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Abstract: Performance degradation prediction plays a key role in realizing aviation pump health
management and condition-based maintenance. Thus, this paper proposes a new approach that
combines a Gaussian mixture model (GMM) and optimized support vector regression (SVR) to predict
aviation pumps’ degradation processes based on the pump outlet pressure signals. Different from
other feature extraction methods in which the information of intrinsic mode functions (IMFs) is not
fully utilized, some useful IMF components are firstly chosen, and the corresponding multi-domain
features are extracted from each selected component. Considering that it is not the case that all features
are equally sensitive to degradation assessment, PCA is used to select more sensitive degradation
features. Since the distribution of these extracted features is a stochastic process in feature space,
meanwhile, self-information quantity can describe the uncertainty of system by measuring the
average information quantity contained in the probability distribution, self-information quantity
based on GMM is defined as degradation index (DI) to describe the degradation degree of the
pump quantitatively. Finally, an SVR model is constructed to predict the degradation status of the
pump. To achieve higher prediction accuracy, phase space reconstruction theory is first employed to
determine the number of the inputs of the SVR model, then a new method combining particle swarm
optimization (PSO) with grid search (GS) is developed to optimize the parameters of the SVR model.
Finally, both the online data and historical data are utilized for the construction of the SVR model,
respectively. The effectiveness of the proposed approach is validated by full life cycle data collected
from an aviation pump test rig. The results demonstrate that the DI extracted from pump outlet
pressure signals can effectively identify and track the current deterioration stage, and the established
SVR model has better prediction ability when compared with previously published methods.

Keywords: aviation piston pump; degradation index; support vector regression; prognostics

1. Introduction

The aviation pump, as one of the key components of the aircraft hydraulic system, provides
high-pressure oil to the actuation system. Once an aviation pump fails, it will result in economic loss
or even catastrophic consequences [1,2]. Hence, the safety and reliability of aviation pumps are crucial
to the entire aircraft system [3]. Prognostics and health management (PHM) is a vital technology to
improve the safety and reliability of the aviation pump. At present, some studies have been done on
PHM of the aviation pump. Ma et al. [1] proposed a nonlinear unknown input observer to realize
the fault diagnosis of the pump. Lu et al. [2] presented a multi-source information fusion method to
improve the accuracy of the fault diagnosis of the pump. Du et al. [4] developed a layered clustering
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algorithm to diagnose the concurrent failures of the pump. From their papers, it can be found that
most of the researches related to PHM of the pump focus on distinguishing different failure modes or
fault sizes of the aviation pump. However, the goal of PHM is that not only could diagnose the faults
but also could predict failures. As a matter of fact, an aviation pump usually experiences different
degradation processes from normal to failure. This means that the key to failure prediction is to forecast
the degradation processes of the pump accurately. So far, less study has been done on the research of
performance degradation prediction of the aviation pump.

One of the main challenges of performance degradation prediction is how to create a suitable
degradation index (DI) to assess the degree of degradation of aviation pumps. To obtain the DI,
the feature vectors which can characterize the degradation status of the aviation pump should be
extracted first. At present, the signal processing technologies, which mainly include the temporal
analysis, the frequency analysis and the time-frequency analysis, have been commonly applied in
the feature extraction of aviation pump monitoring signals [4]. Although these extracted features
can successfully distinguish different failure modes of the aviation pump, the previous studies have
shown that the individual time domain, frequency domain or time-frequency domain indicators are
difficult to effectively characterize the deterioration degree of the pump [5]. Thus, multi-source feature
extraction combining with the above three methods is studied to solve this problem. As indicated in
our previous research [5], the multi-domain features, which are acquired from the paving of ensemble
empirical mode decomposition (EEMD) based on the discharge pressure signal, can characterize
fault severity of the pump accurately. Further, when the dimensionality of these features is reduced
by the PCA method, the obtained features are more sensitive for fault severity recognition. As a
result, the multi-domain features after reducing dimensionality are considered as feature vectors in
this research. After obtaining the feature vectors, it is vital to discover the method of translating
these feature vectors into the DI. Until now, the main transformation methods include fuzzy c-means
(FCM) [6–8], self-organization mapping (SOM) [9,10] and Gaussian mixture model (GMM) [11,12].
Among these methods, both normal and final failure data are utilized when using FCM algorithms to
calculate the DI. Nevertheless, the aviation pump, as a complex mechatronics component, has many
different failure modes. This means that the extracted failure features may not be identical. Further,
the obtained DI will be different, which will greatly affect the evaluation accuracy. Comparing with
FCM, the SOM-based methods only need normal data to acquire the DI, but the key parameters of
SOM network need to be set in advance based upon the experience [12]. Hence, the DI originated from
SOM is unstable in some cases. Different from SOM, GMM can theoretically estimate any probability
distribution function (PDF) to avoid the problem completely [12]. Moreover, only health state data
is needed when performing GMM-based degradation assessment. Accordingly, some researchers
have applied GMM to calculate the DI in the performance degradation evaluation of bearings and
hydraulic servo system successfully, but few studies have been done on performance degradation
assessment of the aviation pump based on GMM. Besides, there are still some deficiencies among
the existing methods for calculating the DI based on GMM. For instance, some methods are only
suitable for processing single-dimensional features, and some others need to set parameters artificially
according to experiences. Therefore, these methods can hardly be applied in the calculation of DI when
performing the degradation assessment of the pump.

After obtaining the DI sequences of an aviation pump, the construction of the prediction
model became another challenge in this work. At present, many modeling methods, including
autoregressive moving average model (ARMA) [13–15], Kalman filtering [16,17], artificial neural
network (ANN) [18–20], long short-term memory (LSTM) network [21,22] have been successfully
applied in degradation prediction of other rotating machines. Although these methods have achieved
excellent performance, there still exist some insufficiencies. For instance, ARMA, ANN and LSTM need
abundant of training samples, and Kalman filtering depends on accurate mathematical models [12].
However, the aviation pump, as a highly integrated mechatronics component, is hard to characterize
by an accurate mathematical model. In addition, the model accuracy may be affected by the weak



Sensors 2020, 20, 3854 3 of 21

generalization ability of ANN. Different from the above methods, the support vector regression
(SVR) [23], which has the ability of superior generalization in case of small training samples, has been
recently used in the field of performance prediction [24–27]. Though SVR-based methods have shown
excellent performance, there are still some problems to be solved. On the one hand, the prediction
accuracy is closely related to the number of the observations (inputs) of the SVR model, so the number
of the inputs of SVR model needs to be determined reasonably. On the other hand, the selection of
the internal parameters of SVR model also affects the prediction accuracy significantly. This means
that the optimization of parameters is crucial. Moreover, most of the SVR-based prediction methods
use the online data or historical data independently. In fact, both two kinds of data can provide
useful information for prediction. To solve problems mentioned above, an optimized SVR model,
which considers selection of inputs, optimization of internal parameters and utilization of online and
historical data, is constructed to achieve higher prediction accuracy in this work.

The main contributions of this paper are as follows. Firstly, a performance degradation prediction
method is proposed for the aviation pump. Secondly, considering that self-information quantity
can describe the uncertainty of system by measuring the average information quantity contained in
probability distribution, a new DI, namely self-information quantity based on GMM, is constructed to
track the trend of performance degradation of the pump. To achieve better prediction performance,
phase space reconstruction is first adopted to determine the inputs of the SVR model, then a new
optimization method, which combines particle swarm optimization (PSO) with grid search (GS),
is developed to select the internal parameters of the SVR model. Subsequently, given that the historical
data and online data can provide overall trend information and real-time information, respectively,
a hybrid SVR model, combining historical data-based SVR and online data-based SVR, is established.
Finally, the degradation processes of the pump are reliably estimated via the constructed SVR model.
The proposed scheme is validated using the full life cycle experimental data of the aviation pump.

This paper is organized as follows: The proposed performance degradation prediction method is
detailed in Section 2. Section 3 verifies the effectiveness of the proposed method using the experimental
data. Section 4 gives some comparisons and discussions. Conclusions are drawn in Section 5.

2. The Performance Degradation Prediction Method

The presented performance degradation prediction scheme consists of the following three steps:
multi-domain degradation feature extraction and selection, DI sequences acquisition and degradation
trend prediction. The details of each step is described in the following subsections. The flowchart of
the proposed method is illustrated in Figure 1.

2.1. Degradation Feature Extraction and Selection

It follows from previous studies that the failure characteristics can be reflected in pump discharge
pressure signals when a pump fails [5,28]. Hence, we can extract useful fault features from pump
outlet pressure signals. This section first presents a brief discussion on multi-domain degradation
feature extraction via aviation pump pressure signals.

As is well known, the aviation pump is installed near aircraft engines, resulting in violent
vibration and severe fluid-solid coupling. This makes pump discharge pressure signals have distinct
non-stationary characteristics. Under this condition, the single temporal or frequency analysis is
insufficient. Thus, the time-frequency analysis methods are adopted to solve this insufficiency [28,29].
Comparing with other time-frequency methods, EEMD can adaptively decompose according to the
local scale of the signal itself and has obvious advantages of processing the non-stationary signals.
Therefore, EEMD has been widely used in feature extraction of pump outlet pressure signals.
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Much research indicates that these EEMD-based extracted features are enough to diagnose
different failure modes effectively, but it will result in low recognition accuracy when utilizing simple
time domain or frequency domain or time-frequency domain features to identify different fault
severity. In addition, the current methods still have the disadvantage that the intrinsic mode functions
(IMFs) information has not been fully explored [9]. For these reasons, this research investigates the
EEMD-based multi domain features extraction considering the combination of the above three kinds
of features.

As indicated in our previous research [5], the first few IMFs concentrate most of the energy of the
signal, so we can choose the appropriate IMFs for signal analysis. To determine the number of proper
IMFs, some IMFs are first reconstructed. Secondly, the correlation coefficient between the original
signal and the reconstructed signal is computed. Lastly, the proper IMFs can be acquired when the
calculation result is bigger than a given threshold, which is usually set to be 0.95 [30]. These selected
IMFs are named EEMD paving in this research. Table 1 shows multi-domain features obtained from
EEMD paving. Here T is the number of selected data points, xq is a IMF series, N is the number of the
marginal spectrum lines, fz and bz are frequency and amplitude of the zth line in a marginal spectrum,
Ek represents the k-th IMF’s feature energy, E is the sum of feature energy of all the selected IMFs.

Previous studies have shown that the sensitivity and stability of commonly used time-domain
features are different for identifying failure modes of the pump. For instance, some indicators
have obvious advantages of detecting early faults, but the stability of indicators will decrease with
the increase of the fault severity. Accordingly, both sensitivity and stability should be considered
when selecting indicators. Based on above analysis, seven chosen time-domain features, including
square root amplitude value, skewness index, kurtosis index and so on, have been shown in Table 1.
Supposing that the number of selected IMFs is n, there will be 7n time-domain features. In general,
time-domain indicators reflect changes of the signal amplitude in the time domain. However, as
the degradation degree of pump increases, not only will the time-domain amplitude of the signal
change, but frequency and energy distribution of the signal changes as well. Hence, some frequency
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domain and time-frequency domain indicators listed in Table 1 are introduced to describe this change
of distribution.

Table 1. Multi-domain features extracted from EEMD paving.

Square root amplitude value: ( 1
T

T∑
q=1

√∣∣∣xq
∣∣∣)2

Impulsive index: max(
∣∣∣xq

∣∣∣)/( 1
T

T∑
q=1

∣∣∣xq
∣∣∣ )

Shape index:

√
1
T

T∑
q=1

x2
q/( 1

T

T∑
q=1

∣∣∣xq
∣∣∣) Clearance index: max(

∣∣∣xq
∣∣∣)/( 1

T

T∑
q=1

√∣∣∣xq
∣∣∣)2

Crest index: max(
∣∣∣xq

∣∣∣)/ √
1
T

T∑
q=1

x2
q Root mean square frequency:

√
N∑

z=1
f 2
z bz/

N∑
z=1

bz

Skewness index:
T∑

q=1
x3

q/T(

√
1
T

T∑
q=1

x2
q)

3

Centroid frequency:
N∑

z=1
fzbz/

N∑
z=1

bz

Kurtosis index:
T∑

q=1
x4

q/T(

√
1
T

T∑
q=1

x2
q)

4

Frequency variation:
N∑

z=1
f 2
z bz/

√
N∑

z=1
bz

N∑
z=1

f 4
z bz

Hilbert marginal spectrum-based energy entropy: −
n∑
k

pklg(pk) pk = Ek/E, E =
n∑

k=1
Ek

Though these features extracted from EEMD paving can characterize a pump’s health status from
different aspects, it is not the case that all features are equally sensitive to deterioration assessment.
Moreover, previous studies [24,26] have proven that too many inputs will significantly increase the
computational burden and reduce the evaluation accuracy. Thus, PCA method is employed to capture
the most sensitive degradation features, and these optimized features will be used to obtain the DI
sequences of the pump.

2.2. DI Sequences Acquisition Based on GMM

After obtaining the degradation features, the critical task is to transform these features into the
reasonable DI which can quantitatively describe the degradation degree of the pump. Among the
commonly used transformation methods, clustering-based methods needs both normal and failure
data. Other methods only require the health data, but some key parameters need to be set artificially.
Accordingly, these methods can hardly be applied in the acquisition of the DI due to the uncertainty of
the ultimate failure of the aviation pump. To solve the above problem, GMM, which considers the
distribution characteristic of the features extracted from pump outlet pressure signals, is employed to
capture the DI in this section.

2.2.1. Brief Description of GMM

Given a r-dimensional dataset G = {G1, G2, . . . , Gn′}, its PDF can be characterized by a single
Gaussian density function N(G, µ,

∑
) when the dataset has an approximately ellipsoidal distribution

in high-dimensional space. However, it is not the case that the data is always ellipsoidal. Under this
circumstance, it is difficult to describe the distribution of the data accurately using a single Gaussian
density function. Therefore, GMM, which combines several single Gaussian models with different
weights, is developed to solve this problem. Based on the above analysis, a GMM can be described as:

P(G) =
M∑

h=1
whPh(G) =

M∑
h=1

whN(G,µh,
∑

h)

N(G,µh,
∑

h) =
1√

(2π)r
|
∑

h|
exp(− 1

2 (G− µh)
T ∑

h
−1(G− µh))

(1)
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where M is the number of the mixture model, wh represents the weight of each Gaussian model and

satisfies
M∑

h=1
wh = 1, Ph(G) = N(G,µh,

∑
h) is the PDF of the h-th Gaussian model, µh and

∑
h are the

mean vector and covariance matrix of the h-th Gaussian model, respectively.
From Equation (1), it can be found that the model performance is closely related to the parameters

wh, µh and
∑

h, so the setting of these parameters becomes very important. So far, the maximum
likelihood method has been commonly applied in parameters estimation because of its remarkable
performance. In general, the optimized parameters are obtained by differentiating the likelihood
function in the maximum likelihood method. However, the likelihood function of the parameters
of GMM is the logarithm of the sum, it is difficult to get satisfactory results when using traditional
direct derivative method. Therefore, the Expectation Maximum (EM) algorithm is used to solve the
parameters of GMM in this work.

2.2.2. DI Obtained from GMM

As previously noted, GMM can be used to transform the extracted multi-domain degradation
features into the DI of the aviation pump. In this section, the definition process of the DI is described
in details.

Firstly, multi-domain degradation features are extracted from pump discharge pressure signals
of health state. Then, the sensitive features are selected as training samples for establishing a GMM,
and this GMM will be as a benchmark for evaluating the performance of the pump. In a similar way
of obtaining the features, assuming that Gi′ is feature vectors obtained from test signals and can be
considered as the testing samples, P(Gi′ ) will represent the probability that the samples Gi′ generated
by GMM constructed by the samples of health state. If the samples are achieved from the signals of
degradation state, the value of P(Gi′) should be less than the output value of health state samples in
this GMM. In other words, the value of P(Gi′ ) should be smaller than a certain threshold. Thus, P(Gi′ )
can characterize the extent to which the tested data deviates from the health condition. Namely, P(Gi′ )
can be considered as a DI. However, we usually hope that the changes of the DI is little in the health
state, and the DI changes greatly in the degradation state. In addition, a higher DI usually represents a
failure state, whereas a lower DI indicates a normal state. Considering that self-information quantity
can describe the uncertainty of system by measuring the average information quantity contained in
probability distribution, in a other word, the greater probability, the smaller uncertainty, and thus the
smaller self-information quantity. Based on the above analysis, self-information quantity based on
GMM is defined as the DI in this study below:

DI = − ln(P(Gi′)) (2)

The flowchart of the proposed calculation method of the DI is presented in Figure 2.
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2.3. Degradation Prediction Based on Optimized SVR Model

In the previous section, a GMM-based acquisition method of the DI has been proposed. In this
method, the DI which can quantitatively characterize the severity of the deterioration is defined.
Generally speaking, with the gradual deterioration of the aviation pump, the value of the DI also
gradually increases. For the safe operation of the aviation pump, it is essential to make sure the value
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of the DI is less than a certain threshold. Hence, it is vital to predict DI in advance. Considering that
the non-linearity characteristics of pump outlet pressure signals, a SVR-based prediction method is
proposed in this section as the SVR has the strong ability of processing non-linear data.

2.3.1. The Basic Theory of SVR

The core idea of SVR is to map the data X into a high-dimensional space through mapping
function ϕ(x) to find a regression line or a regression hyperplane. Given a dataset {(xi*, yi*), i* = 1, 2,
. . . , B}, where xi* represents an input vector, yi* is the corresponding expected output value, and B is
the number of samples, the regression function can be expressed as:

f (x) = ω ·ϕ(x) + b (3)

where ω denotes the weight vector and b represents the offset value. In order to solve ω and b, the slack
variables ξ∗i∗ and ξi∗ are introduced, and the original problem is transformed into an optimization
problem of the objective function as follows:

minJ = 1
2‖ω‖

2 + C
B∑

i=1
(ξ∗i∗ + ξi∗)

yi∗ −ω ·ϕ(xi∗) − b ≤ ε+ ξi∗

ω ·ϕ(xi∗) + b− yi∗ ≤ ε+ ξ∗i∗
ξi∗ , ξ∗i∗ ≥ 0

(4)

where C is a positive constant which penalizes the errors larger than ±ε using ε-insensitive loss function.
After obtaining the optimized solution of Equation (4), the regression function can be described as:

f (x) =
B∑

i∗=1

(αi∗ − α
∗

i∗)(ϕ(xi∗),ϕ(x)) + b (5)

In Equation (5), the kernel function K(xi∗ , x) = (ϕ(xi∗),ϕ(x)) is employed to compute the inner
product in case of non-linear support vector regression. In other words, the non-linear support
regression function can be written as:

f (x) =
B∑

i∗=1

(αi∗ − α
∗

i∗)K(xi∗ , x) + b (6)

As shown in Equation (6), the selection of kernel function directly affects the performance of the
SVR model. A sea of studies have indicated that satisfactory results can be obtained when Gaussian
kernel function is chosen in SVR model [24–27], so a Gaussian kernel function is adopted in this study.

2.3.2. Optimization of SVR Prediction Model

Determination of Inputs of SVR Model

It follows from previous researches that the prediction performance of the SVR model is closely
related to the inputs of the model. To achieve the deterioration prediction successfully, it is vital to
determine the number of the inputs which are used for predicting the future values. In this work,
the key to solving the above problem is the selection of the embedding dimension and delay time of
the DI sequences. According to the phase space reconstruction theory, if the time series is regarded
as being generated by a deterministic nonlinear system, the reconstructed high-dimension vectors
can restore the original system when selecting the appropriate embedding dimension and delay time.
From this aspect, the problem of the model inputs selection can be equivalent to the solving of the
parameters of phase space reconstruction.
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The commonly used methods for determining the delay time mainly include the autocorrelation
function method [31], the average displacement method [32], the complex autocorrelation function
method [33] and the mutual information function method [34]. As the mutual information function
method considers both linear and nonlinear factors, the mutual information method is adopted to
determine the delay time in this paper. For a more detailed description of mutual information method,
the reader is referred to [34]. After choosing a reasonable delay time, the embedding dimension needs
to be determined. At present, some methods, such as the geometric invariant method, the false nearest
neighbor method and the pseudo nearest neighbor point method (CAO method), have been used to
select the embedding dimension. Among these methods, the CAO method is not sensitive to noise
and only need the delay time in the calculation process. Therefore, the CAO method [35] is used to
determine the embedding dimension in this section. Next, the calculation process of the embedding
dimension is given.

For a given time series {x1, x2, . . . , xN∗ }, a sequence of vectors in a new space can be reconstructed
as: yi(m) =

{
xi, xi+τ, . . . xi+(m−1)τ

}
, i = 1, 2, . . . , Nm, where Nm is the length of the reconstructed vector

series, m is the embedding dimension, τ is the delay time.
Firstly, a variable a(i, m) is defined as:

a(i, m) =
‖yi(m + 1) − yn(i,m)(m + 1)‖

∞

‖yi(m) − yn(i,m)(m)‖
∞

(7)

where ‖•‖∞ is the maximum norm, n(i,m) is an integer which make yn(i,m)(m) closest to yi(m) in
m-dimensional phase space.

Then, based on Equation (7), a new variable is given as:

E(m) =
1

N∗ −mτ

N∗−mτ∑
i=1

a(i, m) (8)

From Equation (8), it can be found that the value of E(m) is only related to the embedding
dimension m and the delay time τ. In order to study the changing law of E(m) when the embedding
dimension increases from m to m + 1, the variable E1(m) is defined as follows:

E1(m) =
E(m + 1)

E(m)
(9)

In Equation (9), if the embedding dimension m is larger than a certain value m0, the value of E1(m)
no longer changes, then (m0 + 1) will be the minimum embedding dimension. However, it is difficult
to accurately determine whether the sequence E1(m) is slowly increasing or has stopped changing [22].
As a result, CAO method has provided additional judgment criteria, namely:

E∗(m) = 1
N∗−mτ

N∗−mτ∑
i=1

∣∣∣xi+mτ − xn(i,m)+mτ

∣∣∣
E2(m) =

E∗(m+1)
E∗(m)

(10)

As the delay time and embedding dimension are determined, the input number of the SVR
prediction model is selected.

Internal Parameters Optimization of SVR Model

As previously noted, the SVR model performance is also closely associated with three internal
parameters, which are regularization parameter C, kernel function parameter σ and ε-insensitive loss
function parameter ε, so it is important to properly determine these three parameters. Until now,
much research has been done to select the proper parameters. However, some insufficiencies still exist.
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For instance, some methods are essentially based on the principle of exhaustion, which will make the
search process very time-consuming, and some others have no need to traverse all parameter groups
but sometimes can easily produce local optimum [36]. Therefore, a new method needs to be developed
for parameters optimization in this section.

It follows from previous studies that the model’s accuracy based on direct GS method is low
in most of search intervals but the accuracy will be significantly higher in a specific interval. Thus,
if we can pre-locate an optimized interval of GS, the search efficiency and the probability of obtaining
optimal parameters will increase greatly. To solve this problem, PSO algorithm, which has strong global
optimization ability, is first employed to determine three parameters. In this paper, these parameters
obtained from PSO method are regarded as first-time optimal parameters. For the purpose of increasing
the possibility of capturing the optimal parameters, the searching interval will be relatively enlarged
when using PSO method. In addition, to suppress the effects of the randomness, the algorithm operates
h times repeatedly. In this research, h is set to 5 based on reference [5]. After obtaining h first-time
parameters set of PSO, the final optimal intervals of parameters C and σ can be defined as follows:

[C∗min, C∗max] = [2blog2(Cmin)c, 2dlog2(Cmax)e]

[σ∗min, σ∗max] = [2blog2(σmin)c, 2dlog2(σmax)e]
(11)

where Cmin, Cmax and σmin, σmax represent the minimum and maximum of the parameters C and
σ obtained from PSO. bc and de stand for round down and round up operations to the nearest
integer, respectively.

In general, the fluctuation of parameter ε is small during the optimization process, so the mean of
obtained ε based on PSO will be considered as the optimal parameter of ε in SVR model, namely:

ε∗ =

h∑
k′=1

εk′

h
(12)

Subsequently, GS method is adopted to select more reasonable values of C and σ based on the
obtained optimal intervals shown in Equation (11). To achieve satisfactory results, the search step
of GS method is set as small as possible and K-fold cross-validation scheme is used to evaluate the
performance of the model based on the obtained parameter sets. When the mean square error (MSE) of
the prediction values is smaller than a given threshold, the algorithm stops. At this time, the obtained
parameters will be used to construct the optimized SVR model.

Utilization of On-Line Data and Historical Data

In general, the SVR model constructed by online data can capture the short-term deterioration
trend, however, the prediction accuracy of online data-based SVR model will decrease greatly when the
data changes suddenly. Meanwhile, the SVR model trained by historical data can provide overall trend
information of the full life cycle, but it cannot make full use of the real-time information. Consequently,
a hybrid SVR model, combining online data-based SVR and historical data-based SVR, is constructed
to predict the degradation trend of the pump. Supposing l1 and l2 are prediction results of DI of the
pump based on two kinds of SVR model, respectively, the ultimate prediction result can be captured
by weighing the two results as follows:

DIt = α1t · l1t + (1− α1t) · l2t (13)

where DIt is the ultimate prediction value of DI at moment t, l1t represents the prediction value of
online data-based SVR at moment t, l2t stands for the prediction value of historical data-based SVR at
moment t, α1t is the weight of the SVR model constructed by online data with a range of 0–1. In this
paper, prior knowledge-based method is adopted to determine the weights of forecasting period. In the
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process of assigning weights, it mainly depends on the following principles: (1) The weight value
should be greater than or equal to 0; (2) The weights of the online model and the historical model are
equal when predicting the first value; (3) As the time increases, the weights of the historical model
should gradually increase; (4) When time approaches infinity, the weight of the historical model should
approach 1. Based on these principles, the weight α1t is given as follows:

α1t = 1− 2
πarctan(t) t = 1, 2, . . . , H (14)

where H is the number of prediction steps. It can be easily proved that the defined α1t satisfies the
above four conditions.

3. Results and Experimental Validation

3.1. Experimental Platform

To verify the effectiveness of the proposed performance degradation prediction method, full life
cycle experiments were performed on an aviation pump experimental platform shown in Figure 3.
In the experimental platform, an actual aviation pump was driven by a 45 kWAC motor. The rated
pressure of the pump was 21 MPa and the rated speed was 4000 r/min. A discharge pressure sensor
(0–30 MPa) and a return oil flow sensor were used to collect outlet pressure signals and the return oil
flow, respectively. Data acquisition system composed of an industrial computer, a National Instruments
(NI, Austin, TX, USA) USB-6221 board, signal conditioning equipments and data collection software
developed based on NI LabVIEW® 8.6. The pressure data sampling rate was 2 kHz, and the data
was recorded every one hour. Each set of data collection lasted for one minute. When the aviation
pump operated 1063 h, the pump was considered as a total failure in case of the monitoring return oil
flow exceeding the failure threshold 2.8 L/min. After disassembling the tested pump, it can be found
that the clearance between plunger ball head and slipper socket exceeded a given threshold 0.2 mm.
At this time, the experiments stopped. A total of 1063 data sets were collected for the entire experiment.
In each data set, the signal data is divided into two segments, one part is used as the online data,
and the other part is treated as the historical data.
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3.2. Experimental Results and Analysis

In this section, the historical data is first analyzed to illustrate the calculation process of the DI
of the pump. Firstly, based on the proposed feature extraction method, multi-domain features are
extracted from 1063 data sets and the number of the obtained features is 32 in each data set. To select
more sensitive features and decrease the computational burden, PCA is used to reduce the dimension of
features. In general, the threshold of PCA method is set to 0.85 [37]. Through calculation, we find that
the cumulative contribution rate has exceeded 95% when the first seven principal components is chosen.
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Hence, these seven principal components are used to replace the original 32 multi-domain features of
each data set and regarded as a sample to calculate the DI. On the basis of this, a total of 1063 samples are
obtained. Among these samples, the first 200 samples, obtained from health state signals, are selected
as training samples to construct a GMM. According to the experience, three to five Gaussian functions
are enough when approximating the PDF of the extracted features. Thus, the number of Gaussian
models participating in combination is set to 4 in this paper [12], and the weights of four Gaussian
models through EM calculation are 0.1219, 0.5166, 0.2081, and 0.1534, respectively. After determining
parameters of GMM, all samples are input to the constructed GMM, and the DI is computed based on
Equation (2). Figure 4 shows the DI curves of all samples.
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From Figure 4, it can be seen that the curve remains stable for a long time firstly and suddenly
changes at the 759th point. From point 759, the value of DI increases significantly, which indicates that
the aviation pump has entered an early stage of degradation. To verify the accuracy of diagnosing an
early failure of the pump based on DI, the data sets 758 and 759 are analyzed.

Figure 5 depicts the power spectra of pressure signals obtained from two data sets. As illustrated
in Figure 5, the amplitude of 200 Hz in dataset 759 increases by about three times and the amplitude
of 0–200 Hz also increases significantly compared with the results in dataset 758. According to the
previous failure mechanism analysis of the pump, it can be known that the amplitudes at fundamental
frequency (66.7 Hz) and its multiples will rise with the increase of the fault severity. Moreover,
comparing with the results in data set 759, it is also found that the amplitudes at fundamental frequency
and third harmonic are also obviously lower in the data before dataset 758. Consequently, it can be
inferred that the pump has undergone an early deterioration from point 759. Meanwhile, it also proves
that the proposed DI namely self-information quantity based on GMM can accurately identify the
early degradation of the pump. Furthermore, as indicated in Figure 5, the values of self-information
quantity obtained from the data sets after entering the early degraded state are greatly larger than
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those in health state, which shows that we can set up an appropriate threshold to distinguish between
health and early degeneration state.Sensors 2020, 20, x FOR PEER REVIEW 12 of 21 
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After the pump enters an early degeneration stage, the changes of the DI are relatively stable
from points 759 to 990. Subsequently, the DI values obviously increase again from the 990th point,
which shows that the degradation severity of the pump is increasing. Further, the values of DI rise
rapidly from point 1043. Currently, it can be indicated that the pump has entered a critical failure stage.

Figure 6 displays the spatial distribution of all samples graphically when using the first three
principal components. As can be seen from Figure 6, the distribution of samples 201–758 basically
coincides with that of training samples since samples 201–758 are also obtained from pressure signals
in a healthy state. The distances between the sample point and training sample sets are increasing
gradually as the pump goes from a healthy state to an early degradation state, severe degradation
and eventually failure. This is basically consistent with the change of the DI, which once again
proves that the proposed DI based on GMM can effectively characterize the degradation degree of the
aviation pump.

After obtaining the DI time series of the pump, optimized SVR model is constructed to achieve
multi-step ahead prediction. From Figure 4, we can find that the pump is in healthy state before point
759 for historical data. Meanwhile, similar conclusions can be obtained by analyzing the online data,
so this paper mainly focus on points 759–1063. As described in Section 2.3, the inputs of the SVR model
needs to be determined firstly. To solve this problem, the average mutual information method and
CAO method are separately adopted. Figure 7 illustrates the selection results of delay time based on
the average mutual information.
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Figure 7. Selection of the delay time by the average mutual information method.

As depicted in Figure 7, the first minimum point of the curve appears at τ = 2, so the delay time
is set to 2. After the delay time is determined, the CAO method is utilized to capture the embedding
dimension m. Figure 8 depicts the change curve of variables E1(m) and E2(m) with the increase of the
embedding dimension. From Figure 8, it can be observed that the values of E1(m) and E2(m) no longer
increase when the embedding dimension m = 12. As a result, the embedding dimension m is set to 12.
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Based upon the obtained parameters τ and m, the inputs of the prediction model is determined.
Further, the DI sequences {x759, x760, . . . , x1063}, extracted from the historical data, can be reconstructed
as follows:

Xtrain =


x759 x761 . . . x781

x760 x762 . . . x782
...

...
...

...
x1040 x1042 . . . x1062

 Ytrain =


x782

x783
...

x1063

 (15)

where Xtrain and Ytrain are the input and target output of the historical data-based SVR model,
respectively. The SVR model is then trained by the training samples {Xtrain, Ytrain}. Next, three key
parameters C, σ, and ε are optimized to achieve the better performance of the SVR model. According
to the proposed optimization method, PSO algorithm is first adopted to obtain the optimized searching
intervals. Table 2 presents some parameters of PSO method.

Table 2. Parameter settings of PSO method.

Parameter The Value

The maximum number of generations 200
The number of the particles 20

Learn factors 1.5,1.7
Inertia weight 1

The initial range of C [0,1000]
The initial range of σ [0,100]
The initial range of ε [0.001,1]

Based on Equations (11) and (12), the optimization intervals of C and σ, namely C ∈ [20,26] and σ
∈ [2−2,22], are obtained, and ε* = 0.001 will be as the final optimization parameter of ε. Compared
with the results in Table 2, it can be found that the searching intervals have been reduced greatly.
Based upon the obtained optimization intervals, GS method is adopted to select the reasonable values
of the parameters C and σ. In GS method, the search step of C and σ are small enough, which are 0.1
and 0.01, respectively. In addition, 5-fold cross validation is used to evaluate the performance of the
selected parameter sets. Subsequently, the optimal parameters C = 22.1, σ = 2 are obtained. With the
determination of the optimal parameters, the optimization SVR model trained by the historical data is
constructed to predict the DI values.

As the prediction steps is set to 50 in this paper, the DI time series {x*759, x*760, . . . , x*1013}, obtained
from the online data, is used to train the online data-based SVR model. In a similar way, the original
time series can be reconstructed as follows:

X∗train =


x∗759 x∗761 . . . x∗781
x∗760 x∗762 . . . x∗782

...
...

...
...

x∗990 x∗992 . . . x∗1012

 Y∗train =


x∗782
x∗783

...
x∗1013

 (16)

where X*train and Y*train are the input and target output of the online data-based SVR model, respectively.
Based on the proposed optimization method, C = 5.1, σ = 1 and ε*= 0.001 are selected as the optimal
parameters. Next, the first testing sample {[x*991x*993 . . . x*1013], x*1014} is input to the online data-based
SVR model to get the predicted value x̂∗1014, then x̂∗1014 is added to the second testing samples to predict
the second value x̂∗1015, and so on. Fifty prediction values will be acquired based on the SVR model
constructed by the online data. Similarly, 50 prediction values can be obtained when the testing
samples are input to the historical data-based SVR model. Subsequently, the final predicted values can
be obtained based on Equation (13). The actual values and predicted values of the proposed method
are presented in Figure 9.
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From Figure 9, it can be found that the change trend of the DI curve can be predicted by the
optimized SVR model effectively. Meanwhile, we can find that the deviation of the predicted values
and actual values of samples 1014–1042 is smaller than that of samples 1043–1063. The possible reason
is that samples 1014–1042 are in the same deterioration stage. To quantitatively assess the prediction
accuracy, some statistical indexes, including maximum relative error (MRE), average relative error
(ARE) and root mean square error (RMSE), are given as:

MRE = max
k∗∈[1,H]

(
∣∣∣∣ f (k∗)predictd − f (k∗)actual

∣∣∣∣/ f (k∗)actual)

ARE = 1
H

H∑
k∗=1

(
∣∣∣∣ f (k∗)predictd − f (k∗)actual

∣∣∣∣/ f (k∗)actual)

RMSE = ( 1
H

H∑
k∗=1

(
∣∣∣∣ f (k∗)predictd − f (k∗)actual

∣∣∣∣)2
)

1/2

(17)

where H is the number of the ahead prediction steps, f (k*)predicted is the k*-th predicted DI value, and
f (k*)actual is the k*-th actual DI value when performing H-step ahead prediction.

Table 3 presents the calculated statistical indexes of the optimized SVR model. From Table 3,
it can be observed that most of errors of 29-step ahead prediction are smaller than that of 50-step ahead
prediction. This shows that the prediction error will gradually rise as the prediction steps increase.
Nevertheless, the RMSE of 50-step ahead prediction results is only 2.82, it can be concluded that the
proposed method can accurately track the change of the degradation status of the aviation pump.

Table 3. The statistical indexes based onoptimized SVR model.

H MRE ARE RMSE

29 0.1079 0.0323 0.85
50 0.1188 0.0363 2.82

4. Comparisons and Discussion

The experimental results have demonstrated that the proposed approach can assess the pump
performance degradation effectively and predict the change trend of the degradation status with high
accuracy. To further prove its superiority, we make some comparisons in this section. On the one hand,
the time domain-based method, FCM-based method, and so on, are compared to verify the advantages
of the proposed DI when performing degradation assessment. On the other hand, some published
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methods, including back propagation (BP), GS-based SVR, genetic algorithm (GA)-based SVR, LSTM,
among others, are used to compare the performance of predicting the degradation process.

Some commonly used time-domain statistical indicators, such as the root mean square (RMS)
value and waveform index (WI), have been widely applied in the performance degradation evaluation
of other rotating machinery. Among these methods, it can be found that the RMS value is generally
sensitive to wear-related faults and the WI has better stability. To show the effectiveness of the proposed
method, these two indexes are first compared with the presented DI. Figures 10a and 10b depict the
RMS and WI values obtained from the pump’s full life cycle data, respectively.
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As illustrated in Figure 10a, the RMS values of the first 980 points fluctuate slightly and the
values increase significantly from point 1000. This shows that the RMS-based method is much later
than the proposed method in detecting early degradation of the pump. Comparing with Figure 10a,
we can find that the WI values of the first 810 samples also fluctuate slightly in Figure 10b. However,
the values first decrease and then rise from point 810. This will make it difficult to use the WI to track
the development of the degradation degree.

As described in previous section, FCM-based method is also widely employed in performance
degradation evaluation of rotating machinery, so it is used to compare with the proposed method in
this paper. Figure 11 shows the obtained DI based on the FCM method.
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From Figure 11, it can be observed that the fluctuation of the DI values obtained from FCM is small
from sample 1 to sample 810, which means the pump is in healthy state at this stage. From sample 811
to sample 945, the fluctuation of the DI values increases greatly. Subsequently, the values begin to
decrease from sample 946, and then the values rise sharply from sample 1041, which indicates that
the pump begin to enter the near failure stage from point 1041. Comparing Figure 11 with Figure 4,
we can find that the pump degradation is also roughly divided into four stages in Figure 11. However,
the FCM-based method is later than the proposed method in recognizing the early degradation of
pump. Besides, as the deterioration degree increases, the DI values obtained from FCM increases
first, then decreases, and then increases again. Under this circumstance, it is difficult to track the
development of the pump degradation degree by use of the FCM-based DI.
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Next, original 32-dimensionality features are utilized to explore the impact of the feature
dimensionality on degradation assessment. Figure 12 shows the obtained DI without reducing
feature dimensions. From Figure 12, we can find that the DI also change greatly at the 759th point.
This means that the health state and early degradation can be distinguished. However, we cannot
find obvious degradation trend from the curve after point 759. This shows that the DI obtained from
original 32-dimension features cannot track the degradation state accurately.
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Figure 12. The obtained DI using original 32-dimension features.

After achieving the comparisons of the DI acquisition methods, some prediction methods are
compared with the proposed SVR model. The parameters setting of the compared methods can be
found in [5,26]. To avoid the occasionality of single operation, each algorithm is repeated 10 times,
and the results with the smallest error is selected for comparison. Figure 13 shows the actual values
and the predicted results based on these compared methods. From Figure 13, it can be found that the
predicted results based on GS-SVR and GA-SVR, fluctuate more violently than those obtained from the
remaining methods when performing 29-step ahead prediction.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 21 

 

find obvious degradation trend from the curve after point 759. This shows that the DI obtained from 
original 32-dimension features cannot track the degradation state accurately. 

 
Figure 12. The obtained DI using original 32-dimension features. 

After achieving the comparisons of the DI acquisition methods, some prediction methods are 
compared with the proposed SVR model. The parameters setting of the compared methods can be 
found in [5,26]. To avoid the occasionality of single operation, each algorithm is repeated 10 times, 
and the results with the smallest error is selected for comparison. Figure 13 shows the actual values 
and the predicted results based on these compared methods. From Figure 13, it can be found that the 
predicted results based on GS-SVR and GA-SVR, fluctuate more violently than those obtained from 
the remaining methods when performing 29-step ahead prediction. 

 

Figure 13. Cont. Figure 13. Cont.



Sensors 2020, 20, 3854 18 of 21

Sensors 2020, 20, x FOR PEER REVIEW 18 of 21 

 

 

 
Figure 13. The actual values and predicted results based on different methods; (a) BP (b)GS-SVR (c) 
GA-SVR (d) PSO-SVR(e) LSTM. 

Among the remaining three methods, LSTM has the smallest deviations between the actual 
values and predicted values. This is because samples 1014–1042 are in the same degradation stage, 
and LSTM can learn the inherent laws of the data better due to the introduction of the gate. As the 
ahead prediction steps increase, the prediction errors of samples 1043–1063 based on LSTM increase 
significantly. The possible reason is that the number of the training samples is small and the DI 
sequences of the pump have no obvious periodicity. Meanwhile, we can see that GS-SVR works the 
worst when performing 50-step prediction, this is because the searching efficiency of direct GS is 
lower when selecting the optimal parameters of the SVR model. Comparing Figure 13 and Figure 9, 
it can be seen that the fluctuations of the prediction results shown in Figure 13 are clearly bigger than 
those obtained from the proposed method. It indicates that the generalization ability of the 
constructed SVR model is better and thus higher prediction accuracy can be achieved. 

Figure 13. The actual values and predicted results based on different methods; (a) BP (b) GS-SVR
(c) GA-SVR (d) PSO-SVR (e) LSTM.

Among the remaining three methods, LSTM has the smallest deviations between the actual
values and predicted values. This is because samples 1014–1042 are in the same degradation stage,
and LSTM can learn the inherent laws of the data better due to the introduction of the gate. As the
ahead prediction steps increase, the prediction errors of samples 1043–1063 based on LSTM increase
significantly. The possible reason is that the number of the training samples is small and the DI
sequences of the pump have no obvious periodicity. Meanwhile, we can see that GS-SVR works the
worst when performing 50-step prediction, this is because the searching efficiency of direct GS is lower
when selecting the optimal parameters of the SVR model. Comparing Figures 9 and 13, it can be seen
that the fluctuations of the prediction results shown in Figure 13 are clearly bigger than those obtained
from the proposed method. It indicates that the generalization ability of the constructed SVR model is
better and thus higher prediction accuracy can be achieved.



Sensors 2020, 20, 3854 19 of 21

To quantify the prediction accuracy of these methods, the statistical indexes of different methods
are presented in Table 4. Comparing Table 4 with Table 3, it can be observed that the proposed
method works the best, this is because the SVR model has better ability of processing small sample in
comparison with BP and LSTM, and the combination of PSO and GS greatly increase the probability of
obtaining the optimal parameters. So through comparisons we can get that the proposed SVR model
can track the general trend of the performance degradation of the aviation pump better.

Table 4. The prediction error comparisons based on different methods.

Methods H MRE ARE RMSE

GS-SVR
29 0.3605 0.1422 3.66
50 0.4889 0.1464 9.02

GA-SVR
29 0.3605 0.1434 3.74
50 0.3605 0.1256 5.29

PSO-SVR
29 0.3110 0.0615 1.92
50 0.3110 0.0779 7.32

BP
29 0.3250 0.078 2.13
50 0.3887 0.0719 5.27

LSTM
29 0.1686 0.0537 1.68
50 0.3087 0.0874 7.28

5. Conclusions

This study proposes a new effective approach for evaluating and predicting the degradation
process of the aviation pump. Unlike the traditional failure modes identification and fault severity
recognition, this study mainly focuses on the discovery of the methods which can reliably track the
degradation status of the aviation pump. Based on the aforementioned illustration, the presented
scheme includes an EEMD paving-based multi-domain features extraction, a GMM for performance
degradation assessment, and a degradation trend prediction using optimized SVR. According to the
experimental results and the comparisons, the following can be concluded:

(1) The multi-domain features extracted from EEMD paving based on pump outlet pressure signals
can successfully characterize the degradation degree of the pump than traditional features, such as
RMS and WI.

(2) The DI derived from GMM can effectively identify and track the current deterioration stage,
which enables the determination of the critical fault occurrence accurately and the realization of
condition-based maintenance.

(3) The proposed method provides a useful tool for multi-step ahead prediction of the DI and
has higher accuracy compared to some previously published methods, including BP, GA-SVR,
and so on.

(4) As full life cycle experiment of the aviation pump is expensive and very time-consuming, there is
only few life samples, which will affect the further verification of the method. Meanwhile,
the weights of the models are given according to the experience. In the future, some research will
be explored on how to determine the weights more reasonably.
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