Relationship between the Presence of the ApoE ε4 Allele and EEG Complexity along the Alzheimer’s Disease Continuum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. ApoE Genotyping
2.3. EEG Recording
2.4. Lempel-Ziv Complexity
- i.
- Let S and Q denote different subsequences of P and be the concatenation of S and Q. On the other hand, sequence is derived from after the deletion of its last element ( means the operation to eliminate the last element in the sequence). Let denote the vocabulary of all different subsequences of . At the beginning, , , , consequently, .
- ii.
- In general, , , then ; if Q belongs to , Q is a subsequence of , not a new sequence.
- iii.
- Renew Q as , and check if Q belongs to or not.
- iv.
- Repeat the same steps until Q does not belong to . Then Q equal to is not a subsequence of , so increase by one.
- v.
- After that, renew and .
2.5. Statistical Analysis
3. Results
3.1. Global Analysis
3.2. Spatial Analysis
4. Discussion
4.1. Loss of Complexity along AD Continuum
4.2. Alterations in Spatial Patterns of Complexity Related to ApoE Genotype
4.3. Alterations in the Left Temporal Lobe Related to ApoE Genotype
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A | Amyloid Beta protein |
AD | Alzheimer’s Disease |
AD | Mild Alzheimer’s Disease |
AD | Moderate Alzheimer’s Disease |
AD | Severe Alzheimer’s Disease |
ApoE | Apolipoprotein E |
EEG | Electroencephalography |
FDR | False Discovery Rate |
FIR | Finite Impulse Response |
fMRI | Functional Magnetic Resonance Imaging |
ICA | Independent Component Analysis |
LZC | Lempel-Ziv Complexity |
MCI | Mild Cognitive Impairment |
MMSE | Mini-Mental State Examination |
MTL | Medial Temporal Lobe |
NIA-AA | National Institute of Aging and Alzheimer’s Association |
PET | Positron Emission Tomography |
ROI | Region of Interest |
References
- Alzheimer’s Association. 2019 Alzheimer ’s Disease Facts and Figures. Alzheimer’S Dement. 2019, 15, 321–387. [Google Scholar] [CrossRef]
- Hebert, L.E.; Weuve, J.; Scherr, P.A.; Evans, D.A. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 2013, 80, 1778–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisberg, B.; Ferris, S.; De Leon, M.; Crook, T. The Global Deterioration Scale for Assessment of Primary Degenerative Dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.C. Mild Cognitive Impairment. Continuum 2016, 2, 404–418. [Google Scholar] [CrossRef]
- Blennow, K.; Leon, M.J.D.; Zetterberg, H. Alzheimer’s disease. Lancet 2006, 368, 387–403. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’S Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.C.; Tan, L.; Wang, H.F.; Jiang, T.; Cao, L.; Wang, C.; Wang, J.; Tan, C.C.; Meng, X.F.; Yu, J.T. Rate of early onset Alzheimer’s disease: A systematic review and meta-analysis. Ann. Transl. Med. 2015, 3, 38. [Google Scholar] [CrossRef]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; Jun, G.; DeStefano, A.L.; Bis, J.C.; Beecham, G.W.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef] [Green Version]
- Ridge, P.G.; Mukherjee, S.; Crane, P.K.; Kauwe, J.S. Alzheimer’s disease: Analyzing the missing heritability. PLoS ONE 2013, 8, e79771. [Google Scholar] [CrossRef] [Green Version]
- Bettens, K.; Sleegers, K.; Van Broeckhoven, C. Genetic insights in Alzheimer’s disease. Lancet Neurol. 2013, 12, 92–104. [Google Scholar] [CrossRef]
- Belloy, M.E.; Napolioni, V.; Greicius, M.D. A Quarter Century of APOE and Alzheimer’s Disease: Progress to Date and the Path Forward. Neuron 2020, 101, 820–838. [Google Scholar] [CrossRef] [Green Version]
- Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; Van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: A meta-analysis. J. Am. Med Assoc. 1997, 278, 1349–1356. [Google Scholar] [CrossRef]
- Ewers, M.; Sperling, R.A.; Klunk, W.E.; Weiner, M.W.; Hampel, H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci. 2011, 34, 430–442. [Google Scholar] [CrossRef] [Green Version]
- Babiloni, C.; Pizzella, V.; Gratta, C.D.; Ferretti, A.; Romani, G.L. Chapter 5 Fundamentals of Electroencephalography. In Magnetoencefalography, and Functional Magnetic Resonance Imaging, 1st ed.; Elsevier Inc.: San Diego, CA, USA, 2009; Volume 86, pp. 67–80. [Google Scholar] [CrossRef]
- Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: West Sussex, UK, 2007. [Google Scholar] [CrossRef]
- Phelps, M.E. Positron emission tomography provides molecular imaging of biological processes. PNAS 2000, 97, 9226–9233. [Google Scholar] [CrossRef] [Green Version]
- Babiloni, C.; Cassetta, E.; Binetti, G.; Tombini, M.; Del Percio, C.; Ferreri, F.; Ferri, R.; Frisoni, G.; Lanuzza, B.; Nobili, F.; et al. Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer’s disease. Eur. J. Neurosci. 2007, 25, 3742–3757. [Google Scholar] [CrossRef]
- Babiloni, C.; Lizio, R.; Del Percio, C.; Marzano, N.; Soricelli, A.; Salvatore, E.; Ferri, R.; Cosentino, F.I.; Tedeschi, G.; Montella, P.; et al. Cortical Sources of Resting State EEG Rhythms are Sensitive to the Progression of Early Stage Alzheimer’s Disease. J. Alzheimer’S Dis. 2013, 34, 1015–1035. [Google Scholar] [CrossRef] [Green Version]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Khachaturian, A.S.; Farlow, M.R.; Snyder, P.J.; Giacobini, E.; Khachaturian, Z.S. Revisiting the cholinergic hypothesis in Alzheimer’s disease: Emerging evidence from translational and clinical research. Alzheimer’S Dement. 2017, 6, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, T.; Cursi, M.; Liberati, D.; Franceschi, M.; Comi, G. EEG coherence in Alzheimer disease. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 229–237. [Google Scholar] [CrossRef]
- Abásolo, D.; Hornero, R.; Espino, P.; Poza, J.; Sánchez, C.I.; De La Rosa, R. Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with Approximate Entropy. Clin. Neurophysiol. 2005, 116, 1826–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abásolo, D.; Hornero, R.; Espino, P.; Álvarez, D.; Poza, J. Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol. Meas. 2006, 27, 241–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, S.; Espino, P.; Abásolo, D. Fuzzy Entropy analysis of the electroencephalogram in patients with Alzheimer’s disease: Is the method superior to Sample Entropy? Entropy 2018, 20, 21. [Google Scholar] [CrossRef] [Green Version]
- Maturana-Candelas, A.; Gómez, C.; Poza, J.; Pinto, N.; Hornero, R. EEG characterization of the Alzheimer’s disease continuum by means of multiscale entropies. Entropy 2019, 21, 544. [Google Scholar] [CrossRef] [Green Version]
- Al-Nuaimi, A.H.H.; Jammeh, E.; Sun, L.; Ifeachor, E. Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer’s Disease. Complexity 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Stam, C.J.; Jelles, B.; Achtereekte, H.A.; Van Birgelen, J.H.; Slaets, J.P. Diagnostic Usefulness of Linear and Nonlinear Quantitative EEG Analysis in Alzheimer’s Disease. Clin. Eeg Neurosci. 1996, 27, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, S.Y.; Han, S.H. Non-linear dynamical analysis of the EEG in Alzheimer’s disease with optimal embedding dimension. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 220–228. [Google Scholar] [CrossRef]
- Cantero, J.L.; Atienza, M.; Cruz-Vadell, A.; Suarez-Gonzalez, A.; Gil-Neciga, E. Increased synchronization and decreased neural complexity underlie thalamocortical oscillatory dynamics in mild cognitive impairment. NeuroImage 2009, 46, 938–948. [Google Scholar] [CrossRef]
- Ponomareva, N.V.; Korovaitseva, G.I.; Rogaev, E.I. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol. Aging 2008, 29, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Canuet, L.; Tellado, I.; Couceiro, V.; Fraile, C.; Fernandez-Novoa, L.; Ishii, R.; Takeda, M.; Cacabelos, R. Resting-State Network Disruption and APOE Genotype in Alzheimer’s Disease: A lagged Functional Connectivity Study. PLoS ONE 2012, 7, e46289. [Google Scholar] [CrossRef] [PubMed]
- Kramer, G.; van der Flier, W.M.; de Langen, C.; Blankenstein, M.A.; Scheltens, P.; Stam, C.J. EEG functional connectivity and ApoE genotype in Alzheimer’s disease and controls. Clin. Neurophysiol. 2008, 119, 2727–2732. [Google Scholar] [CrossRef]
- Zappasodi, F.; Salustri, C.; Babiloni, C.; Cassetta, E.; Del Percio, C.; Ercolani, M.; Rossini, P.M.; Squitti, R. An observational study on the influence of the APOE-ϵ4 allele on the correlation between ’free’ copper toxicosis and EEG activity in Alzheimer disease. Brain Res. 2008, 1215, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef] [PubMed]
- Le Van Quyen, M.; Chavez, M.; Rudrauf, D.; Martinerie, J. Exploring the nonlinear dynamics of the brain. J. Physiol. Paris 2003, 97, 629–639. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. 2005, 71, 021906. [Google Scholar] [CrossRef] [Green Version]
- Abásolo, D.; Hornero, R.; Gómez, C.; García, M.; López, M. Analysis of EEG background activity in Alzheimer’s disease patients with Lempel-Ziv complexity and central tendency measure. Med Eng. Phys. 2006, 28, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; Hornero, R.; Abásolo, D.; Fernández, A.; López, M. Complexity analysis of the magnetoencephalogram background activity in Alzheimer’s disease patients. Med Eng. Phys. 2006, 28, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Hornero, R.; Escudero, J.; Fernández, A.; Poza, J.; Gómez, C. Spectral and nonlinear analyses of MEG background activity in patients with Alzheimer’s disease. IEEE Trans. Biomed. Eng. 2008, 55, 1658–1665. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; Hornero, R.; Abásolo, D.; Fernández, A.; Escudero, J. Analysis of MEG background activity in Alzheimer’s disease using nonlinear methods and ANFIS. Ann. Biomed. Eng. 2009, 37, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Poza, J.; Gómez, C.; Bachiller, A.; Hornero, R. Spectral and Non-Linear Analyses of Spontaneous Magnetoencephalographic Activity in Alzheimer’s Disease. J. Healthc. Eng. 2012, 3, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Tao, W.; Li, X.; Li, H.; Zhang, J.; Wei, D.; Chen, Y.; Zhang, Z. The contribution of genetic factors to cognitive impairment and dementia: Apolipoprotein E gene, gene interactions, and polygenic risk. Int. J. Mol. Sci. 2019, 20, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, P.; Lerch, J.P.; Pruessner, J.C.; Taylor, K.N.; Rose, A.B.; Greenstein, D.; Clasen, L.; Evans, A.; Rapoport, J.L.; Giedd, J.N. Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: An observational study. Lancet Neurol. 2007, 6, 494–500. [Google Scholar] [CrossRef]
- Bookheimer, S.Y.; Strojwas, M.H.; Cohen, M.S.; Saunders, A.M.; Pericak-Vance, M.A.; Mazziotta, J.C.; Small, G.W. Patterns of brain activation in people at risk for Alzheimer’s disease. New Engl. J. Med. 2000, 343, 450–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghesani, P.; Johnson, L.C.; Shelton, A.L.; Peskind, E.R.; Aylward, E.H.; Schelllenberg, G.D.; Cherrier, M.M. Altered medial temporal lobe responses during visuospatial encoding in healthy APOE e4 carriers. Neurobiol. Aging 2008, 29, 981–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, N.A.; Browndyke, J.N.; Stokes, J.; Need, A.; James, R.; Welsh-bohmer, K.A.; Cabeza, R. Temporal lobe functional activity and connectivity in young adult APOE e4 carriers. Alzheimer’S Dement. 2010, 6, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machulda, M.M.; Jones, D.T.; Vemuri, P.; McDade, E.; Avula, R.; Przybelski, S.; Boeve, B.F.; Knopman, D.S.; Petersen, R.C.; Jack, C.R. Effect of APOE ϵ4 Status on Intrinsic Network Connectivity in Cognitively Normal Elderly Subjects. Arch. Neurol. 2011, 68, 1131–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duke Han, S.; Houston, W.; Jak, A.; Eyler, L.; Nagel, B.; Fleisher, A.; Brown, G.; Corey-Bloom, J.; Salmon, D.; Thal, L.; et al. Verbal paired-associate learning by APOE genotype in non- demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiol. Aging 2007, 28, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Squire, L.R.; Stark, C.E.; Clark, R.E. The Medial Temporal Lobe. Annu. Rev. Neurosci. 2004, 27, 279–306. [Google Scholar] [CrossRef] [Green Version]
- Braak, H.; Braak, E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol. Aging 1997, 18, 85–88. [Google Scholar] [CrossRef]
- Loewenstein, D.A.; Barker, W.W.; Chang, J.Y.; Apicella, A.; Yoshii, F.; Kothari, P.; Levin, B.; Duara, R. Predominant left hemisphere metabolic dysfunction in dementia. Arch. Neurol. 1989, 46, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’S Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging- Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’S Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Ruiz-Gómez, S.J.; Gómez, C.; Poza, J.; Martínez-Zarzuela, M.; Tola-Arribas, M.A.; Cano, M.; Hornero, R. Measuring alterations of spontaneous EEG neural coupling in alzheimer’s disease and mild cognitive impairment by means of cross-entropy metrics. Front. Neuroinformatics 2018, 12, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lempel, A.; Ziv, J. On the Complexity of Finite Sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar] [CrossRef]
- Zhang, X.S.; Roy, R.J.; Jensen, E.W. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans. Biomed. Eng. 2001, 48, 1424–1433. [Google Scholar] [CrossRef]
- Nagarajan, R. Quantifying physiological data with Lempel-Ziv complexity-Certain issues. IEEE Trans. Biomed. Eng. 2002, 49, 1371–1373. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. (Methodological) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Dozolme, D.; Prigent, E.; Yang, Y.F.; Amorim, M.A. The neuroelectric dynamics of the emotional anticipation of other people’s pain. PLoS ONE 2018, 13, e200535. [Google Scholar] [CrossRef]
- Luft, F.; Sharifi, S.; Mugge, W.; Schouten, A.C.; Bour, L.J.; Van Rootselaar, A.F.; Veltink, P.H.; Heida, T. Distinct cortical activity patterns in Parkinson’s disease and essential tremor during a bimanual tapping task. J. Neuroeng. Rehabil. 2020, 17, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauwels, J.; Srinivasan, K.; Ramasubba Reddy, M.; Musha, T.; Vialatte, F.B.; Latchoumane, C.; Jeong, J.; Cichocki, A. Slowing and Loss of Complexity in Alzheimer’s EEG: Two Sides of the Same Coin? Int. J. Alzheimer’S Dis. 2011, 2011, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Chai, C.; Gao, S.; Ren, H.; Cao, L.; Dong, Z.; Geng, X.; Zheng, J.; Qian, X.; Bi, X.; et al. Analysis of EEG Complexity in Patients with Mild Cognitive Impairment. J. Neurol. Disord. 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Gaubert, S.; Raimondo, F.; Houot, M.; Corsi, M.C.; Naccache, L.; Diego Sitt, J.; Hermann, B.; Oudiette, D.; Gagliardi, G.; Habert, M.O.; et al. EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain 2019, 142, 2096–2112. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Cuesta, P.; Fernández, A.; Arahata, Y.; Iwata, K.; Kuratsubo, I.; Bundo, M.; Hattori, H.; Sakurai, T.; Fukuda, K.; et al. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease. Brain 2018, 141, 1470–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, J.C.; Zhao, X.; Munro, N.B.; Smith, C.D.; Jicha, G.A.; Hively, L.; Broster, L.S.; Schmitt, F.A.; Kryscio, R.J.; Jiang, Y. Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease. Comput. Methods Programs Biomed. 2014, 114, 153–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero, J.; Abásolo, D.; Hornero, R.; Espino, P.; Lopez, M. Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 2006, 27, 1091–1106. [Google Scholar] [CrossRef] [Green Version]
- Lipsitz, L.A.; Goldberger, A.L. Loss of ‘Complexity’ and Aging. J. Am. Med Assoc. 1992, 267, 1806–1809. [Google Scholar] [CrossRef]
- Dierks, T.; Perisic, I.; Frölich, L.; Ihl, R.; Maurer, K. Topography of the quantitative electroencephalogram in dementia of the Alzheimer type: Relation to severity of dementia. Psychiatry Res. Neuroimaging 1991, 40, 181–194. [Google Scholar] [CrossRef]
- Smailovic, U.; Koenig, T.; Kåreholt, I.; Andersson, T.; Kramberger, M.G.; Winblad, B.; Jelic, V. Quantitative EEG power and synchronization correlate with Alzheimer’s disease CSF biomarkers. Neurobiol. Aging 2018, 63, 88–95. [Google Scholar] [CrossRef]
- Goryawala, M.; Duara, R.; Loewenstein, D.A.; Zhou, Q.; Barker, W.; Adjouadi, M.; The Alzheimer’s Disease Neuro. Apolipoprotein-E4 (ApoE4) carriers show altered small-world properties in the default mode network of the brain. Biomed. Phys. Eng. Express 2015, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bu, G. Apolipoprotein e and its receptors in Alzheimer’s disease: Pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 2009, 10, 333–344. [Google Scholar] [CrossRef] [Green Version]
ApoE4 Non-Carriers | ApoE4 Carriers | |||||||
---|---|---|---|---|---|---|---|---|
Group | N | Age (years) | Gender (Male:Female) | MMSE | N | Age (years) | Gender (Male:Female) | MMSE |
HC | 40 | 79.32 ± 7.25 | 21:19 | 28.77 ± 1.12 | 6 | 83.33 ± 7.34 | 3:3 | 29.00 ± 1.26 |
MCI | 39 | 85.41 ± 7.08 | 11:28 | 23.18 ± 3.11 | 10 | 83.70 ± 6.83 | 4:6 | 24.00 ± 1.76 |
AD | 28 | 79.86 ± 7.53 | 11:17 | 22.89 ± 2.45 | 17 | 80.41 ± 4.81 | 8:9 | 22.29 ± 2.02 |
AD | 27 | 82.26 ± 8.49 | 4:23 | 13.11 ± 2.99 | 17 | 79.29 ± 7.90 | 3:14 | 14.65 ± 2.55 |
AD | 17 | 80.59 ± 7.88 | 4:13 | 2.94 ± 3.78 | 16 | 81.00 ± 6.00 | 1:15 | 3.87 ± 4.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-de Pablo, V.; Gómez, C.; Poza, J.; Maturana-Candelas, A.; Martins, S.; Gomes, I.; Lopes, A.M.; Pinto, N.; Hornero, R. Relationship between the Presence of the ApoE ε4 Allele and EEG Complexity along the Alzheimer’s Disease Continuum. Sensors 2020, 20, 3849. https://doi.org/10.3390/s20143849
Gutiérrez-de Pablo V, Gómez C, Poza J, Maturana-Candelas A, Martins S, Gomes I, Lopes AM, Pinto N, Hornero R. Relationship between the Presence of the ApoE ε4 Allele and EEG Complexity along the Alzheimer’s Disease Continuum. Sensors. 2020; 20(14):3849. https://doi.org/10.3390/s20143849
Chicago/Turabian StyleGutiérrez-de Pablo, Víctor, Carlos Gómez, Jesús Poza, Aarón Maturana-Candelas, Sandra Martins, Iva Gomes, Alexandra M. Lopes, Nádia Pinto, and Roberto Hornero. 2020. "Relationship between the Presence of the ApoE ε4 Allele and EEG Complexity along the Alzheimer’s Disease Continuum" Sensors 20, no. 14: 3849. https://doi.org/10.3390/s20143849
APA StyleGutiérrez-de Pablo, V., Gómez, C., Poza, J., Maturana-Candelas, A., Martins, S., Gomes, I., Lopes, A. M., Pinto, N., & Hornero, R. (2020). Relationship between the Presence of the ApoE ε4 Allele and EEG Complexity along the Alzheimer’s Disease Continuum. Sensors, 20(14), 3849. https://doi.org/10.3390/s20143849