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Abstract: In this paper, we investigate a trajectory control problem for Euler-Lagrange systems
with unknown quantization on the actuator channel. To address such a challenge, we proposed a
quantization-mitigation-based trajectory control method, wherein adaptive control is employed to
handle the time-varying input coefficients. We allow the quantized signal to pass through unknown
actuator dynamics, which results in the coupled actuator dynamics for Euler-Lagrange systems. It is
seen that our method is capable of driving the states of networked Euler-Lagrange systems to the
desired ones via Lyapunov’s direct method. In addition, the effectiveness and advantage of our
method are validated with a comparison to the existing controller.

Keywords: networked network; Euler-Lagrange systems; quantization mitigation; trajectory control

1. Introduction

Recent decades have witnessed that the research on networked control systems is also one of the
most important topics in the current academic and industrial field [1–3]. Different pieces of equipment
or devices are connected through the network, provides more flexibility and resilience to different
working conditions and environments. Please note that as the number of connected devices increases,
or as the size of the networked system expands, it becomes a challenge as to how to use the limited
computational resources for communicating [4].

From a perspective of the information flow, a problem of the limited computational resources can
be regarded as a problem of the bandwidth limitations, wherein the transmitted signal is quantized
through the networked systems. Thus, it leads to a challenge that how to control a quantized system.
Along this line, some results of handling the quantization phenomena have been reported in the control
community. Results on limited data rates were documented in [2]. The work of [3] addressed the
communication constraint issue by placing the encoder and decoder in the control diagram. In contrast
to the linear system in [5], works such as [6,7] extended the quantized feedback problem to the
non-linear systems. Since the quantization was sector-bounded, Fu and Xie [8] changed the quantized
feedback design into the robust control design. Considering that the input logarithmic quantizer may
result in oscillation, Hayakawa et al. [9] gave a remedy using a hysteretic quantizer. It was reported
in [10] that the input quantization problem can be handled using the backstepping-based design.
Xing et al. [11] considered an output-feedback design problem for unknown nonlinear systems with
the quantization of the system input. Xie et al. [12] proposed a neural-network-based asymptotic
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control algorithm to study unknown input quantization control problems for nonlinear systems using
backstepping control design. Zhou et al. [13] extended [10] and showed that the Lipschitz condition
was not necessary for the nonlinear functions with the quantization at the input.

Please note that Euler-Lagrange systems have significant advantages in modelling the dynamical
processing for industrial applications, such as [14–19]. However, it is non-trivial to apply the
linear system-based results to control the Euler-Lagrange systems. Difficulties include not only
Euler-Lagrange systems themselves are nonlinear but also they might involve different kinds of
nonlinearities [20,21]. Please note that actuators have been regarded as an essential unit in the control
systems. When actuators are not working in perfectly linear phenomena, actuators nonlinearities [22]
including deadzone, backlash, friction, and hysteresis would be imposed on the Euler-Lagrange
systems. Therefore, how to model the nonlinearized actuator dynamics and how to tackle the problem
of unknown actuator dynamics appear to be crucial problems that need further research. The work
of [23] considered the motion control problem in linear resonant actuators by using an estimator
for estimating the position and a motion controller. As documented in [24], the control problem
of actuator nonlinearities was modelled for a class of nonlinear systems. Later, actuator failures,
which can be regarded as a specific but difficult form of actuator nonlinearities, were investigated
in [25]. Recently, Chen et al. [26] proposed a dynamic gain-based approach for multi-input and
multi-output system with unknown input coefficients, which turned out to be related to the problem
of actuator nonlinearities. The work of [27] studied the control problem of friction and hysteresis
on the geared drives, and proposed a sensorless torsion control for elastic-joint robots. Results
are obtained for multi-agent systems with external disturbances and unknown input nonlinearities
in [28]. Lin et al. [29] considered the cooperative navigation control of mobile robots in an unknown
environment using a neural fuzzy controller. The work of [30] considered unknown input Bouc-Wen
hysteresis control problem and handled it using adaptive control. Although advances have been
reported, the majority of the existing works are not designed for Euler-Lagrange systems with
unknown quantization. This becomes a key question to investigate practical networked systems
such as unmanned vehicle systems and teleoperated manipulators [31,32] with the capability of
modelling the nonlinearities that happen in the communication networks [33].

In this paper, we aim to study a control problem of Euler-Lagrange systems with unknown
actuator dynamics. In our case, the designed control signal is first endowed with the quantization
to capture the limited bandwidth in the networked control system. After that, the quantized signal
is allowed to pass through unknown actuator dynamics, which results in an unknown coupled
dynamics control problem for Euler-Lagrange systems. We solve such a problem by proposing
a quantization-mitigation-based adaptive control method. It is seen that our controller, together
with its estimation laws, is capable of changing unknown time-varying input coefficients caused
by the quantization and actuator dynamics into a problem of unknown constant input coefficients.
Then, we solve the unknown constant input using an adaptive dynamic gain-based approach. Using
our control scheme, the analysis shows that one estimation law is sufficient to handle unknown
quantized actuator dynamics problem, regardless of the number of the actuator channels in the
network. It is seen that our quantization-mitigation-based trajectory control works effectively for
networked Euler-Lagrange systems both in the theoretic stability analysis and in the simulation case
study. The proposed system model and its control result are important for the Euler-Lagrange systems
that are operating in a networked workplace. In the networked control systems, the issue of the limited
bandwidth has been studied and modelled by the quantization phenomenon [1]. Through our control
design, we show that the tracking performance of the Euler-Lagrange systems is ensured even under
the quantized actuator dynamics.

The organization of the remaining parts of this paper is briefly introduced as follows. In Section 2,
we first model the networked Euler-Lagrange systems with unknown actuator dynamics. In Section 3,
we review the structural property of Euler-Lagrange systems, propose an adaptive control-based
method to handle unknown actuator dynamics and quantization for Euler-Lagrange systems,
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and proved its stability via Lyapunov’s direct method. In Section 4, the proposed method is tested
through a case study, and its effectiveness is confirmed. In Section 5, a conclusion of this paper
is attained.

2. Problem Formulation

In this section, we will consider a class of unknown Euler-Lagrange systems that contains
unknown quantization on the input and unknown actuator dynamics. The dynamics for such
Euler-Lagrange systems are modelled as the following nonlinear equation [34]:

V(χ)χ̈ + H(χ, χ̇)χ̇ + W(χ) = τ, (1)

where χ ∈ RL×1 is a system state vector, V(χ) ∈ RL×L denotes a positive definite inertial matrix;
H(χ, χ̇) ∈ RL×L representees the Coriolis and centrifugal matrix of the ith robotic arm; W(χ) ∈ RL×1

denotes the gravitational force vector; and τ ∈ RL×1 means the actual actuator signal applied to the
Euler-Lagrange systems and plays a role of driving the state variable χ of Euler-Lagrange systems (1)
to follow a predetermined trajectory reference χd. Here, the actuator dynamics are unknown to the
designer. It is noted that the term τ in our case denotes a control or command signal received from the
wireless networks. The mathematical model of the actual actuator dynamics τ is detailed as

τ = G($(u(t), t)) (2)

= [G1($1(u1(t), t)), G2($2(u2(t), t)), ..., GL($L(uL(t), t))],

where the function Gi(·) denotes unknown actuator dynamics driven by the signal (·) and $i(ui(t))
implies an unknown nonlinear function that changes the designed controller ui(t) to $i(ui(t)) caused
by the wireless communications in the networked systems.

Now, we model the dynamical procedure of the wireless communication. Although wireless
communication provides a flexible way of controlling the system, the communication quality strongly
relies on bandwidth. Under the limited bandwidth of wireless networks, we consider the designed
actuator signal ui(t) in (2) subjected to the quantization [10], which can be regarded as a model to
investigate practical systems such as telecommunicated vehicles or devices. For the simplification and
convenience, we show the quantization with the input signal ui(t) and its output quantized signal
$i(ui(t), t) in Figure 1, where it is clear that the quantizer $i(ui(t), t) is nonlinear and discontinuous
severely twisting the designed signal ui(t).

Figure 1. Quantization for networked communication.
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The mathematical model of the quantization is expressed in a form as

$i(ui(t), t) =



ui(t)sgn(ui(t)),
if ui(t)

1+δi
< |ui(t)| ≤ ui, u̇i(t) < 0,

or ui(t) < |ui(t)| ≤ ui(t)
1−δi

, u̇i(t) > 0
ui(t)(1 + δi)sgn(ui(t)),

if ui(t) < |ui(t)| ≤ ui(t)
1−δi

, u̇i(t) < 0,

or ui(t)
1−δi

< |ui(t)| ≤ ui(1+δi)
1−δi

, u̇i(t) > 0
0, if 0 ≤ |ui(t)| < ui,min

1+δi
, u̇i(t) < 0,

or ui,min
1+δi

≤ |ui(t)| ≤ ui,min, u̇i(t) > 0
$i(ui(t−)), if other cases.

(3)

where the symbol ρi denotes the density of the quantized phenomena with 0 < ρi < 1, δi =
1−ρi
1+ρi

, $i(ui(t−)) represents the quantized output, the value of which holds at the previous time,

and ui,j(t) = ρ
(1−j)
i ui,min with ui,min > 0 for j = 1, 2, . . .. To better capture the influence from the

wireless communication, we assume that parameters in (3) are unknown to the controller design,
which implies that the quantization is unknown.

Now, we give the modeling the actuator dynamics as

Gi(vi) = gv
i (t)vi + gu

i (t), (4)

where vi is a designation for a general input variable, and gv
i (t) denotes an unknown input coefficient

with its sign being positive and gu
i (t) denotes an unknown bounded disturbance with its upper and

lower bounds satisfying 0 < gu
i
(t) ≤ |gu

i (t)| ≤ ḡu
i (t). For the control purpose, it is assumed that gv

i (t)
has a lower bound that is strictly greater than the zero satisfying gv

i ≥ gv
i
> 0, which ensures that the

controller signal is always effective in acting on the considered system. This assumption is standard
and it follows from the literature such as [34].

Remark 1. The model in (4) can be employed to capture actuator nonlinearities including the deadzone,
hysteresis, and backlash, which are frequently found in the practical systems and are important to the quality of
the control systems. Take the deadzone nonlinearities for example. Let the input and output be v and dz(v) with
the system dimension one. From the definition of deadzone phenomena, one has

dz(v) =


kr(v−mr), if v ≥ mr

kl(v−ml), if v ≤ ml
0, if other cases

,

where mr, ml , kl , and kr are bounded variables. Then, one changes the last row of deadzone model into the
following form kl(v−ml)− kl(v−ml), where kl(v−ml) in the last row is bounded. Therefore, the deadzone
phenomena can be reexpressed by the form of (4). This clarifies that (4) has the capability of modelling certain
types of actuator nonlinearities.
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After combining the quantization (3) and the actuator dynamics (4), one has the coupled dynamics
for the actuator of (1) as

Gi($i(ui(t), t))

=



gv
i (t)ui(t)sgn(ui(t)) + gu

i (t),
if ui(t)

1+δi
< |ui(t)| ≤ ui, u̇i(t) < 0,

or ui(t) < |ui(t)| ≤ ui(t)
1−δi

, u̇i(t) > 0
gv

i (t)ui(t)(1 + δi)sgn(ui(t)) + gu
i (t),

if ui(t) < |ui(t)| ≤ ui(t)
1−δi

, u̇i(t) < 0,

or ui(t)
1−δi

< |ui(t)| ≤ ui(1+δi)
1−δi

, u̇i(t) > 0
gu

i (t), if 0 ≤ |ui(t)| < ui,min
1+δi

, u̇i(t) < 0,
or ui,min

1+δi
≤ |ui(t)| ≤ ui,min, u̇i(t) > 0

gv
i (t)$i(ui(t−)) + gu

i (t), if other cases,

. (5)

Considering that the parameters including gv
i (t), gu

i (t), δi and ui,min in (5) are unknown to
the designer, we call (5) unknown quantized actuator dynamics. It is noted that Equation (1),
together with (5), is capable of modelling several equipment and devices communicating through
networks including the teleoperated robot systems, unmanned vehicular systems, and sensor networks.
The quantized actuator dynamics for networked Euler-Lagrange systems are shown in Figure 2.

Figure 2. Networked Euler-Lagrange systems with unknown actuator dynamics.

We are ready to define the problem to be studied.
The Problem of Networked Euler-Lagrange Systems with Unknown Actuator Dynamics is to

design a quantization-mitigation-based controller ui for the Euler-Lagrange systems (1) so that the
controlled state χ converges to the predetermined state χd, i.e., χ(t) → χd(t) and χ̇(t) → χ̇d(t) as
t→ ∞ under unknown quantized actuator dynamics (5).

3. Control Design for Networked Euler-Lagrange Systems with Unknown Actuator Dynamics

In this section, we will give our method to solve the Problem of Networked Euler-Lagrange Systems
with Unknown Actuator Dynamics by the following three parts. To this end, we first review the structural
properties of Euler-Lagrange systems. Then, a dynamic loop gain function-based control method
is reviewed. Lastly, we give our main controller design and prove its stability analysis by using
Lyapunov’s direct method.
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3.1. Structural Properties of Euler-Lagrange Systems

In this subsection, we provide the structural properties of Euler-Lagrange systems as follows,
which can also be found in the literature such as [34]:

Property 1. The matrix V(χ) in (1) is positive definite with VT(χ) = V(χ) > 0 satisfying

ξmin(V(χ)) ≤ ‖V(χ)‖2 ≤ ξmax(V(χ)), (6)

where || · ||2 denotes a norm operator, and ξmax(V(χ)) and ξmax(V(χ)) are defined as the maximum and
minimum eigenvalues of the matrix V(χ), respectively.

Property 2. Considering H(χ, χ̇) and V(χ) in (1), one obtains that the matrix 2H(χ, χ̇) − V̇(χ) is
skew-symmetric, where V̇(χ) denotes the time derivative of V(χ). This implies that

xT(2H(χ, χ̇)− V̇(χ))x = 0, ∀x. (7)

Property 3. Given the variables χ, χ̇, α, and α̇ with the appropriate dimensions, the terms on the left side of (1)
can be reexpressed as

V(χ)α̇ + H(χ, χ̇)α + W(χ) = ℵ(χ, χ̇, α, α̇)Ω, (8)

with Ω denoting a column vector with unknown constant elements and ℵ(χ, χ̇, α, α̇) being a known
regression matrix.

The above-mentioned three properties will be used for designing the quantization-mitigation-
based controller.

3.2. Adaptive Method for Adjusting the Control Gain

As shown in the Problem Formulation Section, unknown quantized actuator dynamics (5) results in
two parts, namely (1) input coefficients multiplying the controller and (2) unstructured disturbances.
To address such two terms, we consider an adaptive method for adjusting the input coefficients and
for tolerating the unstructured disturbances.

For the control purpose, we introduce a class of adaptive dynamic gains as [26]

A(φ) = φeφ2
, (9)

where φ is a real scalar. We summarize the adaptive dynamic gain-based result in the following lemma.

Lemma 1 ([26]). Smooth functions U(t) and φ(t) are defined over the interval [0, td) with U(t) nonnegative
and φ(t) monotonic. Let φ(0) be bounded. The adaptive control gain A is given in (9). Then φ(t) and U(t) are
bounded over [0, td), if

U(t) ≤ −
∫ t

t0

gµA(φ(ω))φ̇(ω) exp(µω− µt)dω

+
∫ t

t0

φ̇(ω) exp(µω− µt)dω + γ(t), (10)

where γ(t) is an upper-bounded variable and µ and gµ are positive constants. �
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3.3. Quantization-Mitigation-Based Trajectory Control Design

This section aims to provide a quantization-mitigation-based trajectory control design for
Euler-Lagrange systems with unknown quantized actuator dynamics. It follows from adaptive control
in [34] that the coordinate transformation is defined as

χ̃ =χ− χd, (11)

χ̇r =χ̇d −Mrχ̃, (12)

v =χ̇− χ̇r, (13)

where Mr ∈ RL×L is set to be a positive definite matrix.
Now, the quantization-mitigation-based controller for Euler-Lagrange systems with unknown

quantized actuator dynamics is given as

u = A(φ(t))CA, (14)

with
CA = −(Me +

1
2

I)e− 1
2
||ℵ(χ, χ̇, χ̇r, χ̈r)||2κ̂v, (15)

where κ̂ denotes an estimation and its estimation law is specific later, the function of ℵ(·) is given
in (8) by replacing variables χ, χ̇, α, α̇ with χ, χ̇, χ̇r, χ̈r, Me is a positive-definite matrix, and I denotes an
identity matrix with an appropriate dimension. The estimation laws for (14) and (15) are designed as

φ̇ =ηvTCA, (16)

˙̂κ =− σ1κ̂ +
1
2

σ||ℵ(χ, χ̇, χ̇r, χ̈r)||2vTv, (17)

where η > 0, σ > 0, and σ1 > 0 are design constants, κ(t) and φ(t) are initially chosen as κ(0) ≥ 0 and
φ(0) ≥ 0. For better clarification, we depict the proposed quantization-mitigation-based trajectory
control in Figure 3.

Figure 3. The proposed quantization-mitigation-based method.

3.4. Stability Proof via Lyapunov’s Direct Method

In this subsection, we aim to give the main result of this paper and also present the stability
analysis for the proposed quantization-mitigation-based controller.

The following theorem summarizes our main result.
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Theorem 1. Let networked Euler-Lagrange systems be modelled as (1) with unknown quantized actuator
dynamics (5), and the quantization-mitigation-based trajectory control be (14) with the estimation laws (16)
and (17). Then, the controlled state variable χ, asymptotically, converges to the predetermined variable χd,
meanwhile, the state derivative χ̇(t) also converges to χ̇d(t).

Proof. Under the coordinate transformations in (11)–(13), one substitutes (14) into (1) to obtain that

H(χ, χ̇)v + V(χ)v̇ =− ℵΩ + G($(u(t), t))CA, (18)

where ℵ and Ω are defined in (8) of Property 3 with ℵ being a known regression matrix and Ω being an
unknown constant vector.

To analyze the networked Euler-Lagrange systems with unknown quantized actuator dynamics,
it follows the Lyapunov’s direct method that we define an auxiliary function as

U(t) =
1
2

vTV(χ)v +
1
2

κ̃2σ−1, (19)

where v is given in (13), V(χ) is a positive definite matrix satisfying (6) as shown in Property 1, and κ̃

is an estimation error defined as

κ̃ = κ̂ − κ, (20)

with κ̂ being given in (17) and κ being specific later. Now, the derivative of (19) with respect to (18) is
changed into

U̇(t) = CA + vTℵΩ + vT [G($(u(t), t))− CA] + ˙̂κκ̃σ−1

= CA + ˙̂κκ̃σ−1 + vT [G($(u(t), t))− CA]

+
1
2
+

1
2
||ℵ||2κvTv, (21)

where κ = ||Ω||F. It is clear that κ is an unknown positive scalar given that Ω is unknown. Considering
that the matrix V̇(χ)− 2H(χ, χ̇) is skew-symmetric in Property 2, one changes (21) into

U̇(t) ≤ −vT Mev + vT [G($(u(t), t))− CA]

− 1
2

vTv +
1
2
+ ˙̂κκ̃σ−1 − 1

2
||ℵ||2vTvκ̃

=−vT Mev + vT [G($(u(t), t))− CA]

− 1
2

vTv− σ1κ̂κ̃σ−1 +
1
2

, (22)

where Young’s inequality is employed. Again, it follows from Young’s inequality that −κ̂κ̃ in (22)
satisfies

−κ̂κ̃ = −κ̃(κ + κ̃)

≤ 1
2

κ2 − 1
2

κ̃2, (23)

where both the result in (20) and Young’s inequality are used. From (5), it is clear that δi is a positive
scalar. Therefore, it follows from (5) that

gv
i (t)ui(t) < gv

i (t)ui(t)(1 + δi). (24)
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Moreover, $i(ui(t−)) on the last row of (5) is bounded. It is thus define the maximum of $i(ui(t−)),
i = 1, 2, . . . , L as gmax. Taking the similar technique for Deadzone analysis in Remark 1, the last two
rows of (5) can be remodelled as forms like the first two rows. Substituting (16) and (23) into (22) yields

U̇(t) ≤−vT Mev + vT [G($(u(t), t))− CA]

− 1
2

vTv +
1
2
− σ1σ−1(

1
2

κ̃2 − 1
2

κ2)

≤−vT Mev− σ1σ−1 1
2

κ̃2 +
1
2
− 1

2
vTv

+ σ1σ−1 1
2

κ2 + vT
[
− CA + G($(u(t), t))

]
≤−vT Mev− σ1σ−1 1

2
κ̃2 +

1
2

gmax

+ vT(A(φ(t))gmin − 1)CA +
1
2

+ σ1σ−1 1
2

κ2. (25)

The result in (25) is further changed into

U̇(t) ≤− µU(t) + vT(A(φ(t))gmin − 1)CA + γ0

≤− µU(t) + (A(φ(t))gmin − 1)φ̇(t)
1
η
+ γ0, (26)

where

µ =min{ 2δmin{Me}
δmin(V(χ))

, σ1}, (27)

γ0 =
1
2

gmax + σ1σ−1 1
2

κ2 +
1
2

, (28)

gmin = min
i=1,2,··· ,L

(gv
i ). (29)

Remark 2. We pause to highlight how to handle unknown quantized actuator dynamics as indicated in (26).
Specifically, the time-varying input coefficients caused by the quantization and nonlinear actuator dynamics
are multiplied with the adaptive gain A(φ(t)) in (9), the sign of which is always non-negative. This is ensured
by the estimation law given in (16) with CA in (15). To this end, we are capable of handling the problem
of time-varying input coefficients into a lower bounded input gain problem as gmin shown in (29). It will
be seen that the designed estimation law plays a key role in achieving the asymptotic control for networked
Euler-Lagrange systems under the quantized actuator dynamics.

Now, we continue the proof of the proposed quantization-mitigation-based trajectory control
design. Solving (26) with respect to the time over the interval [0, t] yields

U(t) ≤ −V(0) exp(−µt) +
µ

γ0

+
1
η

∫ t

t0

φ̇(ω) exp(µω− µt)dω

− 1
η

∫ t

t0

gminA(φ(ω))φ̇(ω) exp(µω− µt)dω

, γ +
1
η

∫ t

t0

φ̇(ω) exp(µω− µt)dω

− 1
η

∫ t

t0

gminA(φ(ω))φ̇(ω) exp(µω− µt)dω, (30)
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where

γ = −V(0) exp(−µt) +
µ

γ0
. (31)

Recalling the definition of U(t) in (19), it is reasonable to assume that V(0) is bounded.
The boundedness of V(0), together with the boundedness of µ and γ0, leads that γ on the right-hand
side of (30) is bounded. It is clear that Lemma 1 can be applied to (30) so that both U(t) and φ(t)
are ensured bounded. This implies that all the signals in the closed-loop system are bounded after
using the proposed quantization-mitigation-based trajectory control (14). The following analysis will
show that the asymptotic control is also ensured even in the presence of unknown quantized actuator
dynamics. Integrating the estimation law (16) over the time interval [0, t] together with the controller
design (15) yields

φ(t)− φ(0) =
∫ t

0
ηvT(τ)CA(τ)dτ

≥
∫ t

0
ηvT(τ)v(τ)dτ. (32)

Now, we focus on the boundedness of the terms on the right-hand side of (32). From the
above-mentioned analysis, one obtains that the signals φ(t), φ(0), and η are bounded. As an immediate
result, the integral term

∫ t
0 ηvT(τ)v(τ)dτ on the right-hand side of (32) must exist and be finite.

In addition, it is further obtained that the derivative of the signal v is bounded. Subsequently, it
follows from Barbalat’s Lemma that lim

t→∞
vT(t)v(t) = 0, which ensures that lim

t→∞
v(t) = 0.

Recalling the definition of v(t) in (13), one obtains that χ̇(t)→ χ̇d(t) as t→ ∞. Now, recall the
definitions of χ̃ in (11) and χ̇ in (12), one rewrites v(t) in (13) as

v(t) =χ̇− χ̇d + Mrχ̃

= ˙̃χ + Mrχ̃. (33)

Since v(t) converges to zero and Mr is a positive definite matrix defined in (12), then χ̃ in (33)
converges to zero so that χ(t)→ χd(t) as t→ ∞. This completes the proof.

Remark 3. In Theorem 1, it is proved that one estimation law is sufficient to handle the time-varying input
coefficients caused by the quantized actuator dynamics, regardless of the number of the control channels in the
network. The less estimation law is used in the control system, the more computational resources are saved
for real-time performance. Therefore, the proposed quantization-mitigation-based result is important to the
networked Euler-Lagrange systems from the perspective of the computation saving, especially for multiple devices
sharing the common computational resources.

4. Simulation and Experiment

In this scenario, we consider a Euler-Lagrange system as a robotic system, and control the robotic
system through networks modelled by the quantization. The proposed quantization-mitigation-based
controller in the previous section will be applied to the robotic system to test the system performance
in the presence of unknown quantized actuator dynamics.

We follow the literature of [34] to give the dynamics of the robotic system as[
V11 V12

V21 V22

] [
χ̈1

χ̈2

]
+

[
Z11 Z12

Z21 Z22

] [
χ̇1

χ̇2

]
=

[
τ1

τ2

]
, (34)

where V11 = Ω1 + 2Ω3 cos(χ2), V12 = Ω2 + Ω3 cos(χ2) + Ω4 sin(χ2), V21 = V12, V22 = Ω2, Z11 =

−Ψχ̇2, Z12 = −Ψ(χ̇1 + χ̇2), Z21 = Ψχ̇1, Z22 = 0, and Ψ = Ω3 sin(χ2)−Ω4 cos(χ2). Here, unknown
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constants Ωi for i = 1, 2, 3, 4 are stacked into a vector as Ω = [Ω1, Ω2, Ω3, Ω4]
T . In this simulation,

we let the designed controller first pass through the quantization (3). After that, the quantized signal
passes through unknown actuator dynamics (4). This procedure leads that the actual input signal
strictly follows (5) to set up the unknown quantized actuator dynamics problem for the Euler-Lagrange
system. Considering that (34) is a multi-input and multi-output system, one designs the parameters
of the quantization and the actuator dynamics in each control channel are the same as δi = 0.8 and
ui,min = 0.1 for i = 1, 2. Please note that the same parameters for each control channel are only for the
simplification, and can also be set different using the proposed quantization-mitigation-based method.
Initial states of the robotic system are randomly chosen. To implement our method, two estimation
laws are built as required in (16) and (17) with the initials of such estimations being zeroes. That is,
κ̂(0) = 0 and φ(0) = 0. The desired trajectory is set to be χd = [0.5, 0.2]T .

The results are plotted in Figures 4–9, including the adaptive variables φ, A(φ), κ̂, the control
signal u, and trajectory performance χ and χ̇. In particular, the estimation law φ is given in
Figure 4 and its adaptive dynamic gain A(φ) is given in Figure 5. It is seen that the estimation
law for handling unknown quantized actuator dynamics reaches a steady value after the adaptation.
The estimation law of κ̂ for tunning the robotic parameters is presented in Figure 6. The actual actuator
signal applied to the robot τ is plotted in Figure 7. It follows from Figures 4–7 that the proposed
quantization-mitigation-based trajectory controller is capable of driving the control and estimation
laws in the Euler-Lagrange system to be bounded. As for the trajectory performance, we plot χ and χ̇,
respectively, in Figures 8 and 9, where the desired trajectories are also plotted for better clarification.
From the results in Figures 8 and 9, we conclude that the proposed quantization-mitigation-based
trajectory controller works effectively under unknown quantized actuator dynamics.

0 5 10 15
0

1

2

Time (s)

φ

 

 

φ

Figure 4. Trajectory of the estimation law φ.
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4

6
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A
(φ
)

 

 

A(φ)

Figure 5. Adaptive dynamic gain A(φ).
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Figure 6. Trajectory of the estimation law κ̂.
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Figure 7. Control trajectory τ under the proposed controller.
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Figure 8. Performance χ under the proposed controller.
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0.5
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Figure 9. Performance χ under the proposed controller.

For the comparison, we test a fuzzy controller in [35], which uses the fuzzy logic systems to
handle the system dynamics but does not contain an adaptive mechanism to reject unknown quantized
actuator dynamics. Please note that we only change the controller from the proposed one to the
fuzzy controller. The system dynamics, as well as the parameters for the quantization, are the
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same as that in the previous scenario. Under the existing fuzzy controller, the actual controller
signal after the quantized actuator dynamics is plotted in Figure 10 and the actual trajectories of χ

and χ̇ are depicted in Figures 11 and 12. From Figure 11, there exists a steady error in controlling
quantized actuator dynamics if the existing fuzzy controller is used. This confirms that the strong
nonlinearities arising from the quantized actuator dynamics severely affect the system performance.
Comparing the results in Figures 8 and 9 and in Figures 11 and 12, one concludes that the proposed
quantization-mitigation-based method works better than the existing controller for the trajectory
control of networked Euler-Lagrange systems.

0 5 10 15

−2

0

2

Time (s)

τ

 

 

τ1 τ2

Figure 10. Control trajectory τ under the existing controller.
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Figure 11. Performance χ under the existing controller.
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Figure 12. Performance χ̇ under the existing controller.
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To quantitatively describe the difference between the proposed controller and the existing
controller, we define the index of the average error as follows

Iτi =

√√√√Nτi

∑
j=1

τ2
i (j)
Nτi

, (35)

Iχ1 =

√√√√Nχ1

∑
j=1

(χ1(j)− 0.5)2

Nχ1

, (36)

Iχ2 =

√√√√Nχ2

∑
j=1

(χ2(j)− 0.2)2

Nχ2

, (37)

Iχ̇i =

√√√√Nχ̇i

∑
j=1

χ̇2
i (j)
Nχ̇i

, (38)

where Nτi , Nχi , and Nχ̇i , for i = 1, 2, denote the total numbers of the signals τi, χi, and χ̇i, respectively.
The comparative results of Iτi , Iχi , and Iχ̇i are given in Table 1. It can be seen that the index of the control
input Iτi under the proposed method is larger than that under the existing controller. This means that
more control effort is used in the proposed method. However, the tracking performance Iχi and Iχ̇i

under the proposed method is better than that under the existing controller.

Table 1. Comparative results between the proposed method and the existing method [35].

The Proposed Method The Existing Method

Iτ1 0.28095 0.13352

Iτ2 0.08429 0.05116

Iχ1 0.06227 0.09195

Iχ2 0.03062 0.03881

Iχ̇1 0.08463 0.09931

Iχ̇2 0.04198 0.05410

5. Conclusions

In this paper, we investigated a trajectory control problem for wireless Euler-Lagrange systems
with unknown actuator dynamics. We considered a control problem of trajectory control under the
input quantization with unknown parameters. Subsequently, we derive the coupled dynamics that
combine the quantization and actuator dynamics. To address such coupled dynamics, we proposed
a quantization-mitigation-based trajectory control method, wherein adaptive control is employed to
handle the time-varying input coefficients caused by the quantization nonlinearities. It was proved
that the proposed method is capable of driving the states of networked Euler-Lagrange systems to the
desired states, asymptotically. We tested our method and compare it with the conventional controller
in the simulation and experiment section, wherein the effectiveness and advantage of our method are
confirmed. In the realistic scenario, there are more complex dynamics in the networked control systems
such as interference, packet delays, and unreliability. We will extend the result in this paper to consider
the complex dynamics in the future work. The future research topic will include the learning-based
control for unknown system dynamics such as [36,37].
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