
sensors

Article

EDSSA: An Encoder-Decoder Semantic Segmentation
Networks Accelerator on OpenCL-Based
FPGA Platform

Hongzhi Huang 1, Yakun Wu 1, Mengqi Yu 2, Xuesong Shi 3 , Fei Qiao 2,* , Li Luo 1, Qi Wei 4 and
Xinjun Liu 5

1 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
17120009@bjtu.edu.cn (H.H.); 18120025@bjtu.edu.cn (Y.W.); lluo@bjtu.edu.cn (L.L.)

2 Department of Electronic Engineering and BNRist, Tsinghua University, Beijing 100084, China;
yumq17@mails.tsinghua.edu.cn

3 Intel Labs China, Beijing 100090, China; xuesong.shi@intel.com
4 Department of Precision Instrument, Tsinghua University, Beijing 100084, China; weiqi@tsinghua.edu.cn
5 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;

xinjunliu@mail.tsinghua.edu.cn
* Correspondence: qiaofei@tsinghua.edu.cn; Tel.: +86-138-1035-5024

Received: 12 May 2020; Accepted: 6 July 2020; Published: 17 July 2020
����������
�������

Abstract: Visual semantic segmentation, which is represented by the semantic segmentation network,
has been widely used in many fields, such as intelligent robots, security, and autonomous driving.
However, these Convolutional Neural Network (CNN)-based networks have high requirements
for computing resources and programmability for hardware platforms. For embedded platforms
and terminal devices in particular, Graphics Processing Unit (GPU)-based computing platforms
cannot meet these requirements in terms of size and power consumption. In contrast, the Field
Programmable Gate Array (FPGA)-based hardware system not only has flexible programmability and
high embeddability, but can also meet lower power consumption requirements, which make it an
appropriate solution for semantic segmentation on terminal devices. In this paper, we demonstrate
EDSSA—an Encoder-Decoder semantic segmentation networks accelerator architecture which can be
implemented with flexible parameter configurations and hardware resources on the FPGA platforms that
support Open Computing Language (OpenCL) development. We introduce the related technologies,
architecture design, algorithm optimization, and hardware implementation of the Encoder-Decoder
semantic segmentation network SegNet as an example, and undertake a performance evaluation. Using an
Intel Arria-10 GX1150 platform for evaluation, our work achieves a throughput higher than 432.8 GOP/s
with power consumption of about 20 W, which is a 1.2× times improvement the energy-efficiency ratio
compared to a high-performance GPU.

Keywords: FPGA; semantic segmentation; framework; OpenCL

1. Introduction

Visual semantic segmentation is widely used in various applications, such as intelligent robot
technology [1–3], autonomous driving [4,5], and pedestrian detection [6]. For intelligent robot technology,
visual semantic SLAM (Simultaneous Localization and Mapping) that merges semantic information is

Sensors 2020, 20, 3969; doi:10.3390/s20143969 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3880-4501
https://orcid.org/0000-0002-5054-9590
https://orcid.org/0000-0003-3189-7562
http://www.mdpi.com/1424-8220/20/14/3969?type=check_update&version=1
http://dx.doi.org/10.3390/s20143969
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 3969 2 of 18

a potential use of visual semantic segmentation for intelligent robot technology. It has been proven
that the classic VSLAM (Visual SLAM) technology is an appropriate solution to the positioning and
navigation of mobile robots [7,8], and that it can be implemented on low-power embedded platforms [9–11].
However, classic VSLAM is mostly based on low-level computer vision features (points, lines, etc.)
when describing the surrounding environment. Although the description can extract geometric spatial
information well, it lacks a high-level understanding of the environment in terms of semantics. In recent
years, with the development of deep learning technologies, researchers have proposed various neural
network algorithms to achieve high-level feature extraction based on computer vision technology, such as
image classification [12–14] and semantic segmentation [15–17]. The semantic segmentation network based
on a Convolutional Neural Network (CNN) has been widely implemented because of its high segmentation
accuracy. The combination of classic VSLAM and a semantic segmentation network represents a new
evolution of the traditional feature point extraction methods. Therefore, semantic VSLAM frameworks
have been proposed to solve several problems with the classic VSLAM algorithms [18] and have shown
good performance.

The architecture of the semantic segmentation network is mostly based on the CNN architecture.
Using CNN architecture can not only achieve higher segmentation accuracy through network training,
but is also suitable for many segmentation scenarios. However, it has several problems. First, the high
segmentation accuracy rate usually means that the network is generally deep, which leads to a multiplied
increase in the number of network parameters and calculations. This is reflected in higher requirements for
the computing throughput of the hardware processing platform. Second, greater computing power and
higher data transmission bandwidth often mean higher power consumption, which presents significant
challenges to energy-constrained platforms. Furthermore, hardware platforms applied to mobile robots are
limited in physical space. Therefore, the semantic VSLAM algorithm based on the semantic segmentation
network must be able to run on a hardware platform with adequate computing capability and low power
consumption, and be able to be embedded for use with mobile robots.

The hardware platform for processing of the SLAM algorithm on mobile robots mainly includes a
CPU (Central Processing Unit) [11], FPGA [10,19], and ASIC (Application Specific Integrated Circuit) [9,20].
The platform for the semantic segmentation network is usually based on a GPU [15]. Semantic VSLAM
using a semantic segmentation network is a topic of existing research. The CPU is irreplaceable as the
logic processing core of the current hardware system. However, the computing power of the CPU appears
to be limited in its ability to meet real-time requirements when implementing network computing. A GPU
can provide a significant amount of computing power, but the higher power consumption cannot meet
the needs of edge deployment. An ASIC has lower power consumption and smaller size but lower
compatibility in terms of both software and hardware. An FPGA can provide higher computing power
than a CPU, with lower power and a smaller volume than GPU. Furthermore, an FPGA cannot only be
programmed with hardware description language (HDL) and IP (Internet Protocol) core development tools
that focus on low-level hardware design and optimization, but can also be deployed with high-level design
languages such as OpenCL tools. In addition, an FPGA also has higher compatibility with interfaces and
hardware. These advantages make it suitable as the edge acceleration hardware for semantic segmentation
networks. Therefore, a heterogeneous hardware platform may be a solution for intelligent mobile robots,
including both the logic control and simple computing cores such as the CPU, and the heterogeneous
acceleration hardware such as the FPGA.

In order to solve these problems, we propose an Encoder-Decoder semantic segmentation networks
accelerator architecture (EDSSA) of an OpenCL-based FPGA heterogeneous platform. In the current
study we test EDSSA with SegNet [16], a classic semantic segmentation network. The main points and
contributions of this study are:
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(1) An FPGA hardware architecture based on OpenCL kernels was designed for Encoder-Decoder
semantic segmentation network architecture. In this paper, we show the design details of the relevant
architecture with the classic Encoder-Decoder semantic segmentation network SegNet as an example.
The proposed architecture can also be applied to other Encoder-Decoder semantic segmentation
networks by replacing the network models and OpenCL kernels.

(2) We designed and explored the design space. The relationship between the design space and
performance was explored on an Intel Arria-10 GX1150 platform to find the optimal solution.
The proposed architecture can also be adapted to different hardware platforms using similar design
space exploration methods.

The hardware acceleration of the SegNet inference process by EDSSA is shown. In Section 2,
the network structure and the main mathematical operations of SegNet are discussed. In Section 3,
the overall architecture of EDSSA and a series of instructions for the architectural design are given.
In Section 4, we elaborate on the design and exploration of the design space. In Section 5, we introduce the
measures of the optimization algorithm process and fixed-point quantization. In Section 6, the experimental
platform used in this paper is provided, and we analyze the performance of the methods outlined in
Sections 3–5. In the final section, we summarize this article.

2. Related Work

For a CNN accelerator based on FPGA, a series of studies have been undertaken. Chen Zhang et al. [21]
explored the design space based on the roofline model and used the RTL design process to implement
the classic CNN classification network based on FPGA. Mohammad Motamedi et al. [22] proposed an
FPGA accelerator platform named PLACID that could generate an RTL-level architecture in Verilog.
Huimin Li et al. [23] designed an accelerator for the classification network AlexNet. By optimizing
calculation layer operations and design space exploration, the FPGA accelerator achieved a throughput
up to 565.94 GOP/s with the Xilinx VC709. Although these studies have successfully developed
an accelerator of the CNN network in FPGA, most use the RTL design method, which requires a
significant time for development. Therefore, High-Level Synthesis (HLS) tools have become increasingly
popular in both academic and industrial fields. Compared with the traditional methodology, HLS tools
provide faster hardware development cycles and software-friendly program interfaces that can be
easily integrated with user applications (e.g., PipeCNN). Based on the OpenCL developing tools,
Jialiang Zhang et al. [24] solved the on-chip memory bandwidth limitation through the corresponding
core design and implemented the inference process of Visual Geometry Group (VGG) on the Arria 10
GX1150 platform. Utku Aydonat et al. [25] implemented Winograd on the Arria 10 platform with OpenCL
and achieved a throughput rate of up to 1382 GFLOPs. Dong Wang et al. [26] proposed a set of FPGA
accelerators named PipeCNN which could be implemented on different FPGA platforms with reconfigurable
performance and cost. In addition, various optimization methods have been proposed to achieve the FPGA
accelerator design of the CNN network [27,28]. However, considering the difference in the algorithm flow
and structure between the semantic segmentation network and the image classification network, several
problems remain in the implementation of the FPGA accelerator of semantic segmentation networks:

(1) The semantic segmentation networks usually contain an encoder and require computing layers such
as unpooling or deconvolution;

(2) Information feed-through between the decoder and the corresponding encoder exists in the semantic
segmentation network;

(3) The network may not contain the fully connected layer.
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(4) These problems are not addressed in previous research. Therefore, it is important to develop a
semantic segmentation accelerator suitable for an FPGA platform based on HLS tools.

3. Description of Encoder-Decoder Semantic Segmentation Network

Compared with the traditional image classification network, the semantic segmentation network not
only needs to identify and classify objects of a specific semantic category contained in the input image,
but also needs to segment the geometric edges of the objects. Therefore, the semantic segmentation network
has the following characteristics:

(1) An end-to-end network. The input is an image and the output result is a segmentation label set with
the same resolution as the input image, and the output of the image classification network is simply a
number of category labels or probability values.

(2) The network architecture includes both an encoder and decoder, whereas the image classification
network only includes the encoder. The encoder is used to realize feature extraction, which often
uses the classic image classification network as the filter. The decoder is used to realize semantic
image restoration and obtain the semantic classification probability of each pixel.

(3) The semantic segmentation network has data paths between the decoder and the corresponding
encoder. In order to make up for the feature space information lost in the encoder process, the decoder
usually introduces the features or pooled indexes generated by the encoder process to assist in
completing the feature recovery.

Figure 1 shows the network architecture of the SegNet-A classic Encoder-Decoder semantic
segmentation network. The input image passes through the encoder of the network for feature extraction
and generates the corresponding pooling indices in the pooling layers. Then, the extracted features are
used for feature restoration through the decoder. The main functions and mathematical calculations of each
calculation layer of SegNet are introduced in Code 1, and the relevant parameters are shown in Table 1.Sensors 2020, 20, x FOR PEER REVIEW 5 of 17 
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Convolutional layer. The convolutional layer is the main computing layer in the CNN model.
Its main function is feature extraction. Usually, the input of the convolutional layer is a number of
feature maps. These feature maps and the corresponding convolution kernels perform two-dimensional
convolution operations to extract local features. Then, the results between different feature maps are
summed. After adding the bias, a local feature description value corresponding to a convolution kernel is
generated. Different local features are extracted by sliding the two-dimensional convolutional windows
on the input feature map, and the output high-dimensional feature map is finally generated. In this
process, the convolution kernels used to generate an output feature map are shared, and the number of
convolution kernels determines the number of output feature maps. In addition, the Batch Normalization
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(BN) layer [29] and the Rectified Linear Unit (RELU) layer are connected after each convolution layer
in SegNet.

Table 1. Parameters in convolutional, pooling, and unpooling layers.

Convolution Parameters Description Pooling Parameters Description Unpooling Parameters Description

Wcin
Width of the input

feature maps Wpin
Width of the input

feature maps
Wupin

Width of the input
feature maps

Hcin
Height of the input

feature maps

Wcout
Width of the output

feature maps Hpin
Height of the input

feature maps
Hupin

Height of the input
feature maps

Hcout
Height of the

output feature maps

Ccin
Numbers of input

feature maps
Cpin

Numbers of input
feature maps

Cupin
Numbers of input

feature maps
Pc Padding sizes Wpout

Width of the output
feature maps

Wupout
Width of the output

feature maps
Kc

Size of the
convolution kernel

Nk
Numbers of

convolution kernel Hpout
Height of the output

feature maps
Hupout

Height of the
output feature maps

Sc Sliding step

BIAS Bias Kp
Size of the pooling

windows Kup
Size of the

pooling windows

Pooling layer. The pooling layer is usually located after the CONV layer. It aims to reduce the
amount of calculation and control overfitting. The pooling operation is applied to each input feature map
separately. This means that the input and output of the pooling layer have the same number of feature
maps. The operations between different feature maps are independent of each other. In the SegNet model,
maximum pooling is used.

Unpooling layer. The unpooling layer is the inverse operation of the pooling layer. The unpooling
layers output the feature maps with the same resolution as the corresponding pooling layer according to
the pooling index address. Each unpooling operation places the input feature at the position corresponding
to the pooled index address and fills other positions with 0. Similarly, the unpooling operation is applied
to each input feature map independently.

The computing characteristics of each computing layer in SegNet also determine the strategy for
hardware implementation on the FPGA. For the convolutional layers, we can see that the main operation
of Figure 2 is multiply–accumulate. Moreover, the convolution operation is independent between different
input feature maps (different Ccin) and different convolution kernels (different Nk). Such an operation
structure is highly suitable for parallel computing acceleration. The main operations of the pooling
and unpooling layers are comparison and reorder, so it is suitable for designing an efficient pipeline to
accelerate the operations. Considering that operations in the pooling layers and the unpooling layers are
independent between different feature maps, parallel multi-threading can be used for acceleration.
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4. Overall Architecture Design

Here, we first introduce the FPGA development process based on OpenCL, which can be divided into
two parts: the host and the device. The Host mainly runs OpenCL-based context and command queue
management and controls all memory data transmission and kernel execution queues. Generally, users need
to build the host programming code that is complied with the OpenCL development specification to call
the corresponding OpenCL API (Application Programming Interface) to control the devices. The device
side, or FPGA board, is mainly used for kernels execution and pipeline control. The user should get the
FPGA executing image that is finally used for FPGA by undertaking code building, FPGA compilation
and synthesis, and simulation and debugging of the kernels in the OpenCL development environment.
The image can be used to configure the FPGA to deploy the kernels and corresponding component functions.

To implement the deployment of SegNet in FPGA, EDSSA uses the overall architecture shown in
Figure 3 based on OpenCL. The function execution is mainly realized by the kernels on-chip. The data
storage is divided into two parts: on-chip memory and off-chip memory. These are used to store the
features and parameters required or generated at different stages of the kernel execution process.
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4.1. Configurable Pipes and Layer Connections

EDSSA realizes different layer connection modes through configurable data flow pipes and layer
connections, which realizes non-blocking data flow between the kernels. If using off-chip global memory
as a reference, a sub-process for reading, calculating, and storing feature data can be described as:

off-chip global memory (input features, parameters, or pooling indices)→ on-chip cache buffers→
convolution kernel→ data pipes→ pooling or unpooling kernel (if needed)→ data pipes→ on-chip cache
buffers→ off-chip global memory (output features or pooling indices).

In order to adapt to the structure of SegNet shown in Figure 1, there are four kinds of sub-process
modes designed to configure data flow pipes and layer connections:

• C_F = 00: off-chip global memory (input features and parameters) → on-chip cache buffers →
convolution kernel→ data pipes→ on-chip cache buffers→ off-chip global memory (output features);

• C_F = 01: off-chip global memory (input features and parameters) → on-chip cache buffers →
convolution kernel→ data pipes→ pooling kernel→ data pipes→ on-chip cache buffers→ off-chip
global memory (output features and pooling indices);

• C_F = 10: off-chip global memory (input features, parameters, and pooling indices)→ on-chip cache
buffers→ convolution kernel→ data pipes→ unpooling kernel→ data pipes→ on-chip cache buffers
→ off-chip global memory (output features);

• C_F = 11: off-chip global memory (input features, parameters, and pooling indices)→ on-chip cache
buffers→ convolution kernel→ data pipes→ pooling kernel→ data pipes→ unpooling kernel→
data pipes→ on-chip cache buffers→ off-chip global memory (output features).

These four modes are controlled by Data Flow Controller Flag (C_F) to configure the kernel to be
executed and select the data pipes for data transmission. The sub-processes of these four modes share
the same cache, data transmission component, and convolution kernel, and the difference is whether
the convolution kernel is connected to the pooling or unpooling kernel and the data pipes used for data
transmission. The entire network structure of SegNet can be realized through the combination of these four
modes of sub-processes. If C_F is used to represent the sub-process mode, the combination of sub-processes
that implement SegNet is: 00-01-00-01-00-00-01-00-00-01-00-00-11-00-00-10- 00-00-10-00-00-10-00-10-00-00.

The framework of EDSSA has the advantages as follows: (a) When executing each sub-process, we can
ensure that each core is executed at most once, so as to ensure that there is no contention for the same kernel
hardware, thus, ensuring that the entire sub-process is not blocked. (b) The same hardware component
will be used when performing the same kernel function in different sub-processes. It reduces the hardware
resource overhead on the FPGA chip. (c) Adoption of the FIFO (First Input First Output)-based pipe design
means all data is transmitted on-chip during a sub-process, which greatly reduces the transmission delay
and improves the overall throughput rate. (d) Only a simple 2-bit control word C_F can control all modes
of the sub-process.

4.2. Kernels Design

EDSSA has three OpenCL kernels for completing the three calculation layers of SegNet: the convolution
kernel, pooling kernel, and unpooling kernel. The convolution kernel contains all of the functional
components and computing units required to implement the convolutional, BN, and RELU layers.
The pooling kernel and unpooling kernel complete all of the computing units required by the pooling
layer and unpooling layer, respectively.

Convolution kernel. As shown in Figure 4a, the core of the convolution kernel is a three-dimensional
array of multiply–accumulate units, which contains C ×N ×Kc/4 units. Each unit is completed by a 4-input
8-bit × 8-bit high-efficiency multiply–accumulate MAC (Multiply Accumulate) IP core. The input of this



Sensors 2020, 20, 3969 8 of 18

array is the input features and weights of the corresponding two-dimensional convolution operation,
and the output result is the partial sum. The parallelism of the array calculation depends on C × N.
A higher C ×N means a higher calculation throughput rate and a higher calculation and transmission cost.
The parallel accumulators and shift register groups are connected behind the array, which is used to buffer
the partial sum, and finally outputs the complete sum. Then, the output values go through operations
such as quantization, accumulating bias, and RELU. Finally, the output leaves the kernel through the data
pipes selected by the control word C_F and is transferred to the next stage.
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Pooled kernel. As shown in Figure 4b, the core of the pooling kernel is a set of efficient pipelines
based on register sets. The input features are imported by the data pipes and then compared with the
corresponding feature stored in the row register. Then, the bigger one is compared with the feature stored
in the column register until the largest feature value in the pooling window is obtained. Finally, the output
leaves the kernel through the data pipes selected by the control word C_F and transferred to the next stage.
Considering that the pooling operation is independent between the different feature maps, multi-threaded
pipelines are used to improve the core throughput with the parallelism as N.

Unpooling kernel. As shown in Figure 4c, the core of the unpooling kernel is a set of efficient pipelines
based on register sets with different clock domains. A line register set based on a ping-pong operation is
designed to achieve feature filling and output at the same time. The input features and the corresponding
pooling indices are imported by the data pipes with a 4× clock domain. The features will be stored in the
line registers with a 2× clock domain by the corresponding address according to the value of the pooling
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indices. The remainder of the registers corresponding to other addresses of the unpooling window will
be filled with 0. At the same time, another set of line registers that has been filled will export the output
features in the new maps with a 1× clock domain. Finally, the output will leave the kernel through the
data pipes. As for the pooling kernel, the unpooling kernel also uses multi-threaded pipelines with a
parallelism of N.

4.3. Memory Access Design

Due to the large number of features and parameters during SegNet processing, it is impossible to
store all data on-chip during each sub-pipeline process. Therefore, EDSSA stores the feature maps and
parameters of each sub-process in the off-chip large-capacity global memory. At the beginning of each
sub-process, the memory access controller reads a part of the input features and parameters into the
on-chip cache RAM (Random Access Memory) according to the designed reading mode and then transmits
it into the kernel through the data pipes. The off-chip memory adopts the ping-pong design to store the
input and output feature maps separately, which aims to improve the system throughput rate. In addition,
the parameters stored by the on-chip RAM will be shared in the convolution kernel to calculate different
output characteristics. It can reduce the delay caused by data transmission. We also use the vectorized
data structures for data storage and transmission to ensure that more features and parameters can be
transmitted into the array at the same time in a calculation cycle, which leads to a higher system throughput
rate. The vectorization dimension mainly depends on C and N.

5. Design Space Exploration and Optimization

5.1. Design Space Exploration

The purpose of design space exploration is to balance the performance and hardware resource
consumption of the FPGA accelerator. In EDSSA, the design space exploration is implemented by
changing the value of C and N. These two parameters not only determine the throughput rate of the
multiply–accumulate array but also affect the data structure of the input and output features and the
number of threads in pooling and unpooling kernels. In addition, a higher value of C and N means a
higher data vectorization dimension with more resource consumption. EDSSA adopts the vector structure
shown in Figure 5 for features, weights, and bias. The size of the parameters C and N is equal to the
parallelism C and N of the multiply–accumulate array. Each time the multiply–accumulate array is operated,
the controller first copies N identical C-dimensional vectorized features to obtain the C × N-dimensional
vectorized features, and then the C × N-dimensional vectorized features and the C × N-dimensional
vectorized weights are imported into the array to be computed. Finally, an N-dimensional vectorized
output is obtained. The feature vector will adopt an N-dimensional structure when quantizing, pooling,
and unpooling.
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When exploring the impact of parallelism on the system design space, we use the parameter
declarations in Table 1. First, we assume that all kernels of the system use the same clock unit with the
multiply–accumulate array to complete a calculation. No blocking exists in the system pipeline in one
clock cycle. The array can complete all of the C ×N multiply–accumulate operations within each clock.
In this assumption, we know that the number of clocks corresponding to completing a sub-process can be
expressed as:

Ncompute = Wcout ∗Hcout ∗Nk ∗ (Kc ∗Kc ∗Ccin + 1) (1)

Then the number of clocks required is:

Nclk =
Ncompute

C ∗N
=

Wcout ∗Hcout ∗Nk ∗ (Kc ∗Kc ∗Ccin + 1)
C ∗N

(2)

Thus, increasing C × N can reduce the clock cycle required by the sub-process. However,
simply increasing C or N may not achieve better utilization of hardware resources. The effect of
increasing C on the design space is:

(a) Increasing the number of multiply-accumulate units;
(b) Increasing the vectorized data bit width of the input features and weights.
(c) For N:

(a) Increasing the multiply-accumulate unit;
(b) Increasing the vectorized data bit width of the weights and bias;
(c) Increasing the number of threads in pooling and unpooling kernel.

(d) Therefore, increasing C or N may result in:

(a) Double the consumption of computing logic resources;
(b) Higher data transmission and storage costs;
(c) Higher timing requirements to meet data synchronization.

In order to achieve the optimal hardware utilization with the specific FPGA device, it is necessary to
find the most suitable C and N by design space exploration.

SegNet has an excellent performance in semantic segmentation applications with the well-designed
network architecture for a full set of processes including training and inference. However, for network
deployment on edge devices, it is more important to implement efficient inference implementation.
Some algorithm processes that focus on achieving better performance in the training process can be
optimized during inference. Therefore, EDSSA optimizes the algorithm flow and quantizes the data for
reducing the complexity of the algorithm and hardware overhead while maintaining a certain accuracy
of segmentation.

5.2. Algorithm Flow Optimization

EDSSA, like most CNN accelerators, focuses on solving the acceleration of the inference process of
neural networks on FPGA terminals. Therefore, EDSSA discards the softmax layer, merges convolution
and BN operations, and uses relative pooling indices addresses instead of the global one. These steps are
described as follows:

Discard the softmax layer: The softmax layer is discarded for the following reasons. First,
the mathematical function of the softmax is a kind of normalization algorithm to count the segmentation
probability of the output pixels. It does not change the statistical results of the output feature map. Second,
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the softmax layer is used only once in the algorithm. Therefore, it is wasteful to sacrifice precious on-chip
computing resources to realize the softmax layer, considering that EDSSA is based on the OpenCL that can
reasonably allocate and manage command execution on the host and devices. Therefore, we abandon the
on-chip deployment of the softmax layer and deploy it to the host for implementation.

Merging convolution and BN operations: The mathematical operations of convolution operations
(Formula (3)) and BN operations (Formula (4)) are both multiply–accumulate. Therefore, EDSSA simplifies
the algorithm flow by merging convolution and BN operations (Formula (5)). Through parameter
preprocessing, α·WEIGHTS and α·BIAS + β in Equation (5) can be regarded as two new parameters
equivalent to WEIGHTS′ and BIAS′, and participate in the convolution operation. Merging convolution
and BN has the following benefits:

(a) Simplify the algorithm flow while retaining the accuracy of the calculation results;
(b) Reduce the number of pipeline stages and save the hardware overhead required for BN operations;
(c) Reduce the number of quantization and the system quantization accuracy loss.

OUTPUT_conv =
∑

(Kc, Kc)

WEIGHTS·INPUT + BIAS (3)

OUTPUT_bn = α·OUTPUT + β (4)

output_bn =
∑

(Kc, Kc)

(α·WEIGHTS)·INPUT + (α·BIAS + β) (5)

Using relative pooling index addresses: SegNet uses 32-bit floating-point global addresses to store
the corresponding pooling index in the caffe [30]-based training and inference. On the one hand,
32-bit floating-point addresses use more hardware resources for transmission and storage. On the other
hand, the feature map space information contained in the global address is redundant for the unpooling
process. The spatial information of a specific feature in a feature map is correlated with the number
of pipeline clock cycles of the unpooling kernel. This means once we have the relative position of the
unpooling window in the specified cycle, the unpooling kernel can place the feature correctly. Therefore,
EDSSA uses 2-bit fixed-point relative pooled index addresses as shown in Figure 6. Thus, a significant
amount of storage space is saved for indices addresses, while simplifying the hardware overhead of
address generation.
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5.3. Quantization

The purpose of fixed-point quantization is to compress the bit width, and reduce the hardware
resource costs of data calculation and transmission. However, fixed-point quantization and lowering the
bit width will cause a loss of calculation accuracy. In the worst case, it may lead to erroneous calculation
results. Considering that the SegNet network is a computational and storage-intensive algorithm, a suitable
fixed-point quantization strategy can significantly reduce hardware resource consumption and increase
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system processing speed. In EDSSA, we perform N-bit fixed-point linear quantization on all the features
and parameters [31]. The quantization can be described by Formulas (6) to (9).

(a) Arrange input xi in absolute value, and find the maximum:

|Max| = max(abs(xi)) (6)

(b) Get the fractional bit:

fxi = ceil(log2
|Max|

2N−1 − 1
) (7)

(c) For each xi element of input, set:

x′i = round
(
xi ∗ 2− fxi

)
(8)

(d) Bit truncation. Limit x′i to N bits:

x′j =


2M−1

− 1, x′j > 2M−1
− 1

−2M−1, x′j < −2M−1

x′j,−2M−1
≤ x′j ≤ 2M−1

(9)

In addition, EDSSA performs a dynamic M-bit fixed-point quantization on each output result of the
multiply–accumulate array because multiplication doubles the bit width of the data, which means that for
different convolutional layers and different feature maps in one convolutional layer, the quantization bit
width is N bits, but the fractional bit is different. The purpose of using dynamic fixed-point quantization is
to reduce accuracy loss. The quantization is represented by x j = (−1)s

·

(∑M−2
i=0 2i

·mi
)
·2− f j , where S is the

sign bit, M is the quantization bit width, mi is the mantissa, and f j is the fractional bit. f j can be obtained
by the network training process.

6. Results

We used the development tool based on an Intel FPGA SDK for OpenCL pro 17.1 to implement
the development of EDSSA. The hardware platform is HERO [32], a heterogeneous platform that can be
deployed on medium-sized robots. The host uses a CPU system based on an Intel i5-7260U, and the device
uses an FPGA board based on an Intel Arria-10 GX1150 connected with the host by PCIE 3.0 x8. The SegNet
model is trained based on the PASCAL VOC 2012 dataset [33], and dynamic fixed-point quantization is
performed. The input image is an RGB image with a resolution of 224 × 224. The calculation methods of
throughput and energy efficiency are given in [34].

6.1. Quantization

In order to determine the optimal quantization strategy, we explored the effect of different quantization
bit widths M on algorithm accuracy. In caffe, 32-bit floating-point data is used for network training and
inference, and the final global accuracy, class accuracy, and mIoU(Mean Intersection over Union) are
82.80%, 62.30%, and 46.30%, respectively. Based on this model, we used the proposed quantization strategy
in the inference process of SegNet-Basic [16] with the data set of CamVid at 480 × 360 resolution, and the
results obtained are given in Figure 7. We can see that when the data is quantified with a bit width less
than 16 bits, the quantization error starts to appear and increases as the bit width decreases. Without the
dynamic quantization strategy, class accuracy and mIoU decrease significantly when the bit width is less
than 12 bits. However, the trend of accuracy declines after using dynamic quantization has obviously
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eased. This shows the necessity of the dynamic fixed-point quantization strategy in the low-bit width
quantization. In addition, even if dynamic quantization is performed, when the bit width is lower than
8 bits, the three accuracies are greatly reduced in value. The quantization accuracy losses of global accuracy,
class accuracy, and mIoU are 3.82%, 6.30%, and 4.78%, respectively.
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In summary, the quantization strategy used in EDSSA is 8-bit dynamic fixed-point quantization.
At this time, the quantization accuracy losses of global accuracy, class accuracy, and mIoU in SegNet
inference in the test set of PASCAL VOC 2012 are 0.8%, 1.1%, and 1.6%, respectively.

6.2. Runtime Performance

The main factor affecting the runtime of EDSSA is the design space parameters C and N. Figure 8a
shows the runtime of EDSSA with different C and N. When C × N is higher, the running speed of system
will be faster. This shows that a higher degree of computation and thread parallelism has a direct effect on
the speed of the accelerator. Moreover, the running speed increases exponentially when using a lower
degree of parallelism. However, for a high degree of parallelism, the speed improvement achieved slows
down, and there may even be no gains (such as C×N = 16× 32 and 16× 64). This means that there are other
factors that restrict the system speed. One of these is the clock frequency of the kernels. Figure 8b shows
the kernel clock frequency of EDSSA for different C and N. When a higher degree of parallelism C × N is
used, the kernel clock frequency tends to decrease. The higher the parallelism, the more obvious the drop
in clock frequency. This may be because the higher parallelism means higher data transmission timing
requirements and more pipeline threads, which may reduce the system clock. In addition, when using
the same C × N, choosing a larger C can achieve a faster running speed. This means that increasing C
(mainly to increase the bit width of the vectorized data of the input features and weight parameters)
compared to increasing N (mainly to increase the bit width of the vectorized data of the weight parameters
and the number of threads in the pipeline) has a smaller effect on reducing the speed of the system.

6.3. Hardware Resource Consumption

In order to explore the impact of design space on EDSSA hardware resource consumption, we tested
the DSP (Digital Signal Processing), RAM blocks, and logic utilization of FPGA cores under different C
and N. The relevant results are given in Figure 8c–e. It can be seen from the experimental results that the
DSP utilization rate is the same when using the same parallelism; if the parallelism is doubled, the DSP
consumption is also doubled. The results prove that DSP is mainly used to generate multiply–accumulate
unit arrays, and a higher C × N will exponentially increase the resource consumption of computing
components. In addition, for the Arria-10 GX1150 platform, when the parallelism C × N = 1024, the DSP
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utilization rate reaches 100%, which means that FPGA resources cannot support higher parallelism.
Analysis of RAM occupancy and logic utilization data shows that higher C ×N consumes more on-chip
storage and logic resources. In addition, choosing a larger C under the same C ×N requires fewer resources,
indicating that the resources occupied by increasing the number of threads for pipelines are higher than
the transmission and storage consumption of increasing the bit width of vectored data.
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Figure 8. Design space exploration results for EDSSA on the Arria-10 GX1150. (a) Runtime; (b) Frequency;
(c) DSP utilization; (d) RAMs utilization; (e) Logic utilization.

6.4. Throughput and Energy Efficiency Assessment

Through the evaluation of runtime and resource consumption, we obtained the best design space
under the Arria-10 GX1150 platform with a degree of parallelism C × N = 32 × 32. The test results can be
summarized in Table 2 and the output semantic segmentation results can be seen in Figure 9. Under the
optimal design, we used all DSP resources to implement the multiply–accumulate array, while consuming
63% of on-chip RAM blocks and 24% of the logic resources, and finally achieved a system throughput
rate of 432.8 GOP/s at the kernel clock frequency of 202 MHZ. Table 3 shows the comparison with other
platforms with SegNet.
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Table 2. Summary of EDSSA with best parallelism.

Device Resource Capacity Resource
Consumed Runtime (ms) Kernel Frequency

(MHz)
System Throughput

(GOP/s)

Arria-10 GX1150

Logic 427,200 Logic 101,955 (24%)

141.8 202.08 432.8
RAM blocks 2713 RAM blocks

1703 (63%)

DSP blocks 1518 DSP blocks
1515 (100%)
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Table 3. Comparison with other platforms with SegNet.

Platform Devices Typical Platform Power
(W)

Accelerator Power
(W)

Throughput
(GOP/s)

Energy-Efficiency
(GOP/J)

CPU only Intel E3-1230 V2 70 69 19.0 0.28

CPU+GPU Intel E3-1230 V2 &
Nvidia GTX1080 70 + 180 173 2397.8 13.86

CPU+FPGA
HERO

(Intel Core i5 7260U &
Arria-10 GX1150)

15 + 25 26 432.8 16.65

7. Conclusions

In the future, semantic SLAM based on semantic segmentation network will be the key technology
for intelligent mobile robots to achieve autonomous motion. Considering that the hardware resources of
the embedded platform are limited, the solution of accelerating the semantic segmentation network in
the edge devices has become a top priority. In this paper, we show EDSSA, an accelerator framework for
semantic segmentation networks, which can be implemented with flexible parameter configurations and
hardware resources on the FPGA platforms that support OpenCL development. EDSSA achieved a system
throughput of 432.8 GOP/s and about 16.65 GOP/J based on the Intel Arria-10 GX1150 platform.
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