; Heittola, T.; Virtanen, T. Domestic audio tagging with convolutional neural networks.
In Proceedings of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events
(DCASE 2016), Budapest, Hungary, 3 September 2016.

3. Valenti, M.; Diment, A.; Parascandolo, G.; Squartini, S.; Virtanen, T. DCASE 2016 acoustic scene classification
using convolutional neural networks. In Proceedings of the Workshop on Detection and Classification of
Acoustic Scenes and Events, Budapest, Hungary, 3 September 2016; pp. 95–99.

4. Bae, S.H.; Choi, I.; Kim, N.S. Acoustic scene classification using parallel combination of LSTM and
CNN. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop
(DCASE2016), Budapest, Hungary, 3 September 2016; pp. 11–15.

5. Stowell, D.; Giannoulis, D.; Benetos, E.; Lagrange, M.; Plumbley, M.D. Detection and classification of acoustic
scenes and events. IEEE Trans. Multimed. 2015, 17, 1733–1746. [CrossRef]

http://dx.doi.org/10.1109/TMM.2015.2428998


Sensors 2020, 20, 3741 17 of 19

6. Scheirer, W.J.; Jain, L.P.; Boult, T.E. Probability models for open set recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 2014, 36, 2317–2324. [CrossRef] [PubMed]

7. Battaglino, D.; Lepauloux, L.; Evans, N. The open-set problem in acoustic scene classification. In Proceedings
of the 2016 IEEE International Workshop on Acoustic Signal Enhancement (IWAENC), Xi’an, China,
14–16 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5.

8. Júnior, P.R.M.; de Souza, R.M.; Werneck, R.d.O.; Stein, B.V.; Pazinato, D.V.; de Almeida, W.R.; Penatti, O.A.;
Torres, R.d.S.; Rocha, A. Nearest neighbors distance ratio open-set classifier. Mach. Learn. 2017, 106, 359–386.
[CrossRef]

9. Bendale, A.; Boult, T.E. Towards open set deep networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1563–1572.

10. Rakowski, A.; Kosmider, M. Frequency-Aware CNN for Open Set Acoustic Scene Classification;
In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019 Workshop
(DCASE2019), New York, NY, USA, 25–26 October 2019.

11. Lu, R.; Wu, K.; Duan, Z.; Zhang, C. Deep ranking: Triplet MatchNet for music metric learning.
In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), New Orleans, LA, USA, 5–9 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 121–125.

12. Chen, K.; Salman, A. Extracting speaker-specific information with a regularized siamese deep network.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2011), Granada, Spain,
12–17 December 2011; pp. 298–306.

13. Bredin, H. Tristounet: Triplet loss for speaker turn embedding. In Proceedings of the 2017 IEEE International
Conference on Acoustics, Speech and Signal processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 5430–5434.

14. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359.
[CrossRef]

15. Cramer, J.; Wu, H.H.; Salamon, J.; Bello, J.P. Look, Listen, and Learn More: Design Choices for Deep
Audio Embeddings. In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Minneapolis, MN, USA, 27–30 April 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 3852–3856.

16. Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a “siamese” time delay
neural network. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO,
USA, 28 November–1 December 1994; pp. 737–744.

17. Melekhov, I.; Kannala, J.; Rahtu, E. Siamese network features for image matching. In Proceedings of the
2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 378–383.

18. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 815–823.

19. Hoffer, E.; Ailon, N. Deep metric learning using triplet network. In International Workshop on Similarity-Based
Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2015; pp. 84–92.

20. Zheng, Y.; Pal, D.K.; Savvides, M. Ring loss: Convex feature normalization for face recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–23 June 2018; pp. 5089–5097.

21. Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition.
In European Conference On Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 499–515.

22. Naranjo-Alcazar, J.; Perez-Castanos, S.; Zuccarrello, P.; Cobos, M. An Open-set Recognition and Few-Shot
Learning Dataset for Audio Event Classification in Domestic Environments. arXiv 2020, arXiv:2002.11561.

23. Wang, Y.; Yao, Q.; Kwok, J.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning.
arXiv 2019, arXiv: 1904.05046.

24. Masi, I.; Wu, Y.; Hassner, T.; Natarajan, P. Deep face recognition: A survey. In Proceedings of
the 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Paraná, Brazil,
29 October–1 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 471–478.

25. Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. In Proceedings of the Advances
in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4077–4087.

http://dx.doi.org/10.1109/TPAMI.2014.2321392
http://www.ncbi.nlm.nih.gov/pubmed/26353070
http://dx.doi.org/10.1007/s10994-016-5610-8
http://dx.doi.org/10.1109/TKDE.2009.191


Sensors 2020, 20, 3741 18 of 19

26. Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database forStudying
Face Recognition in Unconstrained Environments. In Proceedings of the Workshop on Faces in ‘Real-Life’
Images: Detection, Alignment, and Recognition, Erik Learned-Miller and Andras Ferencz and Frédéric Jurie,
Marseille, France, 12–18 October 2008.

27. Geng, C.; Huang, S.j.; Chen, S. Recent advances in open set recognition: A survey. IEEE Trans. Pattern Anal.
Mach. Intell. 2020. [CrossRef] [PubMed]

28. Kotz, S.; Nadarajah, S. Extreme Value Distributions: Theory and Applications; World Scientific: Singapore, 2000.
29. Jain, L.P.; Scheirer, W.J.; Boult, T.E. Multi-class open set recognition using probability of inclusion. In European

Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 393–409.
30. Zhang, H.; Patel, V.M. Sparse representation-based open set recognition. IEEE Trans. Pattern Anal. Mach.

Intell. 2016, 39, 1690–1696. [CrossRef] [PubMed]
31. Bendale, A.; Boult, T. Towards open world recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1893–1902.
32. Mensink, T.; Verbeek, J.; Perronnin, F.; Csurka, G. Distance-based image classification: Generalizing to new

classes at near-zero cost. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2624–2637. [CrossRef] [PubMed]
33. Shu, L.; Xu, H.; Liu, B. Doc: Deep open classification of text documents. arXiv 2017, arXiv:1709.08716.
34. Kardan, N.; Stanley, K.O. Mitigating fooling with competitive overcomplete output layer neural networks.

In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK,
USA, 14–19 May 2017; pp. 518–525.

35. Chung, Y.A.; Wu, C.C.; Shen, C.H.; Lee, H.Y.; Lee, L.S. Audio word2vec: Unsupervised learning of audio
segment representations using sequence-to-sequence autoencoder. arXiv 2016, arXiv:1603.00982.

36. Tagliasacchi, M.; Gfeller, B.; Quitry, F.d.C.; Roblek, D. Self-supervised audio representation learning for
mobile devices. arXiv 2019, arXiv:1905.11796.

37. Quitry, F.d.C.; Tagliasacchi, M.; Roblek, D. Learning audio representations via phase prediction. arXiv 2019,
arXiv:1910.11910.

38. Gemmeke, J.F.; Ellis, D.P.W.; Freedman, D.; Jansen, A.; Lawrence, W.; Moore, R.C.; Plakal, M.; Ritter, M.
Audio Set: An ontology and human-labeled dataset for audio events. In Proceedings of the IEEE ICASSP
2017, New Orleans, LA, USA, 5–9 March 2017.

39. Koizumi, Y.; Saito, S.; Uematsu, H.; Harada, N.; Imoto, K. ToyADMOS: A Dataset of Miniature-machine
Operating Sounds for Anomalous Sound Detection. In Proceedings of the IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 20–23 October 2019; pp. 308–312.

40. Purohit, H.; Tanabe, R.; Ichige, T.; Endo, T.; Nikaido, Y.; Suefusa, K.; Kawaguchi, Y. MIMII Dataset:
Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection. In Proceedings of the
Detection and Classification of Acoustic Scenes and Events 2019 Workshop (DCASE2019), New York, NY,
USA, 25–26 October 2019; pp. 209–213.

41. Wilkinghoff, K.; Kurth, F. Open-Set Acoustic Scene Classification with Deep Convolutional Autoencoders.
In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019, New York, NY, USA,
25–26 October 2019.

42. Cakir, E.; Heittola, T.; Huttunen, H.; Virtanen, T. Polyphonic sound event detection using multi label deep
neural networks. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, 12–17 July 2015; pp. 1–7.

43. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

44. Xu, Y.; Huang, Q.; Wang, W.; Foster, P.; Sigtia, S.; Jackson, P.J.; Plumbley, M.D.; Xu, Y.; Huang, Q.; Wang, W.;
et al. Unsupervised feature learning based on deep models for environmental audio tagging. IEEE/ACM
Trans. Audio, Speech Lang. Process. 2017, 25, 1230–1241. [CrossRef]

45. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki,
Finland, 5–9 July 2008; pp. 1096–1103.

http://dx.doi.org/10.1109/TPAMI.2020.2981604
http://www.ncbi.nlm.nih.gov/pubmed/32191881
http://dx.doi.org/10.1109/TPAMI.2016.2613924
http://www.ncbi.nlm.nih.gov/pubmed/28114060
http://dx.doi.org/10.1109/TPAMI.2013.83
http://www.ncbi.nlm.nih.gov/pubmed/24051724
http://dx.doi.org/10.1109/TASLP.2017.2690563


Sensors 2020, 20, 3741 19 of 19

46. Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of the ICML
Workshop on Unsupervised and Transfer Learning, Bellevue, Washington, DC, USA, 2 July 2011; pp. 37–49.

47. Mesaros, A.; Heittola, T.; Virtanen, T. A multi-device dataset for urban acoustic scene classification.
In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018 Workshop
(DCASE2018), Surrey, UK, 19–20 November 2018; pp. 9–13.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Few-Shot Learning
	Open-Set Recognition
	Autoencoders in Audio Processing Tasks

	Proposed Approach
	Input Audio Representation
	Convolutional Autoencoder
	Unsupervised Autoencoder
	Semi-Supervised Autoencoder

	Multi-Layer Perceptron

	Materials and Methods
	Dataset
	Training Procedure
	Performance Metrics

	Results and Discussion
	Full Set (24 KK) Performance
	Trio Performance
	Performance on ASC Task

	Conclusions
	References

