
sensors

Article

EDSSA: An Encoder-Decoder Semantic Segmentation
Networks Accelerator on OpenCL-Based
FPGA Platform

Hongzhi Huang 1, Yakun Wu 1, Mengqi Yu 2, Xuesong Shi 3 , Fei Qiao 2,* , Li Luo 1, Qi Wei 4 and
Xinjun Liu 5

1 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
17120009@bjtu.edu.cn (H.H.); 18120025@bjtu.edu.cn (Y.W.); lluo@bjtu.edu.cn (L.L.)

2 Department of Electronic Engineering and BNRist, Tsinghua University, Beijing 100084, China;
yumq17@mails.tsinghua.edu.cn

3 Intel Labs China, Beijing 100090, China; xuesong.shi@intel.com
4 Department of Precision Instrument, Tsinghua University, Beijing 100084, China; weiqi@tsinghua.edu.cn
5 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;

xinjunliu@mail.tsinghua.edu.cn
* Correspondence: qiaofei@tsinghua.edu.cn; Tel.: +86-138-1035-5024

Received: 12 May 2020; Accepted: 6 July 2020; Published: 17 July 2020
����������
�������

Abstract: Visual semantic segmentation, which is represented by the semantic segmentation network,
has been widely used in many fields, such as intelligent robots, security, and autonomous driving.
However, these Convolutional Neural Network (CNN)-based networks have high requirements
for computing resources and programmability for hardware platforms. For embedded platforms
and terminal devices in particular, Graphics Processing Unit (GPU)-based computing platforms
cannot meet these requirements in terms of size and power consumption. In contrast, the Field
Programmable Gate Array (FPGA)-based hardware system not only has flexible programmability and
high embeddability, but can also meet lower power consumption requirements, which make it an
appropriate solution for semantic segmentation on terminal devices. In this paper, we demonstrate
EDSSA—an Encoder-Decoder semantic segmentation networks accelerator architecture which can be
implemented with flexible parameter configurations and hardware resources on the FPGA platforms that
support Open Computing Language (OpenCL) development. We introduce the related technologies,
architecture design, algorithm optimization, and hardware implementation of the Encoder-Decoder
semantic segmentation network SegNet as an example, and undertake a performance evaluation. Using an
Intel Arria-10 GX1150 platform for evaluation, our work achieves a throughput higher than 432.8 GOP/s
with power consumption of about 20 W, which is a 1.2× times improvement the energy-efficiency ratio
compared to a high-performance GPU.

Keywords: FPGA; semantic segmentation; framework; OpenCL

1. Introduction

Visual semantic segmentation is widely used in various applications, such as intelligent robot
technology [1–3], autonomous driving [4,5], and pedestrian detection [6]. For intelligent robot technology,
visual semantic SLAM (Simultaneous Localization and Mapping) that merges semantic information is

Sensors 2020, 20, 3969; doi:10.3390/s20143969 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3880-4501
https://orcid.org/0000-0002-5054-9590
https://orcid.org/0000-0003-3189-7562
http://www.mdpi.com/1424-8220/20/14/3969?type=check_update&version=1
http://dx.doi.org/10.3390/s20143969
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 3969 2 of 18

a potential use of visual semantic segmentation for intelligent robot technology. It has been proven
that the classic VSLAM (Visual SLAM) technology is an appropriate solution to the positioning and
navigation of mobile robots [7,8], and that it can be implemented on low-power embedded platforms [9–11].
However, classic VSLAM is mostly based on low-level computer vision features (points, lines, etc.)
when describing the surrounding environment. Although the description can extract geometric spatial
information well, it lacks a high-level understanding of the environment in terms of semantics. In recent
years, with the development of deep learning technologies, researchers have proposed various neural
network algorithms to achieve high-level feature extraction based on computer vision technology, such as
image classification [12–14] and semantic segmentation [15–17]. The semantic segmentation network based
on a Convolutional Neural Network (CNN) has been widely implemented because of its high segmentation
accuracy. The combination of classic VSLAM and a semantic segmentation network represents a new
evolution of the traditional feature point extraction methods. Therefore, semantic VSLAM frameworks
have been proposed to solve several problems with the classic VSLAM algorithms [18] and have shown
good performance.

The architecture of the semantic segmentation network is mostly based on the CNN architecture.
Using CNN architecture can not only achieve higher segmentation accuracy through network training,
but is also suitable for many segmentation scenarios. However, it has several problems. First, the high
segmentation accuracy rate usually means that the network is generally deep, which leads to a multiplied
increase in the number of network parameters and calculations. This is reflected in higher requirements for
the computing throughput of the hardware processing platform. Second, greater computing power and
higher data transmission bandwidth often mean higher power consumption, which presents significant
challenges to energy-constrained platforms. Furthermore, hardware platforms applied to mobile robots are
limited in physical space. Therefore, the semantic VSLAM algorithm based on the semantic segmentation
network must be able to run on a hardware platform with adequate computing capability and low power
consumption, and be able to be embedded for use with mobile robots.

The hardware platform for processing of the SLAM algorithm on mobile robots mainly includes a
CPU (Central Processing Unit) [11], FPGA [10,19], and ASIC (Application Specific Integrated Circuit) [9,20].
The platform for the semantic segmentation network is usually based on a GPU [15]. Semantic VSLAM
using a semantic segmentation network is a topic of existing research. The CPU is irreplaceable as the
logic processing core of the current hardware system. However, the computing power of the CPU appears
to be limited in its ability to meet real-time requirements when implementing network computing. A GPU
can provide a significant amount of computing power, but the higher power consumption cannot meet
the needs of edge deployment. An ASIC has lower power consumption and smaller size but lower
compatibility in terms of both software and hardware. An FPGA can provide higher computing power
than a CPU, with lower power and a smaller volume than GPU. Furthermore, an FPGA cannot only be
programmed with hardware description language (HDL) and IP (Internet Protocol) core development tools
that focus on low-level hardware design and optimization, but can also be deployed with high-level design
languages such as OpenCL tools. In addition, an FPGA also has higher compatibility with interfaces and
hardware. These advantages make it suitable as the edge acceleration hardware for semantic segmentation
networks. Therefore, a heterogeneous hardware platform may be a solution for intelligent mobile robots,
including both the logic control and simple computing cores such as the CPU, and the heterogeneous
acceleration hardware such as the FPGA.

In order to solve these problems, we propose an Encoder-Decoder semantic segmentation networks
accelerator architecture (EDSSA) of an OpenCL-based FPGA heterogeneous platform. In the current
study we test EDSSA with SegNet [16], a classic semantic segmentation network. The main points and
contributions of this study are:



Sensors 2020, 20, 3969 3 of 18

(1) An FPGA hardware architecture based on OpenCL kernels was designed for Encoder-Decoder
semantic segmentation network architecture. In this paper, we show the design details of the relevant
architecture with the classic Encoder-Decoder semantic segmentation network SegNet as an example.
The proposed architecture can also be applied to other Encoder-Decoder semantic segmentation
networks by replacing the network models and OpenCL kernels.

(2) We designed and explored the design space. The relationship between the design space and
performance was explored on an Intel Arria-10 GX1150 platform to find the optimal solution.
The proposed architecture can also be adapted to different hardware platforms using similar design
space exploration methods.

The hardware acceleration of the SegNet inference process by EDSSA is shown. In Section 2,
the network structure and the main mathematical operations of SegNet are discussed. In Section 3,
the overall architecture of EDSSA and a series of instructions for the architectural design are given.
In Section 4, we elaborate on the design and exploration of the design space. In Section 5, we introduce the
measures of the optimization algorithm process and fixed-point quantization. In Section 6, the experimental
platform used in this paper is provided, and we analyze the performance of the methods outlined in
Sections 3–5. In the final section, we summarize this article.

2. Related Work

For a CNN accelerator based on FPGA, a series of studies have been undertaken. Chen Zhang et al. [21]
explored the design space based on the roofline model and used the RTL design process to implement
the classic CNN classification network based on FPGA. Mohammad Motamedi et al. [22] proposed an
FPGA accelerator platform named PLACID that could generate an RTL-level architecture in Verilog.
Huimin Li et al. [23] designed an accelerator for the classification network AlexNet. By optimizing
calculation layer operations and design space exploration, the FPGA accelerator achieved a throughput
up to 565.94 GOP/s with the Xilinx VC709. Although these studies have successfully developed
an accelerator of the CNN network in FPGA, most use the RTL design method, which requires a
significant time for development. Therefore, High-Level Synthesis (HLS) tools have become increasingly
popular in both academic and industrial fields. Compared with the traditional methodology, HLS tools
provide faster hardware development cycles and software-friendly program interfaces that can be
easily integrated with user applications (e.g., PipeCNN). Based on the OpenCL developing tools,
Jialiang Zhang et al. [24] solved the on-chip memory bandwidth limitation through the corresponding
core design and implemented the inference process of Visual Geometry Group (VGG) on the Arria 10
GX1150 platform. Utku Aydonat et al. [25] implemented Winograd on the Arria 10 platform with OpenCL
and achieved a throughput rate of up to 1382 GFLOPs. Dong Wang et al. [26] proposed a set of FPGA
accelerators named PipeCNN which could be implemented on different FPGA platforms with reconfigurable
performance and cost. In addition, various optimization methods have been proposed to achieve the FPGA
accelerator design of the CNN network [27,28]. However, considering the difference in the algorithm flow
and structure between the semantic segmentation network and the image classification network, several
problems remain in the implementation of the FPGA accelerator of semantic segmentation networks:

(1) The semantic segmentation networks usually contain an encoder and require computing layers such
as unpooling or deconvolution;

(2) Information feed-through between the decoder and the corresponding encoder exists in the semantic
segmentation network;

(3) The network may not contain the fully connected layer.



Sensors 2020, 20, 3969 4 of 18

(4) These problems are not addressed in previous research. Therefore, it is important to develop a
semantic segmentation accelerator suitable for an FPGA platform based on HLS tools.

3. Description of Encoder-Decoder Semantic Segmentation Network

Compared with the traditional image classification network, the semantic segmentation network not
only needs to identify and classify objects of a specific semantic category contained in the input image,
but also needs to segment the geometric edges of the objects. Therefore, the semantic segmentation network
has the following characteristics:

(1) An end-to-end network. The input is an image and the output result is a segmentation label set with
the same resolution as the input image, and the output of the image classification network is simply a
number of category labels or probability values.

(2) The network architecture includes both an encoder and decoder, whereas the image classification
network only includes the encoder. The encoder is used to realize feature extraction, which often
uses the classic image classification network as the filter. The decoder is used to realize semantic
image restoration and obtain the semantic classification probability of each pixel.

(3) The semantic segmentation network has data paths between the decoder and the corresponding
encoder. In order to make up for the feature space information lost in the encoder process, the decoder
usually introduces the features or pooled indexes generated by the encoder process to assist in
completing the feature recovery.

Figure 1 shows the network architecture of the SegNet-A classic Encoder-Decoder semantic
segmentation network. The input image passes through the encoder of the network for feature extraction
and generates the corresponding pooling indices in the pooling layers. Then, the extracted features are
used for feature restoration through the decoder. The main functions and mathematical calculations of each
calculation layer of SegNet are introduced in Code 1, and the relevant parameters are shown in Table 1.Sensors 2020, 20, x FOR PEER REVIEW 5 of 17 

 

Encoder Decoder

Pooling indicesInput RGB image Output segmentation 
label set

Convolution +BN+RELU Pooling Unpooling Softmax  
Figure 1. SegNet architecture [16]. 

Convolutional layer. The convolutional layer is the main computing layer in the CNN model. Its 
main function is feature extraction. Usually, the input of the convolutional layer is a number of 
feature maps. These feature maps and the corresponding convolution kernels perform two-
dimensional convolution operations to extract local features. Then, the results between different 
feature maps are summed. After adding the bias, a local feature description value corresponding to 
a convolution kernel is generated. Different local features are extracted by sliding the two-
dimensional convolutional windows on the input feature map, and the output high-dimensional 
feature map is finally generated. In this process, the convolution kernels used to generate an output 
feature map are shared, and the number of convolution kernels determines the number of output 
feature maps. In addition, the Batch Normalization (BN) layer [29] and the Rectified Linear Unit 
(RELU) layer are connected after each convolution layer in SegNet. 

Pooling layer. The pooling layer is usually located after the CONV layer. It aims to reduce the 
amount of calculation and control overfitting. The pooling operation is applied to each input feature 
map separately. This means that the input and output of the pooling layer have the same number of 
feature maps. The operations between different feature maps are independent of each other. In the 
SegNet model, maximum pooling is used. 

Unpooling layer. The unpooling layer is the inverse operation of the pooling layer. The 
unpooling layers output the feature maps with the same resolution as the corresponding pooling 
layer according to the pooling index address. Each unpooling operation places the input feature at 
the position corresponding to the pooled index address and fills other positions with 0. Similarly, the 
unpooling operation is applied to each input feature map independently. 

The computing characteristics of each computing layer in SegNet also determine the strategy for 
hardware implementation on the FPGA. For the convolutional layers, we can see that the main 
operation of Figure 2 is multiply–accumulate. Moreover, the convolution operation is independent 
between different input feature maps (different Ccin) and different convolution kernels (different Nk). 
Such an operation structure is highly suitable for parallel computing acceleration. The main 
operations of the pooling and unpooling layers are comparison and reorder, so it is suitable for 
designing an efficient pipeline to accelerate the operations. Considering that operations in the pooling 
layers and the unpooling layers are independent between different feature maps, parallel multi-
threading can be used for acceleration. 

 

Figure 1. SegNet architecture [16].

Convolutional layer. The convolutional layer is the main computing layer in the CNN model.
Its main function is feature extraction. Usually, the input of the convolutional layer is a number of
feature maps. These feature maps and the corresponding convolution kernels perform two-dimensional
convolution operations to extract local features. Then, the results between different feature maps are
summed. After adding the bias, a local feature description value corresponding to a convolution kernel is
generated. Different local features are extracted by sliding the two-dimensional convolutional windows
on the input feature map, and the output high-dimensional feature map is finally generated. In this
process, the convolution kernels used to generate an output feature map are shared, and the number of
convolution kernels determines the number of output feature maps. In addition, the Batch Normalization



Sensors 2020, 20, 3969 5 of 18

(BN) layer [29] and the Rectified Linear Unit (RELU) layer are connected after each convolution layer
in SegNet.

Table 1. Parameters in convolutional, pooling, and unpooling layers.

Convolution Parameters Description Pooling Parameters Description Unpooling Parameters Description

Wcin
Width of the input

feature maps Wpin
Width of the input

feature maps
Wupin

Width of the input
feature maps

Hcin
Height of the input

feature maps

Wcout
Width of the output

feature maps Hpin
Height of the input

feature maps
Hupin

Height of the input
feature maps

Hcout
Height of the

output feature maps

Ccin
Numbers of input

feature maps
Cpin

Numbers of input
feature maps

Cupin
Numbers of input

feature maps
Pc Padding sizes Wpout

Width of the output
feature maps

Wupout
Width of the output

feature maps
Kc

Size of the
convolution kernel

Nk
Numbers of

convolution kernel Hpout
Height of the output

feature maps
Hupout

Height of the
output feature maps

Sc Sliding step

BIAS Bias Kp
Size of the pooling

windows Kup
Size of the

pooling windows

Pooling layer. The pooling layer is usually located after the CONV layer. It aims to reduce the
amount of calculation and control overfitting. The pooling operation is applied to each input feature map
separately. This means that the input and output of the pooling layer have the same number of feature
maps. The operations between different feature maps are independent of each other. In the SegNet model,
maximum pooling is used.

Unpooling layer. The unpooling layer is the inverse operation of the pooling layer. The unpooling
layers output the feature maps with the same resolution as the corresponding pooling layer according to
the pooling index address. Each unpooling operation places the input feature at the position corresponding
to the pooled index address and fills other positions with 0. Similarly, the unpooling operation is applied
to each input feature map independently.

The computing characteristics of each computing layer in SegNet also determine the strategy for
hardware implementation on the FPGA. For the convolutional layers, we can see that the main operation
of Figure 2 is multiply–accumulate. Moreover, the convolution operation is independent between different
input feature maps (different Ccin) and different convolution kernels (different Nk). Such an operation
structure is highly suitable for parallel computing acceleration. The main operations of the pooling
and unpooling layers are comparison and reorder, so it is suitable for designing an efficient pipeline to
accelerate the operations. Considering that operations in the pooling layers and the unpooling layers are
independent between different feature maps, parallel multi-threading can be used for acceleration.



Sensors 2020, 20, 3969 6 of 18

Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 

 

// Convolution layer; while (w * S + j)< Wcin && (h * S + i)< Hcin

for (n = 0; n < Nk; n++) do
for (h = 0; h < Hcout; h++) do

for (w = 0; w < Wcout; w++) do
for (c = 0; c < Ccin; c++) do

for (i = 0; i < Kc; j++) do
for (j = 0; j < Kc; j++) do

OUT[n][h][w] += IN[c][h * S + i][w * S + j] * WEIGHTS[n][c][i][j] + BIAS[n];
end

end
end

end
end

end

// Pooling layer; while (w * Kp + j)< Wpin && (h * Kp + i)< Hpin
for (c = 0; c < Cpin; c++) do
for (h = 0; h < Hpout; h++) do
for (w = 0; w < Wupout; w++) do
for (i = 0; i < Kp; j++) do
for (j = 0; j < Kp; j++) do
OUT[c][h][w] = max{IN[c][h * Kp + i][w * Kp + j]};

end
end

end
end

end

// Unpooling layer; while (w * Kup + j)< Wupout && (h * Kup + i)< Hupout
for (c = 0; c < Cupin; c++) do
for (h = 0; h < Hupin; h++) do
for (w = 0; w < Wupin; w++) do
for (i = 0; i < Kup; j++) do
for (j = 0; j < Kup; j++) do
if (INDEX[c][h][w] = (h * Kup + i) * Wupout + (w * Kup + j)) do
OUT[c][h * Kup + i][w * Kup + j] = IN[c][h][w];

end
else do
OUT[c][h * Kup + i][w * Kup + j] = 0;

end
end

end
end

end
end

 
Figure 2. Code description of convolutional, pooling, and unpooling layers. 

4. Overall Architecture Design 

Here, we first introduce the FPGA development process based on OpenCL, which can be 
divided into two parts: the host and the device. The Host mainly runs OpenCL-based context and 
command queue management and controls all memory data transmission and kernel execution 
queues. Generally, users need to build the host programming code that is complied with the OpenCL 
development specification to call the corresponding OpenCL API (Application Programming 
Interface) to control the devices. The device side, or FPGA board, is mainly used for kernels execution 
and pipeline control. The user should get the FPGA executing image that is finally used for FPGA by 
undertaking code building, FPGA compilation and synthesis, and simulation and debugging of the 
kernels in the OpenCL development environment. The image can be used to configure the FPGA to 
deploy the kernels and corresponding component functions. 

To implement the deployment of SegNet in FPGA, EDSSA uses the overall architecture shown 
in Figure 3 based on OpenCL. The function execution is mainly realized by the kernels on-chip. The 
data storage is divided into two parts: on-chip memory and off-chip memory. These are used to store 
the features and parameters required or generated at different stages of the kernel execution process. 

Host

Chip
FPGA Core

Off-chip memory
DDRAM

PCIE

DDRAM Interface

FPGA Board

Kernel source code
(.cl)

Host source code
(.c or .cpp)

Host compiler

FPGA development 
tools for OpenCL

FPGA Compiler for 
OpenCL

Executable 
program

(.exe or .o)
FPGA image

Program queue 
execution

Convolution

Pooling

Unpooling

Parameter Read Buffer

Features Write Buffer Indices Write Buffer

Indices Read Buffer

C_F

C_F

C_F

Features Read Buffer

Ping buffer

Pooling Indices B
uffers

Pong buffer

Parameter Buffer

Off-chip memory On-chip memory kernel C_F Data flow controller

Features flow Indices flow

C_F

On-chip Pipe model: 00
10

01
11

C_F

FPGA 
programming

C_F

C_F

 

Figure 3. FPGA development process for OpenCL and Encoder-Decoder semantic segmentation 
networks accelerator (EDSSA) overall architecture. 

Figure 2. Code description of convolutional, pooling, and unpooling layers.

4. Overall Architecture Design

Here, we first introduce the FPGA development process based on OpenCL, which can be divided into
two parts: the host and the device. The Host mainly runs OpenCL-based context and command queue
management and controls all memory data transmission and kernel execution queues. Generally, users need
to build the host programming code that is complied with the OpenCL development specification to call
the corresponding OpenCL API (Application Programming Interface) to control the devices. The device
side, or FPGA board, is mainly used for kernels execution and pipeline control. The user should get the
FPGA executing image that is finally used for FPGA by undertaking code building, FPGA compilation
and synthesis, and simulation and debugging of the kernels in the OpenCL development environment.
The image can be used to configure the FPGA to deploy the kernels and corresponding component functions.

To implement the deployment of SegNet in FPGA, EDSSA uses the overall architecture shown in
Figure 3 based on OpenCL. The function execution is mainly realized by the kernels on-chip. The data
storage is divided into two parts: on-chip memory and off-chip memory. These are used to store the
features and parameters required or generated at different stages of the kernel execution process.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 

 

// Convolution layer; while (w * S + j)< Wcin && (h * S + i)< Hcin

for (n = 0; n < Nk; n++) do
for (h = 0; h < Hcout; h++) do

for (w = 0; w < Wcout; w++) do
for (c = 0; c < Ccin; c++) do

for (i = 0; i < Kc; j++) do
for (j = 0; j < Kc; j++) do

OUT[n][h][w] += IN[c][h * S + i][w * S + j] * WEIGHTS[n][c][i][j] + BIAS[n];
end

end
end

end
end

end

// Pooling layer; while (w * Kp + j)< Wpin && (h * Kp + i)< Hpin
for (c = 0; c < Cpin; c++) do
for (h = 0; h < Hpout; h++) do
for (w = 0; w < Wupout; w++) do
for (i = 0; i < Kp; j++) do
for (j = 0; j < Kp; j++) do
OUT[c][h][w] = max{IN[c][h * Kp + i][w * Kp + j]};

end
end

end
end

end

// Unpooling layer; while (w * Kup + j)< Wupout && (h * Kup + i)< Hupout
for (c = 0; c < Cupin; c++) do
for (h = 0; h < Hupin; h++) do
for (w = 0; w < Wupin; w++) do
for (i = 0; i < Kup; j++) do
for (j = 0; j < Kup; j++) do
if (INDEX[c][h][w] = (h * Kup + i) * Wupout + (w * Kup + j)) do
OUT[c][h * Kup + i][w * Kup + j] = IN[c][h][w];

end
else do
OUT[c][h * Kup + i][w * Kup + j] = 0;

end
end

end
end

end
end

 
Figure 2. Code description of convolutional, pooling, and unpooling layers. 

4. Overall Architecture Design 

Here, we first introduce the FPGA development process based on OpenCL, which can be 
divided into two parts: the host and the device. The Host mainly runs OpenCL-based context and 
command queue management and controls all memory data transmission and kernel execution 
queues. Generally, users need to build the host programming code that is complied with the OpenCL 
development specification to call the corresponding OpenCL API (Application Programming 
Interface) to control the devices. The device side, or FPGA board, is mainly used for kernels execution 
and pipeline control. The user should get the FPGA executing image that is finally used for FPGA by 
undertaking code building, FPGA compilation and synthesis, and simulation and debugging of the 
kernels in the OpenCL development environment. The image can be used to configure the FPGA to 
deploy the kernels and corresponding component functions. 

To implement the deployment of SegNet in FPGA, EDSSA uses the overall architecture shown 
in Figure 3 based on OpenCL. The function execution is mainly realized by the kernels on-chip. The 
data storage is divided into two parts: on-chip memory and off-chip memory. These are used to store 
the features and parameters required or generated at different stages of the kernel execution process. 

Host

Chip
FPGA Core

Off-chip memory
DDRAM

PCIE

DDRAM Interface

FPGA Board

Kernel source code
(.cl)

Host source code
(.c or .cpp)

Host compiler

FPGA development 
tools for OpenCL

FPGA Compiler for 
OpenCL

Executable 
program

(.exe or .o)
FPGA image

Program queue 
execution

Convolution

Pooling

Unpooling

Parameter Read Buffer

Features Write Buffer Indices Write Buffer

Indices Read Buffer

C_F

C_F

C_F

Features Read Buffer

Ping buffer

Pooling Indices B
uffers

Pong buffer

Parameter Buffer

Off-chip memory On-chip memory kernel C_F Data flow controller

Features flow Indices flow

C_F

On-chip Pipe model: 00
10

01
11

C_F

FPGA 
programming

C_F

C_F

 

Figure 3. FPGA development process for OpenCL and Encoder-Decoder semantic segmentation 
networks accelerator (EDSSA) overall architecture. 

Figure 3. FPGA development process for OpenCL and Encoder-Decoder semantic segmentation networks
accelerator (EDSSA) overall architecture.



Sensors 2020, 20, 3969 7 of 18

4.1. Configurable Pipes and Layer Connections

EDSSA realizes different layer connection modes through configurable data flow pipes and layer
connections, which realizes non-blocking data flow between the kernels. If using off-chip global memory
as a reference, a sub-process for reading, calculating, and storing feature data can be described as:

off-chip global memory (input features, parameters, or pooling indices)→ on-chip cache buffers→
convolution kernel→ data pipes→ pooling or unpooling kernel (if needed)→ data pipes→ on-chip cache
buffers→ off-chip global memory (output features or pooling indices).

In order to adapt to the structure of SegNet shown in Figure 1, there are four kinds of sub-process
modes designed to configure data flow pipes and layer connections:

• C_F = 00: off-chip global memory (input features and parameters) → on-chip cache buffers →
convolution kernel→ data pipes→ on-chip cache buffers→ off-chip global memory (output features);

• C_F = 01: off-chip global memory (input features and parameters) → on-chip cache buffers →
convolution kernel→ data pipes→ pooling kernel→ data pipes→ on-chip cache buffers→ off-chip
global memory (output features and pooling indices);

• C_F = 10: off-chip global memory (input features, parameters, and pooling indices)→ on-chip cache
buffers→ convolution kernel→ data pipes→ unpooling kernel→ data pipes→ on-chip cache buffers
→ off-chip global memory (output features);

• C_F = 11: off-chip global memory (input features, parameters, and pooling indices)→ on-chip cache
buffers→ convolution kernel→ data pipes→ pooling kernel→ data pipes→ unpooling kernel→
data pipes→ on-chip cache buffers→ off-chip global memory (output features).

These four modes are controlled by Data Flow Controller Flag (C_F) to configure the kernel to be
executed and select the data pipes for data transmission. The sub-processes of these four modes share
the same cache, data transmission component, and convolution kernel, and the difference is whether
the convolution kernel is connected to the pooling or unpooling kernel and the data pipes used for data
transmission. The entire network structure of SegNet can be realized through the combination of these four
modes of sub-processes. If C_F is used to represent the sub-process mode, the combination of sub-processes
that implement SegNet is: 00-01-00-01-00-00-01-00-00-01-00-00-11-00-00-10- 00-00-10-00-00-10-00-10-00-00.

The framework of EDSSA has the advantages as follows: (a) When executing each sub-process, we can
ensure that each core is executed at most once, so as to ensure that there is no contention for the same kernel
hardware, thus, ensuring that the entire sub-process is not blocked. (b) The same hardware component
will be used when performing the same kernel function in different sub-processes. It reduces the hardware
resource overhead on the FPGA chip. (c) Adoption of the FIFO (First Input First Output)-based pipe design
means all data is transmitted on-chip during a sub-process, which greatly reduces the transmission delay
and improves the overall throughput rate. (d) Only a simple 2-bit control word C_F can control all modes
of the sub-process.

4.2. Kernels Design

EDSSA has three OpenCL kernels for completing the three calculation layers of SegNet: the convolution
kernel, pooling kernel, and unpooling kernel. The convolution kernel contains all of the functional
components and computing units required to implement the convolutional, BN, and RELU layers.
The pooling kernel and unpooling kernel complete all of the computing units required by the pooling
layer and unpooling layer, respectively.

Convolution kernel. As shown in Figure 4a, the core of the convolution kernel is a three-dimensional
array of multiply–accumulate units, which contains C ×N ×Kc/4 units. Each unit is completed by a 4-input
8-bit × 8-bit high-efficiency multiply–accumulate MAC (Multiply Accumulate) IP core. The input of this



Sensors 2020, 20, 3969 8 of 18

array is the input features and weights of the corresponding two-dimensional convolution operation,
and the output result is the partial sum. The parallelism of the array calculation depends on C × N.
A higher C ×N means a higher calculation throughput rate and a higher calculation and transmission cost.
The parallel accumulators and shift register groups are connected behind the array, which is used to buffer
the partial sum, and finally outputs the complete sum. Then, the output values go through operations
such as quantization, accumulating bias, and RELU. Finally, the output leaves the kernel through the data
pipes selected by the control word C_F and is transferred to the next stage.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 17 

 

and a higher calculation and transmission cost. The parallel accumulators and shift register groups 
are connected behind the array, which is used to buffer the partial sum, and finally outputs the 
complete sum. Then, the output values go through operations such as quantization, accumulating 
bias, and RELU. Finally, the output leaves the kernel through the data pipes selected by the control 
word C_F and is transferred to the next stage. 

Data_Pipe

Weight_Pipe

Bias_Pipe

Frac_Pipe

Shift Register

... ACC
Quantization 

& Bias 
& RELU

Output?

+ 01_Data_0

10_Data_0

11_Data_0

00_Data_0C_F

4*8bit 
MAC

4*8bit 
MAC

...

C_SIZE/4

...

...

4*8bit 
MAC

...

MAC Array

4*8bit 
MAC

4*8bit 
MAC

4*8bit 
MAC ...

累
加
器
0

A
C
C

A
C
C

N

 
(a) 

Line_buf

max

Pool_shift_ Reg[2]

max

Pooling Index

Output?

01_Data_0

11_Data_0

C_F

reg

C_F

C_F

01_Index_0

11_Index_0

01_Data_1

11_Data_1

 
(b) 

featere

Line_buf_0[ping]

Line_buf_1[ping]

index

10_Data_0

11_Data_1

C_F

10_Index_0

11_Index_0
C_F

...

...

0

C_F

10_Data_1

11_Data_2

0

0

2
2

Line_buf_0[pong]

Line_buf_1[pong]

...

...

1x clock

0 1 2 3

2x clock4x clock

 
(c) 

Figure 4. Architecture of kernels in EDSSA. (a) Convolution kernel; (b) pooling kernel; (c) unpooling 
kernel. 

Pooled kernel. As shown in Figure 4b, the core of the pooling kernel is a set of efficient pipelines 
based on register sets. The input features are imported by the data pipes and then compared with the 
corresponding feature stored in the row register. Then, the bigger one is compared with the feature 
stored in the column register until the largest feature value in the pooling window is obtained. 
Finally, the output leaves the kernel through the data pipes selected by the control word C_F and 
transferred to the next stage. Considering that the pooling operation is independent between the 
different feature maps, multi-threaded pipelines are used to improve the core throughput with the 
parallelism as N. 

Unpooling kernel. As shown in Figure 4c, the core of the unpooling kernel is a set of efficient 
pipelines based on register sets with different clock domains. A line register set based on a ping-pong 
operation is designed to achieve feature filling and output at the same time. The input features and 
the corresponding pooling indices are imported by the data pipes with a 4× clock domain. The 
features will be stored in the line registers with a 2× clock domain by the corresponding address 
according to the value of the pooling indices. The remainder of the registers corresponding to other 
addresses of the unpooling window will be filled with 0. At the same time, another set of line registers 
that has been filled will export the output features in the new maps with a 1× clock domain. Finally, 
the output will leave the kernel through the data pipes. As for the pooling kernel, the unpooling 
kernel also uses multi-threaded pipelines with a parallelism of N. 

4.3. Memory Access Design 

Figure 4. Architecture of kernels in EDSSA. (a) Convolution kernel; (b) pooling kernel; (c) unpooling kernel.

Pooled kernel. As shown in Figure 4b, the core of the pooling kernel is a set of efficient pipelines
based on register sets. The input features are imported by the data pipes and then compared with the
corresponding feature stored in the row register. Then, the bigger one is compared with the feature stored
in the column register until the largest feature value in the pooling window is obtained. Finally, the output
leaves the kernel through the data pipes selected by the control word C_F and transferred to the next stage.
Considering that the pooling operation is independent between the different feature maps, multi-threaded
pipelines are used to improve the core throughput with the parallelism as N.

Unpooling kernel. As shown in Figure 4c, the core of the unpooling kernel is a set of efficient pipelines
based on register sets with different clock domains. A line register set based on a ping-pong operation is
designed to achieve feature filling and output at the same time. The input features and the corresponding
pooling indices are imported by the data pipes with a 4× clock domain. The features will be stored in the
line registers with a 2× clock domain by the corresponding address according to the value of the pooling



Sensors 2020, 20, 3969 9 of 18

indices. The remainder of the registers corresponding to other addresses of the unpooling window will
be filled with 0. At the same time, another set of line registers that has been filled will export the output
features in the new maps with a 1× clock domain. Finally, the output will leave the kernel through the
data pipes. As for the pooling kernel, the unpooling kernel also uses multi-threaded pipelines with a
parallelism of N.

4.3. Memory Access Design

Due to the large number of features and parameters during SegNet processing, it is impossible to
store all data on-chip during each sub-pipeline process. Therefore, EDSSA stores the feature maps and
parameters of each sub-process in the off-chip large-capacity global memory. At the beginning of each
sub-process, the memory access controller reads a part of the input features and parameters into the
on-chip cache RAM (Random Access Memory) according to the designed reading mode and then transmits
it into the kernel through the data pipes. The off-chip memory adopts the ping-pong design to store the
input and output feature maps separately, which aims to improve the system throughput rate. In addition,
the parameters stored by the on-chip RAM will be shared in the convolution kernel to calculate different
output characteristics. It can reduce the delay caused by data transmission. We also use the vectorized
data structures for data storage and transmission to ensure that more features and parameters can be
transmitted into the array at the same time in a calculation cycle, which leads to a higher system throughput
rate. The vectorization dimension mainly depends on C and N.

5. Design Space Exploration and Optimization

5.1. Design Space Exploration

The purpose of design space exploration is to balance the performance and hardware resource
consumption of the FPGA accelerator. In EDSSA, the design space exploration is implemented by
changing the value of C and N. These two parameters not only determine the throughput rate of the
multiply–accumulate array but also affect the data structure of the input and output features and the
number of threads in pooling and unpooling kernels. In addition, a higher value of C and N means a
higher data vectorization dimension with more resource consumption. EDSSA adopts the vector structure
shown in Figure 5 for features, weights, and bias. The size of the parameters C and N is equal to the
parallelism C and N of the multiply–accumulate array. Each time the multiply–accumulate array is operated,
the controller first copies N identical C-dimensional vectorized features to obtain the C × N-dimensional
vectorized features, and then the C × N-dimensional vectorized features and the C × N-dimensional
vectorized weights are imported into the array to be computed. Finally, an N-dimensional vectorized
output is obtained. The feature vector will adopt an N-dimensional structure when quantizing, pooling,
and unpooling.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 17 

 

Due to the large number of features and parameters during SegNet processing, it is impossible 
to store all data on-chip during each sub-pipeline process. Therefore, EDSSA stores the feature maps 
and parameters of each sub-process in the off-chip large-capacity global memory. At the beginning 
of each sub-process, the memory access controller reads a part of the input features and parameters 
into the on-chip cache RAM (Random Access Memory) according to the designed reading mode and 
then transmits it into the kernel through the data pipes. The off-chip memory adopts the ping-pong 
design to store the input and output feature maps separately, which aims to improve the system 
throughput rate. In addition, the parameters stored by the on-chip RAM will be shared in the 
convolution kernel to calculate different output characteristics. It can reduce the delay caused by data 
transmission. We also use the vectorized data structures for data storage and transmission to ensure 
that more features and parameters can be transmitted into the array at the same time in a calculation 
cycle, which leads to a higher system throughput rate. The vectorization dimension mainly depends 
on C and N. 

5. Design Space Exploration and Optimization 

5.1. Design Space Exploration 

The purpose of design space exploration is to balance the performance and hardware resource 
consumption of the FPGA accelerator. In EDSSA, the design space exploration is implemented by 
changing the value of C and N. These two parameters not only determine the throughput rate of the 
multiply–accumulate array but also affect the data structure of the input and output features and the 
number of threads in pooling and unpooling kernels. In addition, a higher value of C and N means a 
higher data vectorization dimension with more resource consumption. EDSSA adopts the vector 
structure shown in Figure 5 for features, weights, and bias. The size of the parameters C and N is 
equal to the parallelism C and N of the multiply–accumulate array. Each time the multiply–
accumulate array is operated, the controller first copies N identical C-dimensional vectorized features 
to obtain the C × N-dimensional vectorized features, and then the C × N-dimensional vectorized 
features and the C × N-dimensional vectorized weights are imported into the array to be computed. 
Finally, an N-dimensional vectorized output is obtained. The feature vector will adopt an N-
dimensional structure when quantizing, pooling, and unpooling. 

1

0

3 1

02

K+1

K

0 1 2 3 0 1 K K+1

C C*N

N

Wcin

Hcin

Ccin

Input Feature Map Weights kernels

0 K

0 K

N

Output Feature Map

 

Figure 5. Vectorized data structure. 

When exploring the impact of parallelism on the system design space, we use the parameter 
declarations in Table 1. First, we assume that all kernels of the system use the same clock unit with 
the multiply–accumulate array to complete a calculation. No blocking exists in the system pipeline 
in one clock cycle. The array can complete all of the C × N multiply–accumulate operations within 
each clock. In this assumption, we know that the number of clocks corresponding to completing a 
sub-process can be expressed as: 𝑁𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 𝑊𝑐𝑜𝑢𝑡 ∗ 𝐻𝑐𝑜𝑢𝑡 ∗ 𝑁𝑘 ∗ (𝐾𝑐 ∗ 𝐾𝑐 ∗ 𝐶𝑐𝑖𝑛 + 1) (1) 

Then the number of clocks required is: 

𝑁𝑐𝑙𝑘 = 𝑁𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶 ∗ 𝑁 = 𝑊𝑐𝑜𝑢𝑡 ∗ 𝐻𝑐𝑜𝑢𝑡 ∗ 𝑁𝑘 ∗ (𝐾𝑐 ∗ 𝐾𝑐 ∗ 𝐶𝑐𝑖𝑛 + 1)𝐶 ∗ 𝑁  (2) 

Figure 5. Vectorized data structure.



Sensors 2020, 20, 3969 10 of 18

When exploring the impact of parallelism on the system design space, we use the parameter
declarations in Table 1. First, we assume that all kernels of the system use the same clock unit with the
multiply–accumulate array to complete a calculation. No blocking exists in the system pipeline in one
clock cycle. The array can complete all of the C ×N multiply–accumulate operations within each clock.
In this assumption, we know that the number of clocks corresponding to completing a sub-process can be
expressed as:

Ncompute = Wcout ∗Hcout ∗Nk ∗ (Kc ∗Kc ∗Ccin + 1) (1)

Then the number of clocks required is:

Nclk =
Ncompute

C ∗N
=

Wcout ∗Hcout ∗Nk ∗ (Kc ∗Kc ∗Ccin + 1)
C ∗N

(2)

Thus, increasing C × N can reduce the clock cycle required by the sub-process. However,
simply increasing C or N may not achieve better utilization of hardware resources. The effect of
increasing C on the design space is:

(a) Increasing the number of multiply-accumulate units;
(b) Increasing the vectorized data bit width of the input features and weights.
(c) For N:

(a) Increasing the multiply-accumulate unit;
(b) Increasing the vectorized data bit width of the weights and bias;
(c) Increasing the number of threads in pooling and unpooling kernel.

(d) Therefore, increasing C or N may result in:

(a) Double the consumption of computing logic resources;
(b) Higher data transmission and storage costs;
(c) Higher timing requirements to meet data synchronization.

In order to achieve the optimal hardware utilization with the specific FPGA device, it is necessary to
find the most suitable C and N by design space exploration.

SegNet has an excellent performance in semantic segmentation applications with the well-designed
network architecture for a full set of processes including training and inference. However, for network
deployment on edge devices, it is more important to implement efficient inference implementation.
Some algorithm processes that focus on achieving better performance in the training process can be
optimized during inference. Therefore, EDSSA optimizes the algorithm flow and quantizes the data for
reducing the complexity of the algorithm and hardware overhead while maintaining a certain accuracy
of segmentation.

5.2. Algorithm Flow Optimization

EDSSA, like most CNN accelerators, focuses on solving the acceleration of the inference process of
neural networks on FPGA terminals. Therefore, EDSSA discards the softmax layer, merges convolution
and BN operations, and uses relative pooling indices addresses instead of the global one. These steps are
described as follows:

Discard the softmax layer: The softmax layer is discarded for the following reasons. First,
the mathematical function of the softmax is a kind of normalization algorithm to count the segmentation
probability of the output pixels. It does not change the statistical results of the output feature map. Second,



Sensors 2020, 20, 3969 11 of 18

the softmax layer is used only once in the algorithm. Therefore, it is wasteful to sacrifice precious on-chip
computing resources to realize the softmax layer, considering that EDSSA is based on the OpenCL that can
reasonably allocate and manage command execution on the host and devices. Therefore, we abandon the
on-chip deployment of the softmax layer and deploy it to the host for implementation.

Merging convolution and BN operations: The mathematical operations of convolution operations
(Formula (3)) and BN operations (Formula (4)) are both multiply–accumulate. Therefore, EDSSA simplifies
the algorithm flow by merging convolution and BN operations (Formula (5)). Through parameter
preprocessing, α·WEIGHTS and α·BIAS + β in Equation (5) can be regarded as two new parameters
equivalent to WEIGHTS′ and BIAS′, and participate in the convolution operation. Merging convolution
and BN has the following benefits:

(a) Simplify the algorithm flow while retaining the accuracy of the calculation results;
(b) Reduce the number of pipeline stages and save the hardware overhead required for BN operations;
(c) Reduce the number of quantization and the system quantization accuracy loss.

OUTPUT_conv =
∑

(Kc, Kc)

WEIGHTS·INPUT + BIAS (3)

OUTPUT_bn = α·OUTPUT + β (4)

output_bn =
∑

(Kc, Kc)

(α·WEIGHTS)·INPUT + (α·BIAS + β) (5)

Using relative pooling index addresses: SegNet uses 32-bit floating-point global addresses to store
the corresponding pooling index in the caffe [30]-based training and inference. On the one hand,
32-bit floating-point addresses use more hardware resources for transmission and storage. On the other
hand, the feature map space information contained in the global address is redundant for the unpooling
process. The spatial information of a specific feature in a feature map is correlated with the number
of pipeline clock cycles of the unpooling kernel. This means once we have the relative position of the
unpooling window in the specified cycle, the unpooling kernel can place the feature correctly. Therefore,
EDSSA uses 2-bit fixed-point relative pooled index addresses as shown in Figure 6. Thus, a significant
amount of storage space is saved for indices addresses, while simplifying the hardware overhead of
address generation.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 

 

𝑂𝑈𝑇𝑃𝑈𝑇_𝑐𝑜𝑛𝑣 =  𝑊𝐸𝐼𝐺𝐻𝑇𝑆(,) ⋅ 𝐼𝑁𝑃𝑈𝑇 + 𝐵𝐼𝐴𝑆 (3) 

𝑂𝑈𝑇𝑃𝑈𝑇_𝑏𝑛 = 𝛼 ⋅ 𝑂𝑈𝑇𝑃𝑈𝑇 + 𝛽 (4) 

𝑜𝑢𝑡𝑝𝑢𝑡_𝑏𝑛 =  (𝛼 ⋅ 𝑊𝐸𝐼𝐺𝐻𝑇𝑆)(,) ⋅ 𝐼𝑁𝑃𝑈𝑇 + (𝛼 ⋅ 𝐵𝐼𝐴𝑆 + 𝛽) (5) 

Using relative pooling index addresses: SegNet uses 32-bit floating-point global addresses to 
store the corresponding pooling index in the caffe [30]-based training and inference. On the one hand, 
32-bit floating-point addresses use more hardware resources for transmission and storage. On the 
other hand, the feature map space information contained in the global address is redundant for the 
unpooling process. The spatial information of a specific feature in a feature map is correlated with 
the number of pipeline clock cycles of the unpooling kernel. This means once we have the relative 
position of the unpooling window in the specified cycle, the unpooling kernel can place the feature 
correctly. Therefore, EDSSA uses 2-bit fixed-point relative pooled index addresses as shown in Figure 
6. Thus, a significant amount of storage space is saved for indices addresses, while simplifying the 
hardware overhead of address generation. 

19 20 23 22

20 21 22 21

21 21 22 26

25 24 23 24

Pooling Input Feature Map
Pooling window size: 2*2

21 23

25 26

Pooling Output 
Feature Map

5 2 12 11

Global address: 32-bits float
 caffe

0 0 38 0

0 43 0 0

0 0 0 35

29 0 0 0

Upsampling Output Feature Map
Upsampling window size: 2*2

43 38

29 35

Upsampling Input 
Feature Map

11 00 10 01

Relative address: 2-bits fixed
 SegHNN

Pooling Indices

 
Figure 6. Global and Relative Pooling indices. 

5.3. Quantization 

The purpose of fixed-point quantization is to compress the bit width, and reduce the hardware 
resource costs of data calculation and transmission. However, fixed-point quantization and lowering 
the bit width will cause a loss of calculation accuracy. In the worst case, it may lead to erroneous 
calculation results. Considering that the SegNet network is a computational and storage-intensive 
algorithm, a suitable fixed-point quantization strategy can significantly reduce hardware resource 
consumption and increase system processing speed. In EDSSA, we perform N-bit fixed-point linear 
quantization on all the features and parameters [31]. The quantization can be described by Formulas 
(6) to (9). 

(a) Arrange input 𝑥 in absolute value, and find the maximum: |𝑀𝑎𝑥| = 𝑚𝑎𝑥൫𝑎𝑏𝑠(𝑥)൯ (6) 

(b) Get the fractional bit: 

𝑓௫ = 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔ଶ |𝑀𝑎𝑥|2ேିଵ − 1) (7) 

(c) For each 𝑥 element of input, set: 𝑥ᇱ = 𝑟𝑜𝑢𝑛𝑑൫𝑥 ∗ 2ିೣ  ൯ (8) 

(d) Bit truncation. Limit 𝑥ᇱ to N bits: 

Figure 6. Global and Relative Pooling indices.

5.3. Quantization

The purpose of fixed-point quantization is to compress the bit width, and reduce the hardware
resource costs of data calculation and transmission. However, fixed-point quantization and lowering the
bit width will cause a loss of calculation accuracy. In the worst case, it may lead to erroneous calculation
results. Considering that the SegNet network is a computational and storage-intensive algorithm, a suitable
fixed-point quantization strategy can significantly reduce hardware resource consumption and increase



Sensors 2020, 20, 3969 12 of 18

system processing speed. In EDSSA, we perform N-bit fixed-point linear quantization on all the features
and parameters [31]. The quantization can be described by Formulas (6) to (9).

(a) Arrange input xi in absolute value, and find the maximum:

|Max| = max(abs(xi)) (6)

(b) Get the fractional bit:

fxi = ceil(log2
|Max|

2N−1 − 1
) (7)

(c) For each xi element of input, set:

x′i = round
(
xi ∗ 2− fxi

)
(8)

(d) Bit truncation. Limit x′i to N bits:

x′j =


2M−1

− 1, x′j > 2M−1
− 1

−2M−1, x′j < −2M−1

x′j,−2M−1
≤ x′j ≤ 2M−1

(9)

In addition, EDSSA performs a dynamic M-bit fixed-point quantization on each output result of the
multiply–accumulate array because multiplication doubles the bit width of the data, which means that for
different convolutional layers and different feature maps in one convolutional layer, the quantization bit
width is N bits, but the fractional bit is different. The purpose of using dynamic fixed-point quantization is
to reduce accuracy loss. The quantization is represented by x j = (−1)s

·

(∑M−2
i=0 2i

·mi
)
·2− f j , where S is the

sign bit, M is the quantization bit width, mi is the mantissa, and f j is the fractional bit. f j can be obtained
by the network training process.

6. Results

We used the development tool based on an Intel FPGA SDK for OpenCL pro 17.1 to implement
the development of EDSSA. The hardware platform is HERO [32], a heterogeneous platform that can be
deployed on medium-sized robots. The host uses a CPU system based on an Intel i5-7260U, and the device
uses an FPGA board based on an Intel Arria-10 GX1150 connected with the host by PCIE 3.0 x8. The SegNet
model is trained based on the PASCAL VOC 2012 dataset [33], and dynamic fixed-point quantization is
performed. The input image is an RGB image with a resolution of 224 × 224. The calculation methods of
throughput and energy efficiency are given in [34].

6.1. Quantization

In order to determine the optimal quantization strategy, we explored the effect of different quantization
bit widths M on algorithm accuracy. In caffe, 32-bit floating-point data is used for network training and
inference, and the final global accuracy, class accuracy, and mIoU(Mean Intersection over Union) are
82.80%, 62.30%, and 46.30%, respectively. Based on this model, we used the proposed quantization strategy
in the inference process of SegNet-Basic [16] with the data set of CamVid at 480 × 360 resolution, and the
results obtained are given in Figure 7. We can see that when the data is quantified with a bit width less
than 16 bits, the quantization error starts to appear and increases as the bit width decreases. Without the
dynamic quantization strategy, class accuracy and mIoU decrease significantly when the bit width is less
than 12 bits. However, the trend of accuracy declines after using dynamic quantization has obviously



Sensors 2020, 20, 3969 13 of 18

eased. This shows the necessity of the dynamic fixed-point quantization strategy in the low-bit width
quantization. In addition, even if dynamic quantization is performed, when the bit width is lower than
8 bits, the three accuracies are greatly reduced in value. The quantization accuracy losses of global accuracy,
class accuracy, and mIoU are 3.82%, 6.30%, and 4.78%, respectively.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 

 

𝑥ᇱ = ൞2ெିଵ − 1, 𝑥ᇱ > 2ெିଵ − 1 −2ெିଵ, 𝑥ᇱ < −2ெିଵ𝑥ᇱ, −2ெିଵ ≤ 𝑥ᇱ ≤ 2ெିଵ  (4) 

In addition, EDSSA performs a dynamic M-bit fixed-point quantization on each output result of 
the multiply–accumulate array because multiplication doubles the bit width of the data, which means 
that for different convolutional layers and different feature maps in one convolutional layer, the 
quantization bit width is N bits, but the fractional bit is different. The purpose of using dynamic fixed-
point quantization is to reduce accuracy loss. The quantization is represented by 𝑥 = (−1)௦ ⋅(∑ 2 ⋅ 𝑚ெିଶୀ ) ⋅ 2ିೕ, where S is the sign bit, M is the quantization bit width, 𝑚 is the mantissa, and 𝑓 is the fractional bit. 𝑓 can be obtained by the network training process. 

6. Result 

We used the development tool based on an Intel FPGA SDK for OpenCL pro 17.1 to implement 
the development of EDSSA. The hardware platform is HERO [32], a heterogeneous platform that can 
be deployed on medium-sized robots. The host uses a CPU system based on an Intel i5-7260U, and 
the device uses an FPGA board based on an Intel Arria-10 GX1150 connected with the host by PCIE 
3.0 x8. The SegNet model is trained based on the PASCAL VOC 2012 dataset [33], and dynamic fixed-
point quantization is performed. The input image is an RGB image with a resolution of 224 × 224. The 
calculation methods of throughput and energy efficiency are given in [34]. 

6.1. Quantization 

In order to determine the optimal quantization strategy, we explored the effect of different 
quantization bit widths M on algorithm accuracy. In caffe, 32-bit floating-point data is used for 
network training and inference, and the final global accuracy, class accuracy, and mIoU(Mean 
Intersection over Union) are 82.80%, 62.30%, and 46.30%, respectively. Based on this model, we used 
the proposed quantization strategy in the inference process of SegNet-Basic [16] with the data set of 
CamVid at 480 × 360 resolution, and the results obtained are given in Figure 7. We can see that when 
the data is quantified with a bit width less than 16 bits, the quantization error starts to appear and 
increases as the bit width decreases. Without the dynamic quantization strategy, class accuracy and 
mIoU decrease significantly when the bit width is less than 12 bits. However, the trend of accuracy 
declines after using dynamic quantization has obviously eased. This shows the necessity of the 
dynamic fixed-point quantization strategy in the low-bit width quantization. In addition, even if 
dynamic quantization is performed, when the bit width is lower than 8 bits, the three accuracies are 
greatly reduced in value. The quantization accuracy losses of global accuracy, class accuracy, and 
mIoU are 3.82%, 6.30%, and 4.78%, respectively. 

     

(a)      (b)       (c) 

Figure 7. Accuracy with different quantization strategy. (a) global accuracy; (b) class accuracy; (c) mIoU. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

6 8 10 12 16 20 24 28

gl
ob

al
 a

cc
ur

ac
y

Bitwidth w/o dynamic
dynamic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6 8 10 12 16 20 24 28
gl

ob
al

 a
cc

ur
ac

y

Bitwidth w/o dynamic
dynamic

0

0.1

0.2

0.3

0.4

0.5

6 8 10 12 16 20 24 28

m
Io

U

Bitwidth w/o dynamic
dynamic

Figure 7. Accuracy with different quantization strategy. (a) global accuracy; (b) class accuracy; (c) mIoU.

In summary, the quantization strategy used in EDSSA is 8-bit dynamic fixed-point quantization.
At this time, the quantization accuracy losses of global accuracy, class accuracy, and mIoU in SegNet
inference in the test set of PASCAL VOC 2012 are 0.8%, 1.1%, and 1.6%, respectively.

6.2. Runtime Performance

The main factor affecting the runtime of EDSSA is the design space parameters C and N. Figure 8a
shows the runtime of EDSSA with different C and N. When C × N is higher, the running speed of system
will be faster. This shows that a higher degree of computation and thread parallelism has a direct effect on
the speed of the accelerator. Moreover, the running speed increases exponentially when using a lower
degree of parallelism. However, for a high degree of parallelism, the speed improvement achieved slows
down, and there may even be no gains (such as C×N = 16× 32 and 16× 64). This means that there are other
factors that restrict the system speed. One of these is the clock frequency of the kernels. Figure 8b shows
the kernel clock frequency of EDSSA for different C and N. When a higher degree of parallelism C × N is
used, the kernel clock frequency tends to decrease. The higher the parallelism, the more obvious the drop
in clock frequency. This may be because the higher parallelism means higher data transmission timing
requirements and more pipeline threads, which may reduce the system clock. In addition, when using
the same C × N, choosing a larger C can achieve a faster running speed. This means that increasing C
(mainly to increase the bit width of the vectorized data of the input features and weight parameters)
compared to increasing N (mainly to increase the bit width of the vectorized data of the weight parameters
and the number of threads in the pipeline) has a smaller effect on reducing the speed of the system.

6.3. Hardware Resource Consumption

In order to explore the impact of design space on EDSSA hardware resource consumption, we tested
the DSP (Digital Signal Processing), RAM blocks, and logic utilization of FPGA cores under different C
and N. The relevant results are given in Figure 8c–e. It can be seen from the experimental results that the
DSP utilization rate is the same when using the same parallelism; if the parallelism is doubled, the DSP
consumption is also doubled. The results prove that DSP is mainly used to generate multiply–accumulate
unit arrays, and a higher C × N will exponentially increase the resource consumption of computing
components. In addition, for the Arria-10 GX1150 platform, when the parallelism C × N = 1024, the DSP



Sensors 2020, 20, 3969 14 of 18

utilization rate reaches 100%, which means that FPGA resources cannot support higher parallelism.
Analysis of RAM occupancy and logic utilization data shows that higher C ×N consumes more on-chip
storage and logic resources. In addition, choosing a larger C under the same C ×N requires fewer resources,
indicating that the resources occupied by increasing the number of threads for pipelines are higher than
the transmission and storage consumption of increasing the bit width of vectored data.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 17 

 

In summary, the quantization strategy used in EDSSA is 8-bit dynamic fixed-point quantization. 
At this time, the quantization accuracy losses of global accuracy, class accuracy, and mIoU in SegNet 
inference in the test set of PASCAL VOC 2012 are 0.8%, 1.1%, and 1.6%, respectively. 

6.2. Runtime Performance 

 
 

The main factor affecting the runtime of EDSSA is the design space parameters C and N. Figure 
8a shows the runtime of EDSSA with different C and N. When C × N is higher, the running speed of 
system will be faster. This shows that a higher degree of computation and thread parallelism has a 
direct effect on the speed of the accelerator. Moreover, the running speed increases exponentially 
when using a lower degree of parallelism. However, for a high degree of parallelism, the speed 
improvement achieved slows down, and there may even be no gains (such as C × N = 16 × 32 and 16 
× 64). This means that there are other factors that restrict the system speed. One of these is the clock 
frequency of the kernels. Figure 8b shows the kernel clock frequency of EDSSA for different C and N. 
When a higher degree of parallelism C × N is used, the kernel clock frequency tends to decrease. The 
higher the parallelism, the more obvious the drop in clock frequency. This may be because the higher 
parallelism means higher data transmission timing requirements and more pipeline threads, which 
may reduce the system clock. In addition, when using the same C × N, choosing a larger C can achieve 
a faster running speed. This means that increasing C (mainly to increase the bit width of the 
vectorized data of the input features and weight parameters) compared to increasing N (mainly to 
increase the bit width of the vectorized data of the weight parameters and the number of threads in 
the pipeline) has a smaller effect on reducing the speed of the system. 

 
(a)           (b) 

 
(c)       (d)       (e) 

Figure 8. Design space exploration results for EDSSA on the Arria-10 GX1150. (a) Runtime; (b) Frequency; 

(c) DSP utilization; (d) RAMs utilization; (e) Logic utilization. 

100

200

400

800

1600

3200

4 8 16 32 64

R
un

tim
e 

(m
s)

N

C=32

C=16

C=8

C=4

180

200

220

240

260

280

300

4 8 16 32 64

K
er

ne
l F

re
qu

en
cy

 (M
H

Z)
N

C=32
C=16
C=8
C=4

0

20

40

60

80

100

4 8 16 32 64

D
SP

 u
til

iz
at

io
n 

(%
)

N

C=32
C=16
C=8
C=4

0

20

40

60

80

100

4 8 16 32 64

R
A

M
su

til
iz

at
io

n 
(%

)

N

C=32
C=16
C=8
C=4

0

20

40

60

80

100

4 8 16 32 64

Lo
gi

cu
til

iz
at

io
n 

(%
)

N

C=32
C=16
C=8
C=4

Figure 8. Design space exploration results for EDSSA on the Arria-10 GX1150. (a) Runtime; (b) Frequency;
(c) DSP utilization; (d) RAMs utilization; (e) Logic utilization.

6.4. Throughput and Energy Efficiency Assessment

Through the evaluation of runtime and resource consumption, we obtained the best design space
under the Arria-10 GX1150 platform with a degree of parallelism C × N = 32 × 32. The test results can be
summarized in Table 2 and the output semantic segmentation results can be seen in Figure 9. Under the
optimal design, we used all DSP resources to implement the multiply–accumulate array, while consuming
63% of on-chip RAM blocks and 24% of the logic resources, and finally achieved a system throughput
rate of 432.8 GOP/s at the kernel clock frequency of 202 MHZ. Table 3 shows the comparison with other
platforms with SegNet.



Sensors 2020, 20, 3969 15 of 18

Table 2. Summary of EDSSA with best parallelism.

Device Resource Capacity Resource
Consumed Runtime (ms) Kernel Frequency

(MHz)
System Throughput

(GOP/s)

Arria-10 GX1150

Logic 427,200 Logic 101,955 (24%)

141.8 202.08 432.8
RAM blocks 2713 RAM blocks

1703 (63%)

DSP blocks 1518 DSP blocks
1515 (100%)

Sensors 2020, 20, x FOR PEER REVIEW 14 of 17 

 

6.3. Hardware Resource Consumption 

In order to explore the impact of design space on EDSSA hardware resource consumption, we 
tested the DSP (Digital Signal Processing), RAM blocks, and logic utilization of FPGA cores under 
different C and N. The relevant results are given in Figure 8c,d,f. It can be seen from the experimental 
results that the DSP utilization rate is the same when using the same parallelism; if the parallelism is 
doubled, the DSP consumption is also doubled. The results prove that DSP is mainly used to generate 
multiply–accumulate unit arrays, and a higher C × N will exponentially increase the resource 
consumption of computing components. In addition, for the Arria-10 GX1150 platform, when the 
parallelism C × N = 1024, the DSP utilization rate reaches 100%, which means that FPGA resources 
cannot support higher parallelism. Analysis of RAM occupancy and logic utilization data shows that 
higher C × N consumes more on-chip storage and logic resources. In addition, choosing a larger C 
under the same C × N requires fewer resources, indicating that the resources occupied by increasing 
the number of threads for pipelines are higher than the transmission and storage consumption of 
increasing the bit width of vectored data. 

6.4. Throughput and Energy Efficiency Assessment 

Through the evaluation of runtime and resource consumption, we obtained the best design 
space under the Arria-10 GX1150 platform with a degree of parallelism C × N = 32 × 32. The test results 
can be summarized in Table 2 and the output semantic segmentation results can be seen in Figure 9. 
Under the optimal design, we used all DSP resources to implement the multiply–accumulate array, 
while consuming 63% of on-chip RAM blocks and 24% of the logic resources, and finally achieved a 
system throughput rate of 432.8 GOP/s at the kernel clock frequency of 202 MHZ. 

Input RGBD 
Image

Ground 
Truth

EDSSA

FPGA

CPU
 

(a) (b) 

Figure 9. Platform and semantic segmentation result samples. (a) HERO [32]; (b) result. 

Table 2. Summary of EDSSA with best parallelism. 

Device Resource 
Capacity 

Resource 
Consumed 

Runtime 
(ms) 

Kernel 
Frequency 

(MHz) 

System 
Throughput 

(GOP/s) 

Arria-10 
GX1150 

Logic 
427,200 

Logic 101,955 
(24%) 

141.8 202.08 432.8 RAM blocks 
2713 

RAM blocks 
1703 (63%) 

DSP blocks 
1518 

DSP blocks 
1515 (100%) 

Table 1. Comparison with other platforms with SegNet. 

Platform Devices 

Typical 
Platform 

Power  
(W) 

Accelerator 
Power 

(W) 

Throughput 
(GOP/s) 

Energy-
Efficiency 
(GOP/J) 

Figure 9. Platform and semantic segmentation result samples. (a) HERO [32]; (b) result.

Table 3. Comparison with other platforms with SegNet.

Platform Devices Typical Platform Power
(W)

Accelerator Power
(W)

Throughput
(GOP/s)

Energy-Efficiency
(GOP/J)

CPU only Intel E3-1230 V2 70 69 19.0 0.28

CPU+GPU Intel E3-1230 V2 &
Nvidia GTX1080 70 + 180 173 2397.8 13.86

CPU+FPGA
HERO

(Intel Core i5 7260U &
Arria-10 GX1150)

15 + 25 26 432.8 16.65

7. Conclusions

In the future, semantic SLAM based on semantic segmentation network will be the key technology
for intelligent mobile robots to achieve autonomous motion. Considering that the hardware resources of
the embedded platform are limited, the solution of accelerating the semantic segmentation network in
the edge devices has become a top priority. In this paper, we show EDSSA, an accelerator framework for
semantic segmentation networks, which can be implemented with flexible parameter configurations and
hardware resources on the FPGA platforms that support OpenCL development. EDSSA achieved a system
throughput of 432.8 GOP/s and about 16.65 GOP/J based on the Intel Arria-10 GX1150 platform.

Author Contributions: Conceptualization, H.H., Y.W., M.Y. and F.Q.; data curation, H.H., Y.W. and M.Y.;
formal analysis, H.H.; funding acquisition, F.Q., Q.W. and X.L.; investigation, H.H. and Y.W.; methodology, H.H.,
Y.W., M.Y. and X.S.; project administration, F.Q. and L.L.; resources, X.S., F.Q., Q.W. and X.L.; software, M.Y., and X.S.;
supervision, F.Q. and L.L.; validation, Y.W. and X.S.; visualization, H.H.; writing-original draft, H.H.; Writing-review
& editing: Y.W. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge supports from National Key R&D Program of China under grant
No. 2018YFB1702500, and National Natural Science Foundation of China under grant No. 41871245. The authors
would also acknowledge support from Beijing Innovation Center for Future Chips, Tsinghua University.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2020, 20, 3969 16 of 18

References

1. Miyamoto, R.; Adachi, M.; Nakamura, Y.; Nakajima, T.; Ishida, H.; Kobayashi, S. Accuracy Improvement of
Semantic Segmentation Using Appropriate Datasets for Robot Navigation. In Proceedings of the 2019 6th
International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April
2019; pp. 1610–1615.

2. Kim, W.; Seok, J. Indoor Semantic Segmentation for Robot Navigating on Mobile. In Proceedings of the
International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018;
pp. 22–25.

3. Ramirez-Amaro, K.; Beetz, M.; Cheng, G. Understanding the intention of human activities through semantic
perception: Observation, understanding and execution on a humanoid robot. Adv. Robot. 2015, 29, 345–362.

4. Ha, Q.; Watanabe, K.; Karasawa, T.; Ushiku, Y.; Harada, T. MFNet: Towards real-time semantic segmentation for
autonomous vehicles with multi-spectral scenes. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 5108–5115.

5. Siam, M.; Gamal, M.; Abdel-Razek, M.; Yogamani, S.; Jagersand, M.; Zhang, H. A Comparative Study of Real-time
Semantic Segmentation for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 700–710.

6. Liu, T.R.; Stathaki, T. Faster R-CNN for Robust Pedestrian Detection Using Semantic Segmentation Network.
Front. Neurorobotics 2018, 12, 64. [CrossRef] [PubMed]

7. Milford, M.; Wyeth, G. Hybrid robot control and SLAM for persistent navigation and mapping. Robot. Auton.
Syst. 2010, 58, 1096–1104. [CrossRef]

8. Zhang, F.; Li, S.Q.; Yuan, S.; Sun, E.Z.; Zhao, L.G. Algorithms Analysis of Mobile Robot SLAM based on Kalman
and Particle Filter. In Proceedings of the 9th International Conference on Modelling, Identification and Control
(ICMIC), Kunming, China, 10–12 July 2017; pp. 1050–1055.

9. Suleiman, A.; Zhang, Z.D.; Carlone, L.; Karaman, S.; Sze, V. Navion: A 2-mW Fully Integrated Real-Time
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones. IEEE J. Solid State Circuits
2019, 54, 1106–1119. [CrossRef]

10. Liu, R.Z.; Yang, J.L.; Chen, Y.R.; Zhao, W.S. eSLAM: An Energy-Efficient Accelerator for Real-Time ORB-SLAM on
FPGA Platform. In Proceedings of the 56th ACM/EDAC/IEEE Design Automation Conference (DAC), Las Vegas,
NV, USA, 2–6 June 2019; pp. 1–6.

11. Zhang, Z.; Liu, S.S.; Tsai, G.; Hu, H.B.; Chu, C.C.; Zheng, F. PIRVS: An Advanced Visual-Inertial SLAM System
with Flexible Sensor Fusion and Hardware Co-Design. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 3826–3832.

12. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks.
Neural Inf. Process. Syst. 2012, 1, 1097–1105. [CrossRef]

13. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA,
USA, 7–9 May 2015.

14. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 770–778.

15. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of
the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 3431–3440.

16. Badrinarayanan, V.; Handa, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for
Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

17. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
Med. Image Comput. Comput. Assist. Interv. 2015, 9351, 234–241.

http://dx.doi.org/10.3389/fnbot.2018.00064
http://www.ncbi.nlm.nih.gov/pubmed/30344486
http://dx.doi.org/10.1016/j.robot.2010.05.004
http://dx.doi.org/10.1109/JSSC.2018.2886342
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TPAMI.2016.2644615


Sensors 2020, 20, 3969 17 of 18

18. Yu, C.; Liu, Z.X.; Liu, X.J.; Xie, F.G.; Yang, Y.; Wei, Q.; Qiao, F. DS-SLAM: A Semantic Visual SLAM towards
Dynamic Environments. In Proceedings of the 25th IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1168–1174.

19. Brenot, F.; Piat, J.; Fillatreau, P. FPGA based hardware acceleration of a BRIEF correlator module for a monocular
SLAM application. In Proceedings of the 10th International Conference on Distributed Smart Cameras (ICDSC),
Paris, France, 12–15 September 2016; pp. 184–189.

20. Li, Z.Y.; Chen, Y.; Gong, L.Y.; Liu, L.; Sylvester, D.; Blaauw, D.; Kim, H.S. An 879GOPS 243mW 80fps VGA Fully
Visual CNN-SLAM Processor for Wide-Range Autonomous Exploration. In Proceedings of the IEEE International
Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 134–136.

21. Zhang, C.; Li, P.; Sun, G.Y.; Guan, Y.J.; Xiao, B.J.; Cong, J. Optimizing FPGA-based accelerator design for
deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), Monterey, CA, USA, 22–24 February 2015; pp. 161–170.

22. Motamedi, M.; Gysel, P.; Ghiasi, S. PLACID: A Platform for FPGA-Based Accelerator Creation for DCNNs.
ACM Trans. Multimed. Comput. Commun. Appl. 2017, 13, 1–21. [CrossRef]

23. Li, H.M.; Fan, X.T.; Jiao, L.; Cao, W.; Zhou, X.G.; Wang, L.L. A High Performance FPGA-based Accelerator
for Large-Scale Convolutional Neural Networks. In Proceedings of the 26th International Conference on
Field-Programmable Logic and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–9.

24. Zhang, J.L.; Li, J. Improving the Performance of OpenCL-based FPGA Accelerator for Convolutional Neural.
In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA),
Network, Monterey, CA, USA, 22–24 February 2017; pp. 25–34.

25. Aydonat, U.; O’Connell, S.; Capalija, D.; Ling, A.C.; Chiu, G.R. An OpenCL(TM) Deep Learning Accelerator on
Arria 10. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA), Monterey, CA, USA, 22–24 February 2017; pp. 55–64.

26. Wang, D.; Xu, K.; Jiang, D.K. PipeCNN: An OpenCL-based open-source FPGA accelerator for convolution neural
networks. In Proceedings of the 2017 International Conference on Field Programmable Technology (ICFPT),
Melbourne, VIC, Australia, 11–13 December 2017; pp. 279–282.

27. Qiu, J.T.; Wang, J.; Yao, S.; Guo, K.Y.; Li, B.X.; Zhou, E.J.; Yu, J.C.; Tang, T.Q.; Xu, N.Y.; Song, S.; et al. Going Deeper
with Embedded FPGA Platform for Convolutional Neural Network. In Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), Monterey, CA, USA, 21–23 February
2016; pp. 26–35.

28. Zhang, C.; Prasanna, V. Frequency Domain Acceleration of Convolutional Neural Networks on CPU-FPGA
Shared Memory System. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), Monterey, CA, USA, 22–24 February 2017; pp. 35–44.

29. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift. In Proceedings of the 32nd International Conference on Machine Learning (ICML), Lille, France,
6–11 July 2015.

30. Jia, Y.Q.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T.
Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the ACM Conference
on Multimedia (MM), Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

31. Yu, M.Q.; Huang, H.Z.; Liu, H.; He, S.Y.; Qiao, F.; Luo, L.; Xie, F.G.; Liu, X.J.; Yang, H.Z. Optimizing FPGA-based
Convolutional Encoder-Decoder Architecture for Semantic Segmentation. In Proceedings of the 9th IEEE Annual
International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER),
Suzhou, China, 29 July–2 August 2019; pp. 1436–1440.

32. Shi, X.S.; Cao, L.; Wang, D.W.; Liu, L.; You, G.M.; Liu, S.; Wang, C. HERO: Accelerating Autonomous Robotic
Tasks with FPGA. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, Spain, 1–5 October 2018; pp. 7766–7772.

http://dx.doi.org/10.1145/3131289


Sensors 2020, 20, 3969 18 of 18

33. Alexgkendall. Segnet Model File: Segnet_Pascal.prototxt, Pascal VOC, SegNet Model Zoo. Available online: https:
//github.com/alexgkendall/SegNet-Tutorial/blob/master/Example_Models/segnet_model_zoo.md (accessed on
16 April 2020).

34. Intel. Available online: https://ark.intel.com/content/www/cn/zh/ark/products/65732/intel-xeon-processor-e3-
1230-v2-8m-cache-3-30-ghz.html?wapkw=e3%201230%20v2&erpm_id=5831403 (accessed on 16 April 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/alexgkendall/SegNet-Tutorial/blob/master/Example_Models/segnet_model_zoo.md
https://github.com/alexgkendall/SegNet-Tutorial/blob/master/Example_Models/segnet_model_zoo.md
https://ark.intel.com/content/www/cn/zh/ark/products/65732/intel-xeon-processor-e3-1230-v2-8m-cache-3-30-ghz.html?wapkw=e3%201230%20v2&erpm_id=5831403
https://ark.intel.com/content/www/cn/zh/ark/products/65732/intel-xeon-processor-e3-1230-v2-8m-cache-3-30-ghz.html?wapkw=e3%201230%20v2&erpm_id=5831403
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Description of Encoder-Decoder Semantic Segmentation Network 
	Overall Architecture Design 
	Configurable Pipes and Layer Connections 
	Kernels Design 
	Memory Access Design 

	Design Space Exploration and Optimization 
	Design Space Exploration 
	Algorithm Flow Optimization 
	Quantization 

	Results 
	Quantization 
	Runtime Performance 
	Hardware Resource Consumption 
	Throughput and Energy Efficiency Assessment 

	Conclusions 
	References

