Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algorithm for Measuring Wavefront Aberrations
- Selection of and calculation of temporary wavefront model
- Synthesis of CGH structure;
- Displaying the CGH structure by SLM;
- Capturing of output intensity distribution by CCD camera;
- Searching for correlation peak position and determining the optimization function value;
- Checking the termination condition of the algorithm. If condition is satisfied, go to step 7, otherwise repeat steps 1–6;
- Decision.
2.2. Modified Wavefront Aberration Measurement Algorithm
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sinjab, F.; Liao, Z.; Notingher, I. Applications of Spatial Light Modulators in Raman Spectroscopy. Appl. Spectrosc. 2019, 73, 727–746. [Google Scholar] [CrossRef] [PubMed]
- Carbonell-Leal, M.; Mendoza-Yero, O. Effects of mitigation of pixel cross-talk in the encoding of complex fields using the double-phase method. Opt. Eng. 2019, 59, 041203. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.A.; Moreno, I.; Sorger, J.P.; Sánchez-López, M.M.; Cottrell, D.M. Holographic projection system with programmable control of state of polarization, focus plane, and size of the reconstruction. Opt. Eng. 2018, 58, 082403. [Google Scholar] [CrossRef]
- Kovalev, M.S.; Krasin, G.K.; Odinokov, S.B.; Solomashenko, A.B.; Zlokazov, E.Y. Measurement of wavefront curvature using computer-generated holograms. Opt. Express 2019, 27, 1563–1568. [Google Scholar] [CrossRef] [PubMed]
- Kompanets, I.N.; Andreev, A.L. Microdisplays in spatial light modulators. Quantum Electron. 2017, 47, 294–302. [Google Scholar] [CrossRef]
- Kovalev, M.S.; Krasin, G.K.; Odinokov, S.B.; Solomashenko, A.B.; Venediktov, V.Y. Hologram filters in adaptive optics problems. In Proceedings of the International Conference Laser Optics (ICLO 2018), St. Petersburg, Russia, 4–8 June 2018; p. 190. [Google Scholar] [CrossRef]
- Montrésor, S.; Picart, P.; Karray, M. Reference-free metric for quantitative noise appraisal in holographic phase measurements. J. Opt. Soc. Am. A 2018, 35, A53–A60. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Liang, C. High resolution full field wavefront measurement of a misaligned miniature lens. Opt. Express 2018, 26, 31209–31221. [Google Scholar] [CrossRef] [PubMed]
- Saita, Y.; Shinto, H.; Nomura, T. Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range. Optica 2015, 2, 411–415. [Google Scholar] [CrossRef]
- Zuo, C.; Chen, Q.; Li, H.; Qu, W.; Asundi, A. Boundary-artifact-free phase retrieval with the transport of intensity equation II: Applications to microlens characterization. Opt. Express 2014, 22, 18310–18324. [Google Scholar] [CrossRef] [PubMed]
- Medecki, H.; Tejnil, E.; Goldberg, K.A.; Bokor, J. Phase-shifting point diffraction interferometer. Opt. Lett. 1996, 21, 1526–1528. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.; Jiang, J.; Zhang, R.; Yang, Y. Quadriwave lateral shearing interferometric microscopy with wideband sensitivity enhancement for quantitative phase imaging in real time. Sci. Rep. 2017, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Velghe, S.; Boucher, W.; Brahmi, D.; Wattellier, B. CO2 laser wave front and beam metrology using Quadri-Wave Lateral Shearing Interferometry. In Proceedings of the European Conference on Lasers and Electro-Optics (CLEO 2009), Munich, Germany, 14–19 June 2009. [Google Scholar] [CrossRef]
- Bon, P.; Maucort, G.; Wattellier, B.; Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 2009, 17, 13080–13094. [Google Scholar] [CrossRef] [PubMed]
- Poleshchuk, A.G.; Sedukhin, A.G.; Trunov, V.I.; Maksimov, V.G. Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures. Comput. Opt. 2014, 38, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Lavrinov, V.V.; Lavrinova, L.N. Reconstruction of Wavefront Distorted by Atmospheric Turbulence Using a Shack-Hartman Sensor. Comput. Opt. 2019, 43, 586–595. [Google Scholar] [CrossRef]
- Lakshminarayanan, V.; Fleck, A. Zernike polynomials: A guide. J. Mod. Opt. 2011, 58, 545–561. [Google Scholar] [CrossRef]
- Mahajan, V.N.; Dai, G. Orthonormal Polynomials in Wavefront Analysis: Analytical Solution. J. Opt. Soc. Am. A 2007, 24, 2994–3016. [Google Scholar] [CrossRef] [PubMed]
- Malacara-Hernandez, D.; Carpio-Valadez, M.; Sanchez-Mondragon, J.J. Wavefront fitting with discrete orthogonal polynomials in a unit radius circle. Opt. Eng. 1990, 29, 672–675. [Google Scholar] [CrossRef]
- Liu, F.; Robinson, B.M.; Reardon, P.; Geary, J.M. Analyzing optics test data on rectangular apertures using 2-D Chebyshev polynomials. Opt. Eng. 2011, 50, 043609. [Google Scholar] [CrossRef]
- Dai, G. Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions. J. Opt. Soc. Am. A 1996, 13, 1218–1225. [Google Scholar] [CrossRef]
- Anzuola, E.; Zepp, A.; Marin, P.; Gladysz, S.; Stein, K. Holographic Wavefront Sensing for Atmospheric Turbulence using Karhunen-Loève Decomposition. In Proceedings of the Imaging and Applied Optics Congress (OSA 2016), Heidelberg, Germany, 25–28 July 2016. [Google Scholar] [CrossRef]
- Kumar, B.; Mahalanobis, A.; Juday, R. Correlation Pattern Recognition; Cambridge University Press: New York, NY, USA, 2005; pp. 148–151. [Google Scholar]
- Ruchka, P.A.; Verenikina, N.M.; Gritsenko, I.V.; Zlokazov, E.Y.; Kovalev, M.S.; Krasin, G.K.; Odinokov, S.B.; Stsepuro, N.G. Hardware/Software Support for Correlation Detection in Holographic Wavefront Sensors. Opt. Spectrosc. 2019, 127, 618–624. [Google Scholar] [CrossRef]
- Koziel, S.; Yang, X. Computational Optimization, Methods and Algorithms; Springer: Berlin, Germany, 2011; pp. 13–31. [Google Scholar]
- HOLOEYE Photonics, AG. Available online: https://holoeye.com/spatial-light-modulators/slm-pluto-phase-only/:PhaseCamManual (accessed on 21 July 2020).
- Kovalev, M.S.; Krasin, G.K.; Odinokov, S.B.; Stsepuro, N.G. Two-Component Holographic Wavefront Sensor with Controlled Phase Modulator. Patent RU196,631-U1, 11 March 2020. [Google Scholar]
Focal Length | Polynomial Type | |||
---|---|---|---|---|
Fourier Lens | Digital Fresnel Lens | |||
250 mm | 1.52 | 1.50 | λ/50 | |
1.49 | 1.52 | λ/33 | ||
500 mm | 1.50 | 1.53 | λ/33 | |
1.52 | 1.53 | λ/100 | ||
1000 mm | 1.49 | 1.49 | λ/100 | |
1.54 | 1.52 | λ/50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasin, G.; Kovalev, M.; Stsepuro, N.; Ruchka, P.; Odinokov, S. Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms. Sensors 2020, 20, 4310. https://doi.org/10.3390/s20154310
Krasin G, Kovalev M, Stsepuro N, Ruchka P, Odinokov S. Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms. Sensors. 2020; 20(15):4310. https://doi.org/10.3390/s20154310
Chicago/Turabian StyleKrasin, George, Michael Kovalev, Nikita Stsepuro, Pavel Ruchka, and Sergey Odinokov. 2020. "Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms" Sensors 20, no. 15: 4310. https://doi.org/10.3390/s20154310
APA StyleKrasin, G., Kovalev, M., Stsepuro, N., Ruchka, P., & Odinokov, S. (2020). Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms. Sensors, 20(15), 4310. https://doi.org/10.3390/s20154310