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Abstract: This paper proposes a solution for events classification from a sole noisy mixture that
consist of two major steps: a sound-event separation and a sound-event classification. The traditional
complex nonnegative matrix factorization (CMF) is extended by cooperation with the optimal adaptive
L1 sparsity to decompose a noisy single-channel mixture. The proposed adaptive L1 sparsity CMF
algorithm encodes the spectra pattern and estimates the phase of the original signals in time-frequency
representation. Their features enhance the temporal decomposition process efficiently. The support
vector machine (SVM) based one versus one (OvsO) strategy was applied with a mean supervector to
categorize the demixed sound into the matching sound-event class. The first step of the multi-class
MSVM method is to segment the separated signal into blocks by sliding demixed signals, then
encoding the three features of each block. Mel frequency cepstral coefficients, short-time energy,
and short-time zero-crossing rate are learned with multi sound-event classes by the SVM based OvsO
method. The mean supervector is encoded from the obtained features. The proposed method has
been evaluated with both separation and classification scenarios using real-world single recorded
signals and compared with the state-of-the-art separation method. Experimental results confirmed
that the proposed method outperformed the state-of-the-art methods.

Keywords: audio signal processing; sound event classification; nonnegative matric factorization;
blind signal separation; support vector machines

1. Introduction

Surveillance systems have become increasingly ubiquitous in our living environment.
These systems have been used in various applications including CCTV in traffic and site monitoring,
and navigation. Automated surveillance is currently based on video sensory modality and machine
intelligence. Recently, intelligent audio analysis has been taken into account in surveillance to
improve the monitoring system via detection, classification, and recognition sound in a scenario.
However, in a real-world situation, background noise has interfered in both the image and sound of a
surveillance system. This will hinder the performance of a surveillance system. Hence, an automatic
signal separation and event classification algorithm was proposed to improve the surveillance system
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by classifying the observed sound-event in noisy scenarios. The proposed noisy sound separation
and event classification method is based on two approaches (i.e., blind signal separation and sound
classification, which are introduced in the sections to follow, respectively).

The classical problem of blind source separation (BSS), the so-called “cocktail party problem”,
is a psycho-acoustic spectacle that alludes to the significant human-auditory capability to selectively
focus on and identify the sound-source speaker from the scenarios. The interference is produced by
competing speech sounds or a variety of noises that are often assumed to be independent of each
other. In the case of only a single microphone being available, this reduces to the single channel blind
source separation (SCBSS) [1–4]. The majority of SCBSS algorithms work in time-frequency domain,
for example, binary masking [5–7] or nonnegative matrix factorization (NMF) [8–11]. NMF has been
continuously developed with great success for decomposing underlying original signals when a sole
sensor is available. NMF was developed using the multiplicative update (MU) algorithm to solve
its parametrical optimization based on a cost function such as the Kullback–Liebler divergence and
the least square distance. Later, other families of cost functions have been continuously proposed,
for example, the Beta divergence [12], Csiszar’s divergences, and Itakura–Saito divergence [13].
Additionally, iterative gradient update was presented where a sparsity constraint can be included into
the optimizing function through regularization by minimizing penalized least squares [14] and using
different sparsity constraints for dictionary and code [15]. The complex nonnegative matrix factorization
(CMF) spreads the NMF model by combining a sparsity representation with the complex-spectrum
domain to improve the audio separability. The CMF can extract the recurrent patterns of the phase
estimates and magnitude spectra of constituent signals [16–18]. Nevertheless, the CMF lacks the
generalized mechanics used for controlling the sparseness of the code. However, the sparsity parameter
is manually determined for the above proposed methods. Approximate sparsity is an important
consideration as they represent important information. Many sparse solutions have been proposed in
the last decade [19–25]. Nonetheless, the optimal sparse solution remains an open issue.

Sound event classification (SEC) has vastly been exploited by many researchers. Sound can be
categorized into speech, music, noise, environmental sound, or daily living sound [26]. Sound events
are available in all classes, for example, car horn, traffic, walking, or knocking, etc. [27,28]. Sound-events
contain significant information that can be used to describe what has happened or to predict what will
happen next in the future. Most algorithms of the SEC methods are conveyed from sound classification
approaches such as sparse coding, deep learning, and support vector machine (SVM). These approaches
have been exploited to categorize a sound event in both indoor and outdoor scenarios. In recent years,
the deep learning approach has been used to classify the sound-event. A deep learning framework can
be established with two convolutional neural networks (CNNs) and a deep multi-layer perceptron
(MLP) with rectified linear units (ReLU) as the activation function [29,30]. A Softmax function that is
the final activation function is used to classify the sound into its corresponding class. The Softmax
function is considered as the generalization of the logistic function, which aims to avoid overfitting.
One of the advantages of deep learning is that it does not require feature extraction for the input
sound. However, a deep neural network requires large training samples and despite a plethora of
research, there is a general consensus that deep neural networks are still difficult to fine tune and
generalize to test data. Moreover, it does not lend itself to the explanation as to why a certain decision
is being made. Separate from the deep learning framework, another SEC approach is support vector
machines [31,32], which has been practically presented to solve the classifier problem in various fields.
The SVM algorithm relies on supervised learning by using the fundamental concept of statistic and
risk minimization. The main process of the SVM is to draw the optimal separating hyperplane as the
decision boundary located in such a way that the margin of separation between classes is maximized.
The SVM approach is considered as supervised learning algorithm that is comprised of two sections:
(1) a training section to model feature space and an optimal hyperplane, and (2) a testing section
to use the SVM model for separating the observed data. The margin denotes the distance of the
closest instance and the hyperplane. SVM has the desirable properties in that it requires only two
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differentiating factors to categorize two classes and a hyperplane that can be constructed to suit for an
individual problem, even in the nonlinear case by selecting a kernel. Second, SVM provides a unique
solution, since it is a convex optimization problem.

The rest of this paper is organized as follows. Section 2 presents the proposed noisy sound
separation and event classification method, respectively. Next, Section 3 demonstrates and analyzes
the performance of the proposed method. Finally, conclusions are drawn up in Section 4.

2. Background

Noisy mixed signals observed via a recording device can be stated as: y(t) = s1(t) + s2(t) + n(t)
where s1(t) and s2(t) denote the original sounds, and n(t) is noise. This research is focused on
two sound events in a single recorded signal. The proposed method consists of two steps: noisy
sound separation and sound event classification, which is illustrated in Figure 1, where y(t) and
Y(ω, t) denote a sound-event mixture in the time domain and time-frequency domain, respectively.
The terms Wk(ω), Hk(t), φk(ω, t) are spectral basis, temporal code or weight matrix, and phase
information, respectively. The term λk(t) represents sparsity and ŝj(t) is an estimated sound event
source. The abbreviations MFCC, STE, and STZCR stand for Mel frequency cepstral coefficients,
short-time energy, and short-time zero-crossing rate, respectively. The proposed method is consecutively
elaborated in the following parts.
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2.1. Single-Channel Sound Event Separation

The problem formulation in time-frequency (TF) representation is given by an observed complex
spectrum, Y f ,t ∈ C, to estimate the optimal parameters θ = {W, H, φ} of the model. A new
factorization algorithm named as the adaptive L1-sparse complex non-negative matrix factorization
(adaptive L1-SCMF) is derived in the following section. The generative model is given by

Y(ω, t) =
K∑

k=1

Wk(ω)Hk(t)Zk(ω, t) = X(ω, t) + ε(ω, t) (1)

where Zk(ω, t) = ejφk(ω,t) and the reconstruction error ε(ω, t) ∼ NC
(
0,σ2

)
is assumed to be independently

and identically distributed (i.i.d.) with white noise having zero mean and variance σ2. The term ε(ω, t)
is used to denote a modeling error for each source. The likelihood of θ = {W, H, φ} is thus written as

P(Y|θ ) =
∏

f ,t

1
πσ2 exp(−

∣∣∣Y(ω, t) − X(ω, t)
∣∣∣2

σ2 ) (2)

It is assumed that the prior distributions for W, H, and φ are independent, which yields

P(θ|λ) = P(W)P(H|λ)P(φ) (3)

The prior P(H|λ) corresponds to the sparsity cost, for which a natural choice is a generalized
Gaussian prior. When p = 1, P(H|λ) promotes the L1-norm sparsity. L1-norm sparsity has been
shown to be probabilistically equivalent to the pseudo-norm, L0, which is the theoretically optimum
sparsity [33,34]. However, L0-norm is non-deterministic polynomial-time (NP) hard and is not useful
in large datasets such as audio. Given Equation (3), the posterior density [35,36] is defined as the
maximum a posteriori probability (MAP) estimation problem, which leads to minimizing the following
optimization problem with respect to θ. Equations of Gaussian prior and maximum a posteriori
probability (MAP) estimation are expressed in Appendix A.

The CMF parameters have been upgraded by using an efficient auxiliary function for an iterative
process. The auxiliary function for f (θ) can be expressed as the following: for any auxiliary variables

with
∑
k

Y
k
(ω, t) = Y(ω, t), for any βk(ω, t) > 0,

∑
k
βk(ω, t) = 1, for any Hk(t) ∈ R, H

k
(t) ∈ R, and p = 1.

The term f (θ) ≤ f+
(
θ,θ

)
with an auxiliary function was defined as:

f+
(
θ,θ

)
≡

∑
f ,k,t

∣∣∣∣Yk
(ω, t) −Wk(ω)Hk(t)·e jφk(ω,t)

∣∣∣∣2
βk(ω, t)

+
∑
k,t

[(
λk(t)

)p
(
p
∣∣∣∣Hk

(t)
∣∣∣∣p−2

Hk(t)2 + (2− p)
∣∣∣∣Hk

(t)
∣∣∣∣p)− logλk(t)

]
(4)

where θ =
{
Y

k
(ω, t), H

k
(t)

∣∣∣∣ 1 ≤ f ≤ F, 1 ≤ t ≤ T, 1 ≤ k ≤ K
}
. The function f+

(
θ,θ

)
is minimized w.r.t.

θ when
Y

k
(ω, t) = Wk(ω)H

k
(t)·e jφk(ω,t) + βk(ω, t)(Y(ω, t) −X(ω, t)) (5)

H
k
(t) = Hk(t) (6)



Sensors 2020, 20, 4368 5 of 24

2.2. Formulation of Proposed CMF Based Adaptive Variable Regularization Sparsity

2.2.1. Estimation of the Spectral Basis and Temporal Code

In Equation (4), the update rule for θ is derived by differentiating f+
(
θ,θ

)
partially w.r.t. Wk(ω)

and Hk(t), and setting them to zero, which yields the following:

Wk(ω) =

∑
t

Hk(t)
βk(ω,t)

Re
[
Y

k
(ω, t)∗·e jφk(ω,t)

]
∑

t
Hk(t)2

βk(ω,t)

(7)

Hk(t) =

∑
f

Wk(ω)
βk(ω,t)

Re
[
Y

k
(ω, t)∗·e jφk(ω,t)

]
∑

f
Wk(ω)2

βk(ω,t)
+ (λk(t))p p

∣∣∣∣Hk
(t)

∣∣∣∣p−2 (8)

The update rule for the phase, φk(ω, t), can be derived by reformulating Equation (4) as follows:

f+
(
θ,θ

)
=

∑
k, f ,t

∣∣∣∣∣Yk
(ω,t)

∣∣∣∣∣2− 2Wk(ω)Hk(t)Re
[
Y

k
(ω,t)·e− jφk(ω,t)

]
+Wk(ω)2Hk(t)2

βk(ω,t)
+

∑
k,t
λk(t)

(∣∣∣∣Hk
(t)

∣∣∣∣−1
Hk(t)2

−H
k
(t)

)
−

∑
k,t

logλk(t)

= A− 2
∑

k, f ,t

∣∣∣Bk(ω, t)
∣∣∣ cos

(
φk(ω, t) −Ωk(ω, t)

) (9)

where A denotes the terms that are irrelevant with φk(ω, t), Bk(ω, t) = Wk(ω)Hk(t)Y
k
(ω,t)

βk(ω,t)
, cos Ωk(ω, t) =

Re
[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣ , and sin Ωk(ω, t) =

Im
[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣ . Derivation of (9) is elucidated in Appendix B.

The auxiliary function, f+
(
θ,θ

)
in Equation (4) is minimized when cos

(
φk(ω, t) −Ωk(ω, t)

)
=

cosφk(ω, t) cos Ωk(ω, t) + sinφk(ω, t) sin Ωk(ω, t) = 1, namely, cosφk(ω, t) = cos Ωk(ω, t) and
sinφk(ω, t) = sin Ωk(ω, t). The update formula for e jφk(ω,t) eventually leads to

e jφk(ω,t) = cosφk(ω, t) + j sinφk(ω, t)

=
Y

k
(ω,t)∣∣∣∣Yk
(ω,t)

∣∣∣∣
(10)

The update formula for βk(ω, t) and Hk(t) for projection onto the constraint space is set to

βk(ω, t) =
Wk(ω)Hk(t)∑
k Wk(ω)Hk(t)

(11)

Hk(t) ←
Hk(t)∑
k Hk(t)

(12)

2.2.2. Estimation of L1-Optimal Sparsity Parameter λk(t)

This section aims to facilitate spectral dictionaries with adaptive sparse coding. First, the CMF
model is defined as the following terms:
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W =

[
I⊗W1(ω)

...I⊗W2(ω)
... · · ·

...I⊗WK(ω)

]
,

e jφ(t) =

[
e jφ1(t)... · · ·

...e jφK(t)
]

y = vec(Y) =



Y1(:)
. . .

Y2(:)
. . .
...
. . .

YK(:)


, h =



H1(t)
. . .

H2(t)
. . .
...
. . .

HK(t)


, λ =



λ1(t)
. . .
λ2(t)
. . .
...
. . .
λK(t)


, φ =



φ1(:, t)
. . .

φ2(:, t)
. . .
...
. . .

φK(:, t)


A =


W◦e jφ(t) 0 . . . 0

0 W◦e jφ(t) 0
...

... 0 W◦e jφ(t) 0

0 . . . 0 W◦e jφ(t)t



(13)

where “⊗” and “◦” are the Kronecker product and the Hadamard product, respectively. The term
vec(·) denotes the column vectorization and the term I is the identity matrix. The goal is then set to
compute the regularization parameter λk(t) related to each Hk(t). To achieve the goal, the parameter p
in Equation (4) is set to 1 to acquire a linear expression (in λk(t)). In consideration of the noise variance
σ2, Equation (4) can concisely be rewritten as:

F(h,λ) =
1

2σ2 ‖ y− Ah ‖2F +λTh− (logλ)T1 (14)

where the h and λ terms indicate vectors of dimension R× 1 (i.e., R = F× T ×K), and the superscript
‘T’ is used to denote complex Hermitian transpose (i.e., vector (or matrix) transpose followed by
complex conjugate). The Expectation–Maximization (EM) algorithm will be used to determine λ

and h is the hidden variable where the log-likelihood function can be optimized with respect to λ.
The log-likelihood function satisfies the following [12]:

ln p
(
y

∣∣∣∣λ, A, σ2
)
≥

∫
Q(h) ln

p
(
y, h

∣∣∣∣λ, A, σ2
)

Q(h)

 dh (15)

by applying the Jensen’s inequality for any distribution Q(h). The distribution can simply verify
the posterior distribution of h, which maximizes the right-hand side of Equation (15), is given by

Q(h) = p
(
h
∣∣∣∣y,λ, A, σ2

)
. The posterior distribution in the form of the Gibbs distribution is proposed

as follows:

Q(h) =
1

Zh
exp[−F(h)] where Zh =

∫
exp[−F(h)]dh (16)

The term F(h) in Equation (16) as the function of the Gibbs distribution is essential for simplifying
the adaptive optimization of λ. The maximum-likelihood (ML) estimation of λ can be decomposed
as follows:

λML = arg max
λ

∫
Q(h) ln p(h

∣∣∣λ)dh (17)

In the same way,

σ2
ML = arg max

σ2

∫
Q(h) ln p

(
y

∣∣∣∣h, A, σ2
)
dh (18)
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Individual element of H is required to be exponentially distributed with independent decay
parameters that delivers p(h

∣∣∣λ) = ∏
g
λg exp

(
−λghg

)
, thus Equation (17) obtains

λML = arg max
λ

∫
Q(h)

(
lnλg − λghg

)
dh (19)

The term h denotes the dependent variable of the distribution Q(h), whereas other parameters
are assumed to be constant. As such, the λ optimization in Equation (19) is derived by differentiating
the parameters within the integral with respect to h. As a result, the functional optimization [37] of λ
then obtains

λg =
1∫

hgQ(h)dh
(20)

where g = 1, 2, . . . , R, λg denotes the gth element of λ. Notice that the solution h naturally splits
its elements into distinct subsets hM and hP, consisting of components ∀m ∈ M so that hm > 0
and components ∀p ∈ P so that hP = 0. The sparsity parameter is then obtained as presented in
Equation (21):

λg =


1∫

hgQM(hM)dhM
= 1

hMAP
g

if g ∈ M
1∫

hgQ̂P(hP)dhP
= 1

ug
if g ∈ P

(21)

and its covariance X is given by

Xab =


(
C
−1
P

)
ab

, if a, b ∈ M

u2
pδab, Otherwise.

(22)

where Q̂P
(
hP ≥ 0

)
=

∏
p∈P

1
up

exp
(
−hp
up

)
, CP = 1

σ2 A
T
PAP and up ← up

−b̂p+

√
b̂2

p+4
(Ĉu)p

ũp

2(Ĉu)p
. The function

QM
(
hM

)
will be expressed as the unconstrained Gaussion with mean hMAP

M and covariance C
−1
M based

on a multivariate Gaussian distribution. Similarly, the inference for σ2 can be computed as

σ2 =
1

N0

∫
Q(h)

(
‖y− Ah‖2

)
dh (23)

where

ĥg =

{
hMAP

g if g ∈ M
ug if g ∈ P

The core procedure of the proposed CMF method is based on L1-optimal sparsity parameters.
The estimated sources are discovered by multiplying the respective rows of the Wk(ω) components
with the corresponding columns of the Hk(t) weights and time-varying phrase spectrum e jφk(ω,t).
The separated source ŝ j(t) is obtained by converting the time-frequency represented sources into the
time domain. Derivation of L1-optimal sparsity parameter, is elucidated in the Appendix C.
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2.3. Sound Event Classification

Once the separated sound signal is obtained, the next step is to identify the sound event.
A multiclass support vector machine (MSVM) is employed to achieve the goal. The MSVM is
comprised of two phases: the learning phase and the evaluation phase. The MSVM is based on one

versus one strategy (OvsO) that splits observed c classes into c(c−1)
2 binary classification sub-problems.

To train the wth MSVM model, the MSVM will construct hyperplanes for discriminating each observed
data into its corresponding class by executing the series of binary classification. Starting from the
learning phase, sound signatures are extracted from the training dataset in the time-frequency domain.
The sound signatures that were studied in this research were the Mel frequency cepstral coefficients
(MFCC: MF), short-time energy (STE: E(t)), and short term zero-crossing rate (STZCR: STZ(t)), which

can be orderly expressed as: MF = 2525 × log[1 + ( f /7)], E(t) =
∞∑

τ=−∞
[y(t)· fw(t− τ)]

2, Z(t) =

∞∑
τ=−∞

∣∣∣sgn[s(τ)] − sgn[s(τ− 1)]
∣∣∣· fw(t− τ) where fw(t) denotes the windowing function. The training

signals are segmented into small blocks, then the individual block is extracted to the three signature
parameters. The mean supervector is then computed as an average of individual feature of all
blocks for each sound event input. Thus, the mean feature supervector (O) with a corresponding
sound-event-label vector ((w)) is paired together (i.e., (ψ(O, w))) and supplied to the MSVM model.
The discriminant formula can be expressed as:{

ŵ, β
}

= arg max
w

{
αT
w
ψ(O, w; β)

}
= arg max

w

{
max
β

|w|∑
i=1

αT
w
ψ
(
Oi|β, wi

)} (24)

where
(
Oi|β, wi

)
, i = 1, . . . , M represents the ith separated sound signals; the weight vector αw is

employed for individual class w to compute a discriminant score for the O; the i term is the index
of the block order (β); and the function αT

w
ψ(O, w; β) measures a linear discriminant distance of the

hyperplane with the extracted feature vector from the observed data. The MSVM based OvsO strategy
for class wth and other, the hyperplane, can be maximized as αT

w
ψ(O, w; β) + bw and can then be learned

via the following equation as

min
αw,ξw

1
2
‖αw‖

2 + C
M∑

i=1

ξwi (25)

where ξwi ≥ 0, bw is a constant. The term
M∑

i=1
ξwi denotes a penalty function for tradeoff between a large

margin and a small error penalty. The optimal hyperplane can be determined by minimizing 1
2‖αw‖

2

to maximize the condition (i.e., αT
w
ψ(O, w; β) + bw ≥ 1 − ξwi ). If the conditional term is greater than

1− ξwi , then the estimated sound event belongs to the wth class. Otherwise, the estimated sound event
classifies into other classes.

The overview of the proposed algorithm is presented in the following table as Algorithm 1.
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Algorithm 1 Overview of the proposed algorithm.

(1) Compute Y(ω, t) = STFT(y(t)) from the noisy single-channel mixture y(t).

(2) Initial values Wk(ω), Hk(t), βk(ω, t), fixing the value of φk(ω, t) at e jφk(ω,t) =
Y(ω,t)
|Y(ω,t)|

, and calculate λk(t)

and σ2 .
(3) Update θ =

{
X, H

}
, θ =

{
Wk(ω), Hk(t), φk(ω, t)

}
, βk(ω, t).

(4) Update parameters (21) and (23) until convergence is reached as determined by the rate of change of the
parameters update falling within a pre-determined threshold.

(5) Estimation of each source by multiplying the respective rows of the spectral components Wk(ω) with the

corresponding columns of the mixture weights Hk(t) and time-varying phrase spectrum e jφk(ω,t). (i.e.,∣∣∣∣∣∣^Si

∣∣∣∣∣∣.2 =
Ki∑

k=1
Wi

k
f Hi

k
t ·e

jφi
(k)
f ,t and construct the binary TF mask for the ith source

Mi( f , ts) :=

 1, if

∣∣∣∣∣∣^Si( f , ts)

∣∣∣∣∣∣.2 >
∣∣∣∣∣∣^S j( f , ts)

∣∣∣∣∣∣.2, i , j

0, otherwise
).

(6) Convert the time-frequency represented sources into time domain to obtain the separated sources ŝ j(t)

i.e., ŝ j(t) = STFT−1


∣∣∣∣∣∣^Si

∣∣∣∣∣∣2
.

(7) Classify the wth sound event by computing the optimal hyperplane αT
w
ψ(O, w; β) + bw by minimizing the

following equation: min
αw,ξw

1
2 ‖αw‖

2 + C
M∑

i=1
ξwi .

3. Experimental Results and Analysis

The performance was evaluated on recorded sound-event signals in a low noisy environment
at 20 signal-to-noise ratios (SNRs). The sound-event database had a total of 500 recorded signals
containing four event classes: speech (SP), door open (DO), door knocking (DK), and footsteps (FS).
An overview of the experimental setup is given as the following: all signals had a 16-bit resolution and
a sampling frequency of 44.1 KHz. A 2048 length of Hanning window with 50% overlap was used for
signal processing. Nonlinear SVM with a Gaussian RBF kernel was used for constructing the MSVM
learning model. Other kernels such as polynomials, sigmoid, and even linear function were tested, but
the best performance was delivered by the Gaussian kernel. A 4-fold cross-validation strategy was
used in the training phase for tuning the classifier parameters when using 80% of the recorded signals
(n = 400) from the sound-event database.

The performance of the proposed noisy sound separation and event classification (NSSEC) method
was demonstrated and presented into the following two sections: (1) the separating performance,
and (2) the MSVM classifier.

3.1. Sound-Event Separation and Classification Performance

Event mixtures consist of two sound-event signals in low noisy environment at 20 dB
SNRs. A hundred sound-event signals of four classes were randomly selected and then mixed
to generate 120 mixtures of six types (i.e., DO + DK, DO + FS, DO + SP, DK + FS, DK + SP,
and FS + SP). The separation performance measured the signal-to-distortion ratio (SDR) (i.e.,
SDR = 10 log10

(
‖starget‖

2/‖einter f + enoise + earti f ‖
2
)

where einter f , enoise, and earti f ). The SDR represents
the ratio of the magnitude distortion of the original signal by the interference from other sources.
The proposed separation method was compared with the state-of-the-art NMF approach (i.e., CMF [38],
NMF-ISD [14,39], and SNMF [40–42] methods). The cost function was the least squares with
500 maximum number of iterations.
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3.1.1. Variational Sparsity Versus Fixed Sparsity

In this implementation, several experiments were conducted to investigate the effect of sparsity
regularization on source separation performance. The proposed separation method was evaluated by
variational sparsity in the case of (1) uniform constant sparsity with low sparseness e.g., λk

t = 0.01
and (2) uniform constant sparsity with high sparseness (e.g., λk

t = 100). The hypothesis is that the
proposed variational sparsity will significantly yield improvement of the audio source separation
when compared with fixed sparsity.

To investigate the impact of uniform sparsity parameter, the set of sparsity regularization values
from 0 to 10 with a 0.5 interval were determined for each experiment of 60 mixtures of six types.
Results of the uniform regularization given by various sparsity (i.e., λk

t = 0, 0.5, . . . , 10) is illustrated
in Figure 2.
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Figure 2. Separation results of the proposed method by using different uniform regularization.

Figure 2 illustrates that the best performance of the unsupervised CMF was in a range of 1.5–3,
which yielded the highest SDR of over 8dB. When the term λk

t was set too high, the low spectral
values of sound-event signals were overly sparse. This overfitting sparsity Hk(t) caused the separation
performance toward a tendency to degrade. Conversely, the underfitting sparsity Hk(t) occurred
when the term λk

t was set too low. The coding parameter Hk(t) could not distinguish between the two
sound-event signals. It was also noticed that if the factorization is non-regularized, this will cause the
separation results to contain a mixed sound. According to the uniform sparsity results in Figure 2, the
separation performance of the proposed method varies depending on the assigned sparsity values.
Thus, it is challenging to find a solution for the indistinctness among the sound-event sources in the TF
representation to determine the optimal value of sparseness. Thus, this introduces the importance of
determining the optimal λ for separation. Table 1 presents the essential sparsity value on the separation
performance by comparing the proposed method given by variational sparsity against the uniform
sparsity scheme. The average performance improvement of the proposed adaptive CMF method
against the uniform constant sparsity was 1.32 dB SDR. The SDR results clearly indicate that the
adaptive sparsity yielded the surpass separation performance over the constant sparsity scheme. Hence,
the proposed variational sparsity improves the performance of the discovered original sound-event
signals by adaptively selecting the appropriate sparsity parameters to be individually adapted for

each element code (i.e., λg =


1∫

hgQM(hM)dhM
= 1

hMAP
g

if g ∈ M
1∫

hgQ̂P(hP)dhP
= 1

ug
if g ∈ P

and σ2 = 1
N0

∫
Q(h)

(
‖y− Ah‖2

)
dh

where ĥg =

{
hMAP

g if g ∈ M
ug if g ∈ P

). Consequently, the optimal sparsity facilitates the estimated spectral

dictionary via the estimated temporal code. The quantitative measures of separation performance
were performed to assess the proposed single-channel sound event separation method. The overall
average signal-to-distortion ratio (SDR) was 8.62 dB as illustrated in Figure 3.
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Table 1. Comparison of average SDR performance on three types of mixtures between uniform
regularization methods and the proposed method.

Mixtures Methods SDR

DO + DK
Proposed method 7.63

(Best) Uniform regularization sparsity 6.59

DO + FS
Proposed method 9.06

(Best) Uniform regularization sparsity 8.74

DO + SP
Proposed method 8.45

(Best) Uniform regularization sparsity 6.91

DK + FS
Proposed method 7.04

(Best) Uniform regularization sparsity 6.35

DK + SP
Proposed method 9.72

(Best) Uniform regularization sparsity 7.78

FS + SP
Proposed method 9.81

(Best) Uniform regularization sparsity 7.42
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Each sound-event signal has its own temporal pattern that can be clearly noticed in TF
representation. Examples of sound-event signals in the TF domain are illustrated in Figure 4.
Through the adaptive L1-SCMF method, the proposed single-channel separation method can generate
complex temporal patterns such as speech. Thus, the separation results clearly indicate that the
performances of noisy source separation perform with high SDR values.
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3.1.2. Comparison of the Proposed Adaptive CMF with Other SCBSS Methods Based on NMF

This section presents the adaptive CMF separating performance against the state-of-the-art NMF
methods (i.e., CMF, SNMF, and NMF-ISD). In the compared methods, the experimental variables such
as the normalizing time-frequency domain were computed by using the short-time Fourier transform
(i.e., 1024-point Hanning window with 50% overlap). The number of factors was two, with a sparsity
weight of 1.5. One hundred random realizations of twenty second-event mixtures were executed.
As a result, the average SDRs are presented in Table 2. The proposed adaptive CMF method yielded
the best separating performance over the CMF, SNMF, and NMF_ISD methods with the average
improvement SDR at 2.13 dB. The estimated door open signals obtained the highest SDR among the
four event categories.

Table 2. Comparison of average SDR and SIR performance on three types of mixtures between SCICA,
NMF-ISD, SNMF, CMF, and the proposed method.

Mixtures Methods SDR

Door Open

Proposed method 8.38
CMF 7.11

SNMF 6.23
NMF-ISD 6.17

Door Knocking

Proposed method 8.13
CMF 7.06

SNMF 6.52
NMF-ISD 6.55

Footsteps

Proposed method 8.36
CMF 7.89

SNMF 6.62
NMF-ISD 6.06

Speech

Proposed method 9.60
CMF 6.73

SNMF 5.61
NMF-ISD 5.32

The sparsity parameter was carefully adapted using the proposed adaptive L1-SCMF method
exploiting the phase information and temporal code of the sources, which is inherently ignored by
SNMF and NMF-ISD and has led to an improved performance of about 2 dB in SDR. On the other
hand, the parts decomposed by the CMF, SNMF, and NMF-ISD methods were unable to capture the
phase spectra and the temporal dependency of the frequency patterns within the audio signal.
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Additionally, the CMF and NMF-ISD are unique when the signal adequately spans the positive
octant. Thus, the rotation of W and opposite H can obtain the same results. The CMF method can easily
be over or under sparse resolution of the factorization due to manually determining the sparsity value.

3.2. Performance of Event Classification Based on MSVM Algorithm

This section elucidates the features and performance of the MSVM-learning model.
The MSVM-learning model was investigated to obtain the optimal size of the sliding window
and then determine the significant features that led to the classification performance. Finally, the
efficiency of the MSVM model was evaluated. These topics are presented in order in the following parts.

3.2.1. Determination Optimal Window Length for Feature Encoding

For the MSVM method, sound-event signals are segmented into small blocks for encoding feature
parameters by using a fixed-length of the sliding window. The sets of feature vectors are computed
using the mean supervector and then loaded to the MSVM model for learning and constructing
the hyperplane. The size of blocks can affect the information of the feature vectors, which leads to
the classifier performance. The block’s size will affect the αw, hence modifying the block size will
mark the learning efficiency of the MSVM model. Therefore, in order to obtain the optimal value
of αw, the optimal block size was exploited by training the MSVM model given various lengths of
window sizes (i.e., 0.5, 1, 1.5, and 2.0 s) to learn the 400 noisy sound-event signals of four event classes
with cross-validation.

The experimental results are plotted in Figure 5, where the block size varies from 0.5 to 2.0 with
0.5 increments. The MSVM model of the 1.5 s block size yielded the best sound-event classification at
100% accuracy. The sliding window function benefits from SVM to learn an unknown sound event by
generating the set of blocks from the observed event, regarded as a number of observed events. As a
result, a set of sound event characteristics were computed for each block (i.e., Oi|β, wi in Equation (24)).
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Figure 5. Classification performance of the original and combination source MSVM with various
block sizes.

The optimal length of the window size can capture the signature of the sound event. If the
window length is too short, the encoded features will then deviate from the character of the sound
event. In addition, the mean supervector is computed from the set of features of all blocks, which
can be regarded as the mean of the probability distribution of the features. This mean supervector
advantages the MSVM to reduce misclassifications when compared to the conventional SVM. Hence,
the STFT of all experiments set the window function at 1.5 s.

3.2.2. Determination of Sound-Event Features

Each sound-event signal was encoded with three features: Mel frequency cepstral coefficients
(MFCCs), short-time energy (STE), and short-time zero-crossing rate (STZCR). MFCCs are represented
as a frequency domain feature that is evaluated in a similar assembly to the human ear (i.e.,
logarithmic frequency perception). STE is the total spectrum power of an observed event.
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The STZCR denotes the number of times that the signal amplitude interval satisfies the condition (i.e.,
STZCR = (1/T − 1)

∑ T−1
t=1 [[{stst−1 < 0} where [[{stst−1 < 0} is 1 if the condition is true and 0 otherwise).

The STZCR features of four sound-event classes are illustrated in Figure 6.Sensors 2020, 20, x FOR PEER REVIEW 13 of 23 
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Figure 6. STZCR patterns of four sound-events (a–d).

The STZCR feature represents unique patterns of four sound-event classes. The four sound-event
patterns are different in shape and data range. Similarly, the MCFFs and STE features extract distinctive
patterns of all event classes, except for the patterns between door knocking and footstep, as illustrated
in Figure 7.
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Figure 7. MFCCs (a) and STE (b) patterns of door knocking and footstep.

Figure 7 aims to compare the characteristics of similar sound events such as door knocking and
footsteps. Thus, MFCCs and STE features were used to illustrate the patterns of sound events. Figure 7a
represents the five orders of MFCC features to compare patterns between door knocking and walking
while the STE features are shown in Figure 7b.

The proposed method separated the six categories of mixtures, then classified each estimated
sound event signal into its corresponding class. Classified results of the six categories are presented as
confusion matrixes below:

Actual

Predict DO DK DO FS DO SP

DO 19 3 DO 12 8 DO 19 5

DK 3 15 FS 4 16 SP 3 13

DK FS DK SP FS SP

DK 12 4 DK 16 2 FS 14 6

FS 9 15 SP 5 17 SP 3 17

The classification of the proposed method was measured by Precision = TP/(TP + FP),
Recall = TP/(TP + FN), and F1-score = 2 × (Precision × Recall)/(Precision + Recall). The TP and
TN terms refer to the true positive and true negative, while the FP and FN terms mean false positive and
false negative. The scores of Precision, Recall, and F1-score were 0.7667, 0.7731, and 0.7699, respectively.

Each feature represents unique characteristics of an individual sound event. Thus, features were
matched into seven cases for exploiting their influence on the MSVM classifiers (i.e., {(MFCC), (STE),
(STZCR), (MFCC, STE), (MFCC, STZCR), (STE, STZCR), (MFCC, STE, STZCR)}).

As shown in Figure 8, the MSVM model given by MFCCs and STZCR yielded the best classified
accuracy at 100%, with less deviation among the other cases. Therefore, the separated signals were
then classified by the proposed MSVM method given by the MFCC and STZCR vectors and the 1.5 s
window function. The computational complexity of the proposed method was analyzed by two steps.
First, the adaptive L1-SCMF method was NP-hard. Big-O of the adaptive L1-SCMF method consists
of spectral basis (m), temporal code (n), and phase information that rely on components (k). Thus,

Big-O of the separation step is (mn)O(k2). For MSVM steps, it is a polynomial algorithm where Big-O is

O
(
n3

)
. Therefore, the computational complexity of the proposed method based on Big-O is (mn)O(k2).

All experiments were performed by a PC with Intel® Core™ i7-4510U CPU2.00 GHz and 8 GB RAM.
MATLAB was used as the programming platform.
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Figure 8. Classification performances of multi-class MSVM of various sets of features and length of
event signal.

3.2.3. Performance of MSVM Classifier

The MSVM-classifier performance is presented in terms of percentage of the corrected sound-event
classification. The 240 separated signals of four classes from the proposed separation method were
individually identified by the MSVM classifier.

Figure 9 compares the classification performance on the four classes of individual sound events.
The best classification accuracy was door open, followed by footstep, door knocking, and speech.
On the other hand, the classification results based on the mixed sound events are illustrated in Figure 10.
The MSVM model delivered the highest performance of the door-open event with 84% accuracy.

From the above experiments, the proposed method yields an average classification accuracy of
76.67%. The MSVM method can well discriminate and classify the mixed event signals with high
classification accuracy (i.e., the mixture of door open with door knocking and door knocking with
speech were correctly classified with above 80% accuracy). Due to the MFCC and STZCR features
in the individual event, these signals had obvious distinguishable patterns, as shown in the example
of STZCR plots in Figure 6. Despite the SDR scores of the separated signals between door open and
door knocking being relatively low (as given in Figure 3), the MSVM yielded the highest classification
accuracy for the door open with door knocking mixture (DO + DK). This is attributed to the fact that
interference remaining in the separated event signals causes the extracted MFCC and STZCR vectors
to deviate from their original sound event vectors.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 23 

 

 
Figure 8. Classification performances of multi-class MSVM of various sets of features and length of 
event signal. 

3.2.3. Performance of MSVM Classifier 

The MSVM-classifier performance is presented in terms of percentage of the corrected sound-
event classification. The 240 separated signals of four classes from the proposed separation method 
were individually identified by the MSVM classifier. 

Figure 9 compares the classification performance on the four classes of individual sound events. 
The best classification accuracy was door open, followed by footstep, door knocking, and speech. On 
the other hand, the classification results based on the mixed sound events are illustrated in Figure 10. 
The MSVM model delivered the highest performance of the door-open event with 84% accuracy. 

 
Figure 9. Average percentage of classification accuracy from the perspective of event group of the 
proposed NSSEC method. 

0%

20%

40%

60%

80%

100%

120%

84

72 75
68

0
10
20
30
40
50
60
70
80
90

Door open Door knocking Footsteps Speech

Cl
as

sif
ic

at
io

n 
A

cc
ur

ac
y 

(%
)

Sound-event categories

Figure 9. Average percentage of classification accuracy from the perspective of event group of the
proposed NSSEC method.
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4. Conclusions

A novel solution for classification of the noisy mixtures using a single microphone was presented.
The complex matrix factorization was proposed and extended by adaptively tuning the sparse
regularization. Thus, the desired L1-optimal sparse decomposition was obtained. In addition, the
phase estimates of the CMF could extract the recurrent pattern of the magnitude spectra. The updated
equation was derived through an auxiliary function. For classification, the multiclass support vector
was used as the mean supervector for encoding the sound-event signatures. The proposed noisy sound
separation and event classification method was demonstrated by using four sets of noisy sound-event
mixtures, which were door open, door knocking, footsteps, and speech. Based on the experimental
results, first, the optimal window length of STFT was found where 1.5 s of the sliding window yielded
the best separation performance. The second was two significant features that were ZCR and MFCCs.
These parameters were set for examining the proposed method. The proposed method achieved
outstanding results in both separation and classification. In future work, the proposed method will be
evaluated on a public dataset such as the DCASE 2016, alongside the comparison with other machine
learning algorithms.
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Appendix A. Single-Channel Sound Event Separation

The prior P(H|λ) corresponds to the sparsity cost, for which a natural choice is a generalized
Gaussian prior:

P(H|λ) =
∏
k,t

pλk(t)
2Γ(1/p)

exp (−
(
λk(t)

)p∣∣∣Hk(t)
∣∣∣p) (A1)

where λk(t) and p are the shape parameters of the distribution. When p = 1, P(H|λ) promotes
the L1-norm sparsity. L1-norm sparsity has been shown to be probabilistically equivalent to
the pseudo-norm, L0, which is the theoretically optimum sparsity [29,30]. However, L0-norm is
non-deterministic polynomial-time (NP) hard and is not useful in large datasets such as audio. Given
Equation (3), the posterior density is defined as
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P(θ|Y,λ) ∝ P(Y|θ)P(H|λ) (A2)

The maximum a posteriori probability (MAP) estimation problem leads to minimizing the
following optimization problem with respect to θ:

f (θ) =
∑
f ,t

∣∣∣Y(ω, t) − X(ω, t)
∣∣∣2 + ∑

k,t

[(
λk(t)

)p∣∣∣Hk(t)
∣∣∣p − logλk(t)

]
(A3)

subject to
∑
f

Wk(ω) = 1 (k = 1, . . . , K).

The CMF parameters has been upgraded by using an efficient auxiliary function for an iterative
process. The auxiliary function for f (θ) can be expressed as the following: for any auxiliary variables

with
∑
k

Y
k
(ω, t) = Y(ω, t), for any βk(ω, t) > 0,

∑
k
βk(ω, t) = 1, for any Hk(t) ∈ R, H

k
(t) ∈ R, and p = 1.

The term f (θ) ≤ f+
(
θ,θ

)
with an auxiliary function was defined as

f+
(
θ,θ

)
≡

∑
f ,k,t

∣∣∣∣Yk
(ω, t) −Wk(ω)Hk(t)·e jφk(ω,t)

∣∣∣∣2
βk(ω, t)

+
∑
k,t

[(
λk(t)

)p
(
p
∣∣∣∣Hk

(t)
∣∣∣∣p−2

Hk(t)2 + (2− p)
∣∣∣∣Hk

(t)
∣∣∣∣p)− logλk(t)

]
(A4)

where θ =
{
Y

k
(ω, t), H

k
(t)

∣∣∣∣ 1 ≤ f ≤ F, 1 ≤ t ≤ T, 1 ≤ k ≤ K
}
. The function f+

(
θ,θ

)
is minimized w.r.t.

θ when
Y

k
(ω, t) = Wk(ω)H

k
(t)·e jφk(ω,t) + βk(ω, t)(Y(ω, t) −X(ω, t)) (A5)

H
k
(t) = Hk(t) (A6)

Appendix B. Estimation of the Spectral Basis and Temporal Code

In Equation (4), the update rule for θ is derived by differentiating f+
(
θ,θ

)
. partially w.r.t. Wk(ω)

and Hk(t), and setting them to zero, which yields the following:

Wk(ω) =

∑
t

Hk(t)
βk(ω,t)

Re
[
Y

k
(ω, t)∗·e jφk(ω,t)

]
∑

t
Hk(t)2

βk(ω,t)

(A7)

Hk(t) =

∑
f

Wk(ω)
βk(ω,t)

Re
[
Y

k
(ω, t)∗·e jφk(ω,t)

]
∑

f
Wk(ω)2

βk(ω,t)
+ (λk(t))p p

∣∣∣∣Hk
(t)

∣∣∣∣p−2 (A8)

The update rule for the phase, φk(ω, t), can be derived by reformulating Equation (A1) as follows:

f+
(
θ,θ

)
=

∑
k, f ,t

∣∣∣∣Yk
(ω,t)

∣∣∣∣2− 2Wk(ω)Hk(t)Re
[
Y

k
(ω,t)·e− jφk(ω,t)

]
+Wk(ω)2Hk(t)2

βk(ω,t)
+

∑
k,t
λk(t)

(∣∣∣∣Hk
(t)

∣∣∣∣−1
Hk(t)2

−H
k
(t)

)
−

∑
k,t

logλk(t)

= A− 2
∑

k, f ,t

Wk(ω)Hk(t)
∣∣∣∣Yk

(ω,t)
∣∣∣∣

βk(ω,t)

Re
[
Y

k
(ω,t)·e− jφk(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣


= A− 2

∑
k, f ,t

∣∣∣Bk(ω, t)
∣∣∣Re

[(
Y

k
(ω,t)(r)+ jY

k
(ω,t)(i)

)
(cosφk(ω,t)− j sinφk(ω,t))

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣

= A− 2
∑

k, f ,t

∣∣∣Bk(ω, t)
∣∣∣ cosφk(ω, t)cos Ωk(ω, t) + sinφk(ω, t)sin Ωk(ω, t)

= A− 2
∑

k, f ,t

∣∣∣Bk(ω, t)
∣∣∣ cos

(
φk(ω, t) −Ωk(ω, t)

)

(A9)
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where A denotes the terms that are irrelevant with φk(ω, t), Bk(ω, t) = Wk(ω)Hk(t)Y
k
(ω,t)

βk(ω,t)
, cos Ωk(ω, t) =

Re
[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣ , and sin Ωk(ω, t) =

Im
[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣ . The auxiliary function, f+

(
θ,θ

)
in (A4) is minimized when

cos
(
φk(ω, t) −Ωk(ω, t)

)
= cosφk(ω, t) cosk(ω, t) + sinφk(ω, t)sin Ωk(ω, t) = 1, namely, cosφk(ω, t) =

cos Ωk(ω, t) and sinφk(ω, t) = sin Ωk(ω, t). The update formula for e jφk(ω,t) eventually leads to

e jφk(ω,t) = cosφk(ω, t) + j sinφk(ω, t)

=
Re

[
Y

k
(ω,t)

]
+Im

[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣

=
Y

k
(ω,t)∣∣∣∣Yk
(ω,t)

∣∣∣∣
(A10)

The update formula for βk(ω, t) and Hk(t) for projection onto the constraint space is set to

βk(ω, t) =
Wk(ω)Hk(t)∑
k Wk(ω)Hk(t)

(A11)

Hk(t) ←
Hk(t)∑
k Hk(t)

(A12)

Appendix C. Estimation of L1-Optimal Sparsity Parameter λk(t)

This section aims to facilitate spectral dictionaries with adaptive sparse coding. First, the CMF
model is defined as the following terms:

W =

[
I⊗W1(ω)

...I⊗W2(ω)
... · · ·

...I⊗WK(ω)

]
,

e jφ(t) =

[
e jφ1(t)... · · ·

...e jφK(t)
]

y = vec(Y) =



Y1(:)
. . .

Y2(:)
. . .
...
. . .

YK(:)


, h =



H1(t)
. . .

H2(t)
. . .
...
. . .

HK(t)


, λ =



λ1(t)
. . .
λ2(t)
. . .
...
. . .
λK(t)


, φ =



φ1(:, t)
. . .

φ2(:, t)
. . .
...
. . .

φK(:, t)


A =


W◦e jφ(t) 0 . . . 0

0 W◦e jφ(t) 0
...

... 0 W◦e jφ(t) 0

0 . . . 0 W◦e jφ(t)t



(A13)

where “⊗” and “◦” are the Kronecker product and the Hadamard product, respectively. The term
vec(·) denotes the column vectorization and the term I is the identity matrix. The goal is then set to
compute the regularization parameter λk(t) related to each Hk(t). To achieve the goal, the parameter p
in Equation (A3) was set at 1 to acquire a linear expression (in λk(t)). In consideration of the noise
variance σ2, Equation (A3) can concisely be rewritten as:

F(h,λ) =
1

2σ2 y− Ah2
F + λ

Th− (logλ)T1 (A14)



Sensors 2020, 20, 4368 20 of 24

where the h and λ terms indicate vectors of dimension R× 1 (i.e., R = F×T ×K), and the superscript ‘T’
is used to denote complex Hermitian transpose (i.e., vector (or matrix) transpose), followed by complex
conjugate. The Expectation–Maximization (EM) algorithm is used to determine λ and h is the hidden
variable, where the log-likelihood function can be optimized with respect to λ. The log-likelihood
function satisfies the following [12]:

ln p
(
y

∣∣∣∣λ, A, σ2
)
≥

∫
Q(h) ln

p
(
y, h

∣∣∣∣λ, A, σ2
)

Q(h)

 dh (A15)

by applying the Jensen’s inequality for any distribution Q(h). The distribution can simply verify
the posterior distribution of h that maximizes the right-hand side of Equation (A19) is given by

Q(h) = p
(
h
∣∣∣∣y,λ, A, σ2

)
. The posterior distribution in the form of the Gibbs distribution is proposed

as follows:

Q(h) =
1

Zh
exp[−F(h)] where Zh =

∫
exp[−F(h)]dh (A16)

The term F(h) in Equation (A16) as the function of the Gibbs distribution is essential for simplifying
the adaptive optimization of λ. The maximum-likelihood (ML) estimation of λ can be decomposed
as follows:

λML = arg max
λ

ln p
(
y

∣∣∣∣λ, A, σ2
)

= arg max
λ

∫
Q(h)

(
ln p

(
y

∣∣∣∣h, A, σ2
)
+ ln p(h

∣∣∣λ))dh

= arg max
λ

∫
Q(h) ln p(h

∣∣∣λ)dh

(A17)

In the same way,

σ2
ML = arg max

σ2
ln p

(
y

∣∣∣∣λ, A, σ2
)

= arg max
σ2

∫
Q(h)

(
ln p

(
y

∣∣∣∣h, A, σ2
)
+ ln p(h

∣∣∣λ))dh

= arg max
σ2

∫
Q(h) ln p

(
y

∣∣∣∣h, A, σ2
)
dh

(A18)

Individual element of H is required to be exponentially distributed with independent decay
parameters that delivers p(h

∣∣∣λ) = ∏
g
λg exp

(
−λghg

)
, thus Equation (20) obtains

λML = arg max
λ

∫
Q(h)

(
lnλg − λghg

)
dh (A19)

The term h denotes the dependent variable of the distribution Q(h) whereas other parameters are
assumed to be constant. As such, the λ optimization in (A19) is derived by differentiating the parameters
within the integral with respect to h. As a result, the functional optimization of λ then obtains

λg =
1∫

hgQ(h)dh
(A20)

where g = 1, 2, . . . , R, λg denotes the gth element of λ. The iterative update for σ2
ML is given by

σ2
ML = arg max

σ2

∫
Q(h)

(
−N0

2 ln
(
πσ2

)
−

1
2σ2 ‖y− Ah‖2

)
dh

= 1
N0

∫
Q(h)

(
‖y− Ah‖2

)
dh

(A21)
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where p
(
y

∣∣∣∣h, A, σ2
)
=

(
πσ2

)−N0/2
exp

(
−

(
1/2σ2

)
‖y− Ah‖2

)
and N0 = K × T. However, the integral

forms in Equations (A20) and (A21) are complex to compute and analyzed analytically. Thus, an
approximation to Q(h) is exploited. Notice that the solution h naturally splits its elements into distinct
subsets hM and hP consisting of components ∀m ∈M such that hm > 0 and components ∀p ∈ P such
that hP = 0. Hence, this can be derived as follows:

F(h,λ) = F
(
hM,λM

)
+ F

(
hP,λP

)
+ G (A22)

Defined F
(
hM,λM

)
= 1

2σ2 ‖y − AMhM‖
2 + λT

MhM − (logλ)T
M1M, F

(
hP,λP

)
= 1

2σ2 ‖y − APhP‖
2 +

λT
PhP − (logλ)T

P1P, and G = 1
2σ2

[
2
(
AMhM

)T(
APhP

)
− ‖y‖2

]
. Here, the term ‖y‖2 is a constant and the

cross-term
(
AMhM

)T(
APhP

)
measures the orthogonality between AMhM and APhP, where AM and

AP denote the sub-matrix of A that corresponds to hM and hP. To obtain a simplified expression in
Equation (A22), the F(h) function can be approximated as F(h,λ) ≈ F

(
hM,λM

)
+ F

(
hP,λP

)
and the G

can be safely discounted since its value is typically much smaller than F
(
hM,λM

)
and F

(
hP,λP

)
. Thus,

the approximation of Q(h) can be expressed as

Q(h,λ) = 1
Zh

exp[−F(h,λ)]

≈
1

Zh
exp

[
−

(
F
(
hM,λM

)
+ F

(
hP,λP

))]
= 1

ZM
exp

[
−F

(
hM,λM

)]
1

ZP
exp[− F

(
hP,λP

)
]

= QM
(
hM

)
QP

(
hP

)
(A23)

Defining ZM =
∫

exp
[
−F

(
hM,λM

)]
dhM and ZP =

∫
exp

[
−F

(
hP,λP

)]
dhP. With the purpose of

characterizing QP
(
hP

)
, some positive deviation to hP is needed to be allowed for, whereas the hP values

will reject all negative values due to CMF only accepting zero and positive values. Thus, hP admits
zero and positive values in QP

(
hP

)
. The approximation of the distribution QP

(
hP

)
is then utilized in

the Taylor expansion as the maximum a posterior probability (MAP) estimate. Therefore, with hMAP,
one obtains

QP
(
hP ≥ 0

)
∝ exp

−
[ (
∂ F
∂h

)∣∣∣∣∣
hMAP

]T

P
hP −

1
2 hT

PCPhP


= exp

[
−

(
ChMAP

−
1
σ2 A

T
y + λ

)T

P
hP −

1
2 hT

PCPhP

] (A24)

where CP = 1
σ2 A

T
PAP and C = 1

σ2 A
T

A. The integration of the term QP
(
hP

)
in Equation (A24) is hard to

derive in its closed form expression for analytical evaluation, which subsequently prohibits inference of
the sparsity parameters. A fixed form distribution is employed for computing variational approximate
QP

(
hP

)
. As a result, the closed form expression is obtained. Subsequently, the term hP only takes on

nonnegative values, so a suitable fixed form distribution is to use the factorized exponential distribution
given by

Q̂P
(
hP ≥ 0

)
=

∏
p∈P

1
up

exp
(
−hp

up

)
(A25)

By minimizing the Kullback–Leibler divergence between QP and Q̂P, the variational parameters
u =

{
up

}
where ∀p ∈ P can be derived as:

u = arg= min
u

Q̂P
(
hP

)
ln

Q̂P(hP)
QP(hP)

dhP

= arg= min
u

Q̂P
(
hP

)[
ln Q̂P

(
hP

)
− ln QP

(
hP

)]
dhP

(A26)
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Solving Equation (A26) for up leads to the following update [37]:

up ← up

−b̂p +

√
b̂2

p + 4
(Ĉu)p

ũp

2
(
Ĉu

)
p

(A27)

The approximate distribution for components hM can be obtained by substituting F
(
hM,λM

)
into

QM
(
hM

)
as follows:

QM
(
hM

)
= 1

ZM
exp

[
−F

(
hM,λM

)]
∝ exp

[
−

(
1
2 hT

MCMhM −
1
σ2 yTAMhM + λMhM

)] (A28)

In Equation (A28), the function QM
(
hM

)
will be expressed as the unconstrained Gaussion with

mean hMAP
M and covariance C

−1
M based on a multivariate Gaussian distribution. The term CM denotes

the sub-matrix of C. The sparsity parameter is then obtained by substituting Equations (A24), (A25),
and (A28) into Equation (A20) as presented in Equation (A29):

λg =


1∫

hgQM(hM)dhM
= 1

hMAP
g

if g ∈ M
1∫

hgQ̂P(hP)dhP
= 1

ug
if g ∈ P

(A29)

and its covariance X is given by

Xab =


(
C
−1
P

)
ab

, if a, b ∈ M

u2
pδab, Otherwise.

(A30)

Similarly, the inference for σ2 can be computed from Equation (24) as

σ2 =
1

N0

∫
Q(h)

(
‖y− Ah‖2

)
dh (A31)

where

ĥg =

{
hMAP

g if g ∈ M
ug if g ∈ P

The core procedure of the proposed CMF method is based on L1-optimal sparsity parameters.
The estimated sources are discovered by multiplying the respective rows of the Wk(ω) components
with the corresponding columns of the Hk(t) weights and time-varying phrase spectrum e jφk(ω,t).
The separated sources ŝ j(t) are obtained by converting the time-frequency represented sources into
time domain.
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