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Abstract: Visual contents such as movies and animation evoke various human emotions. We examine
an argument that the emotion from the visual contents may vary according to the contrast control
of the scenes contained in the contents. We sample three emotions including positive, neutral and
negative to prove our argument. We also sample several scenes of these emotions from visual contents
and control the contrast of the scenes. We manipulate the contrast of the scenes and measure the
change of valence and arousal from human participants who watch the contents using a deep emotion
recognition module based on electroencephalography (EEG) signals. As a result, we conclude that
the enhancement of contrast induces the increase of valence, while the reduction of contrast induces
the decrease. Meanwhile, the contrast control affects arousal on a very minute scale.

Keywords: emotion; EEG; Dataset for Emotion Analysis using Physiological Signals (DEAP);
convolutional neural network (CNN); contrast; visual contents

1. Introduction

We watch and appreciate various visual contents such as movies, dramas, animation etc.
The scenes from the contents evoke diverse emotional responses from us. The emotions from the scene
can be categorized through Russell’s emotion model such as excitement, happy, pleased, peaceful,
calm, gloomy, sad, fear and suspense [1]. The story line of visual contents is regarded as one of the
most important factors that evoke a specific emotional response. For example, the battle scene between
the fisher and sharks from an animation “The old man and the sea” evokes suspense. The scene of the
settled forks from an animation “The man who plant trees” evokes peaceful or calm. We regard the
story line of visual contents as latent factor of an emotional response, since it is the most important
and major factor that affects the emotional responses. In addition to the story line, many researchers
have questioned whether the representation of visual contents such as colors or contrasts can affect the
emotional responses. Since color of a visual contents such as color of a cloth is very hard to change,
we concentrate on the contrast of a scene, which affects the whole scene of the contents.

The purpose of our research is to examine how the emotional responses from visual contents are
affected from the change of the contrast of a scene. Enhancing or reducing the contrast is expected to
increase or decrease the emotional responses, respectively. In many applications, positive emotional
responses such as happy or peaceful are magnified to delight the audiences further. Negative responses
such as sad or fear are required to get reduced to relieve the audiences who feel uncomfortable for
the scenes.
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The assumption of this study that the emotional responses can be affected from the change of
the contrast is backgrounded from biological observation. The lower or higher contrast can affect the
number of photons arriving at the retina of an eye. Since the difference of the intensities of the photons
is reduced, the brain reflecting on the neurons of retina can produce different biosignals, since the
different biosignals can be interpreted as the change of valence and arousal. The relationship between
the contrast and emotional responses should be examined in a very careful approach.

To reveal the relationship between the contrast and emotional response, we collect some scenes
from various visual contents of three representative emotions: neutral, positive and negative. Then,
we control the contrast of the scenes in both directions, either enhancing or reducing. For each scene
manipulated, we employ human participants to appreciate the contents, while their EEG biosignals
are captured and processed using a deep learning-based emotion recognition model. We prove that
the contrast change of a visual contents affect the arousal or valence estimated from the emotion
recognition model. The overview of our framework is illustrated in Figure 1.

The estimation of the relations between contrast and valance/arousal by participants’ annotation
is a subjective approach. For a reliable estimation of the relation, a series of objective approaches that
employ the biosignals estimated from the participants. Many researchers employ diverse biosignals
including EEG, electrocardiography (ECG), electromyography (EMG), photoplethysmogram (PPG),
respiration rate (RSP) and galvanic skin response (GSR), etc. Since people cannot control their own
biosignals, the biosignal-based approaches for estimating valence and arousal gather higher confidence
than user survey-based approaches.

Furthermore, we carefully experiment the change of emotion recognition for the visual contents
and compare the magnitude of emotion change due to the contrast control. From this experiment,
we can suggest how to control visual contents to strengthen or weaken the emotion of the contents.

The change of emotion is expressed by the value of valence and arousal, which are measured
through EEG biosignal. Actually, many researchers have presented a series of models that measure
valence and arousal from EEG signal. Among these works, some of them employ classical machine
learning schemes including Bayesian [2], dual tree-complex wavelet packet transform (DT-CWPT ) [3],
decision fusion [4], support vector machine (SVM) [5,6], hidden Markov Model (HMM) [7] and brain
computer interface (BCI) [8]. Some recent models employ deep learning schemes such as long short
term memory (LSTM) recurrent neural network (RNN) [9], convolutional recurrent neural network
(CRNN) [10], 3D CNN [11], LSTM [12] and multi-columned CNN [13]. The models using conventional
machine learning schemes show about 70% accuracy, while the recent deep learning-based models
show about 80% accuracy.

This paper is organized as follows. In Section 2, we briefly review several works for deep
learning-based emotion recognition model and relationship between chroma and human emotion.
In Section 3, we present outlines of our experiment including how sample movie clips are selected from
visual contents and contrast of these clips are controlled. We explain our emotion recognition model
and experiment strategy in Section 4, and present analysis and limitation of our work in Section 5.
Finally, we draw conclusion of our work and suggest the direction of future work in Section 6.
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Figure 1. The overview of our framework: three groups of participants watch three different categories
of contents: contrast enhanced, original, and contrast reduced. We process their EEG signals through
our multi-columned emotion recognition model and estimate their valence and arousal.
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2. Related Work

In this section, we describe previous studies around deep learning, emotion recognition
approaches and emotional responses from visual contents.

2.1. Deep Learning-Based Emotion Recognition Models

2.1.1. Early Models

Researchers employed handcrafted features to apply them to a variety of machine learning
algorithms such as support vector machine (SVM) and principal component analysis (PCA).
They showed acceptable accuracy, but the performance of their framework heavily relied on feature selection.

Many researchers have employed deep learning-based approach which does not require delicate
feature selection process. Jirayucharoensak et al. [14] proposed a model of recognizing emotion from
unstationary EEG signals. They used stacked autoencoder (SAE) to learn features from EEG signals.
To minimize unstationary effect, they exploited PCA that extracts the most important component and
covariate shift adaptation, which is also effective to avoid overfitting.

Khosrowabadi et al. [15] presented a multi-layer feedforward network model to distinguish
emotion from unstationary EEG signals. The network model consists of spectral filtering layer for
analyzing input signals and shift register memory layers. They identified emotion and employed
arousal and valence level to represent the emotion according to Russell’s model.

2.1.2. Deep Learning-Based Models

The early frameworks for emotion recognition have a common limitation in selecting features by
human experts’ hands. As the progress of convolutional neural network (CNN), many researchers
have overcome such a limitation. Salama et al. [11] presented 3D CNN model to recognize emotion
from multi-channel structured EEG signals. Since EEG signals are spatio-temporal, their 3D CNN
is a quite proper structure to be fed the signals. They also showed that data augmentation phase is
helpful to improve the performance of emotion recognition and avoid overfitting. They tested the
proposed model on the DEAP dataset and showed 88.49% and 87.44% accuracy with regard to arousal
and valence, respectively.

Moon et al. [16] proposed a CNN-based model for recognizing emotion from EEG signals.
Their main distinguishing point is connectivity features which is useful to describe synchronous
activation in many different regions of brain. Therefore, they effectively acquired a variety of
asymmetric brain activity patterns which is a key role to recognize emotion. They were not solely
dependent on CNN structure, but showed that the partial feature selection contributes to improving
the CNN-based approaches.

Croce et al. [17] classified brain and artifactual independent components by employing
CNN-based model. Although, their research goal was not emotion recognition, but independent
component analysis is essential to conventional feature selection approach. They conducted heuristic
selection of machinery hyperparameters and CNN-based self-selection of the interesting features.
They showed acceptable performance with cross validation 92.4% for EEG.

Yang et al. [13] proposed multi-channel structured CNN model to recognize emotion from
unstationary EEG signals. Their model consisted of several independent recognizing modules, where
they designed each module based on DenseNet [18]. For the final decision, they merged the results
from the modules. They compared their performance with the existing studies and showed better
accuracy for valence and arousal. They also extended their emotion recognizer to apply the task of
distinguishing emotional responses to photographs and artwork [19].

Zhang et al. [20] presented an effective spatial attention map (SAM) for weighing
multi-hierarchical convolutional features. SAM is useful for suppressing filter values corresponding
to background features. They also proposed multi-model adaptive response fusion (MAF) approach
which is for adaptive weighted fusion of multiple response maps generated by attentional feature.
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Recurrent neural network (RNN) is widely used for processing time series data such as writing.
Since EEG signals are time-sequential, many researchers have employed RNN to recognize emotion
from the signals. Li et al. [21] proposed emotion recognizer based on RNN structure. They focused on
three types of properties of EEG signals: frequency, spatial and temporal. To interpret the EEG signals
in frequency and spatial domain, they made extraction of rational asymmetry (RASM). They extracted
temporal correlation through LSTM RNN structure. They tested the proposed model by employing
DEAP dataset and showed 76.67% mean accuracy.

Xing et al. [12] developed a model for recognizing emotion by employing multi-channel EEG. Their
framework consists of an emotion time model and a linear EEG mixing model. The framework separate
source of EEG signals from collected EEG signals, which improve the performance of classifying.
The technical background of EEG mixing model is based on emotion timing model and stacked
autoencoder (SAE). They tested their model using DEAP dataset and show the 81.10% and 74.38%
accuracy for valence and arousal, respectively.

Several researchers employed conventional feature selection model to improve deep
learning-based model. Some researchers often applied deep learning-based model to the other machine
learning framework, other researchers used several different deep learning-based models.

Yoo et al. [22] presented a neural network-based recognizer for six types of emotional states
including happy, joy, fear, anger, sadness and despair. They tested their proposed model for a variety
of multi-modal bio-signals including EEG, PPG, GSR and ECG.

Yang et al. [23] proposed hybrid neural network-based model by combining RNN and CNN
for recognizing emotion. They employed baseline signals in pre-processing phase, which improved
the performance of recognition. Such pre-processing method resembles conventional feature-based
techniques. They also had the proposed model to learn the way of representing unstationary EEG
signals for recognizing emotion. In their hybrid model, the RNN module makes an extraction of
contextual information from signals and the CNN module measures inter-channel correlations among
EEG signals.

2.1.3. Relationship Between Chroma and Human Emotion

In early days, Adams and Osgood [24] presented a classic research on the affective meaning of
color, which pioneers to reveal the relationship between color and affections.

Recently, Suk et al. [25] researched characteristics of emotional responses to hue, lightness
and chroma. In this study, subjects are asked for assessing their emotional response against various
color stimulus. The result shows chroma level and lightness significantly affect valence and arousal.
Although the result support that color stimulus could incur emotional response, the study relies on
subjective self assessment whereas our research utilizes objective EEG signal.

Jun et al. [26] performed a study to find out how can we modify an image’s color characteristics
in order to enhance its emotional impact. Measurements are performed to how emotional responses
are changed due to different color and contrast, also regarding contexts of the image. They make use
of skin conductance and heartbeat rate variation to quantify emotion. In the result, color and contrast
clearly affect emotional response, but aspect of the emotional impact is different amongst context of
the image. The study confirms our priori that emotional response is affected by colors and gives future
study improvements.

Rajae-Joordens [27] insisted the effect of hue, lightness and saturation of colored light upon human
arousal and valence is significant. In the research, both objective and subjective measurements for
emotional response under various colored lights are performed. Although the result proves features
of color seem to affect human emotion, discrepancy between results from objective and subjective
measurements also explains why there are different aspect of change in emotional responses between
various studies.

With recent advances in deep learning, various image transfer techniques are introduced.
Peng et al. [28] studied how emotional responses are being changed by transferring image to another.
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In general, image transfer techniques lead in changed color tone and texture. A quantitative evaluation
is performed to find out differences in emotions from against original image to image transferred one.
The result shows image transference, in terms of color and texture, evokes some change in emotional
response, albeit causal analysis against color or contrast are not discussed.

3. Contrast Change of Visual Contents

3.1. Sampling Clips of Three Representative Emotions

We selected three well-known animations for our study: Loving Vincent [29], The old man and the
sea [30], and A man who plants trees [31]. These animations are recognized as distinctive rendering
styles. We selected the artistically styled contents, since we concentrated on the color variation of the
contents. Since the color variation of artistic styled image was narrower than that of real photograph,
the effect of contrast control could be more drastic for artistic styled images. Therefore, the effect of
contrast control on artistically styled images for emotion variation could be more dominant than that
on real photographs. We will extend the target visual contents to real photographs in future work.

From the selected visual contents, we sampled three different scenes, each of which contain
positive, neutral and negative emotion, respectively. For this purpose, we sampled 10 scenes from
each of the contents and hired 10 human participants to mark the emotion of the scene for the three
categories: positive, neural, and negative. We also asked the participants to suggest the background
of their selection. From the votes of the participants, we selected the scenes of highest votes for
our experiment. The emotions from the sampled clips for three emotions are illustrated in Figure 2,
which were estimated from the model we describe in Section 4. The emotions from the clips were
grouped into three different emotions: positive, neutral and negative. From Figure 2, we concluded
that the emotions marked by 10 human participants on the clips were correct.

Negative Neutral Positive

Figure 2. Ground truth emotions estimated from the clips sampled from the three contents.

3.1.1. Scenes of Positive Emotion

From Loving Vincent, the scene where Armand talks to Marguerite, the daughter of Dr. Gachet,
about good memories of Vincent van Gogh was selected as the scene of most positive emotion.
The major reason of the selection is that this scene that reminds of a positive memory about Vincent
evokes positive emotion.

From The old man and the sea, the scene of the fantasy that a boy is playing with fishes in the
sea was selected. The major reason of the selection is that playing with fishes in the sea is a fantasy
from childhoods.
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From A man who plants trees, the scene of happy people living in a village filled with a lot of trees
was selected. The major reason is that this last scene of the animation shows how the effort of a man
can make people happy and a village flourish.

The scenes of positive emotion are illustrated in Figure 3.

From Loving Vincent

From The old man and  the sea

From A man who plants trees

Figure 3. The scenes of positive emotion.

3.1.2. Scenes of Neutral Emotion

Most of the participants selected the scenes that happened early in the contents as scenes of neutral
emotion. Since the early scenes introduced the actors of the contents and explain their situations,
the emotional response from these scenes tended to be neutral.

From Loving Vincent, the scene where Armand is visiting Auvers was selected. They selected this
scene since visiting Auvers is an action that does not evoke any emotion responses.

From The old man and the sea, the opening scene where a boy visits the old man and talks about his
dream was selected. Similar to the Loving Vincent scene, talking about a dream does not evoke either
positive or negative emotions.

From A man who plants trees, the scene where the narrator encounters Elzeard Bouffier and visits his
house was selected. Similar to the above contents, visiting a house does not evoke emotional responses.

The scenes of neutral emotion are illustrated in Figure 4.
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From Loving Vincent

From The old man and  the sea

From A man who plants trees

Figure 4. The scenes of neutral emotion.

3.1.3. Scenes of Negative Emotion

Most of the participants selected scenes of conflict as the scenes of negative emotion. The existence
of unpleasant objects such as blood accelerated the negative emotion.

From Loving Vincent, the scene where Louise Chevalier, the maid of Dr. Gachet speaks ill of
Vincent van Gogh was selected as a scene of negative emotion. Since most of the participants had good
feelings about Vincent, they felt unpleasant and negative about the conversation between Louise and
Armand.

From The old man and the sea, the scene of bloody struggle between sharks that came to hunt
the tuna caught by the old man was selected as negative. The blood spread on the sea added the
negative emotion.

From A man who plants trees, the scene that describes the process of falling down in a village due
to the harsh weather was selected as a scene of negative emotion.

The scenes of negative emotion are illustrated in Figure 5.
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From Loving Vincent

From The old man and  the sea

From A man who plants trees

Figure 5. The scenes of negative emotion.

3.2. Controlling the Contrast of the Scenes

We applied linear contrast control scheme, which has been widely used in many image processing
applications. The reason is that both contrast enhancement and contrast reduction were required.
Since we did not want to affect color factor in the contrast control, we converted the color in RGB space
into HSV space and applied contrast control for the S (saturation) and V (value). After the control,
we re-converted the color in HSV space into RGB space.

A contrast controlled value of saturation, denoted as S′, was estimated as follows:

S′ = S + (S− Savg) ∗ α,

where Savg is the average value of the saturation, and α is a control parameter. We set α as a negative
value for contrast reduction. We control the contrast of the scenes from the selected visual contents.
The result of the control is shown in Appendix A. We set α = 0.1 for enhancement and α = −0.1
for reduction.

4. Implementation and Results

4.1. Implementation Detail

We implemented our model in a personal computer with Intel Core i7 9600 CPU (Intel, San Jose,
CA, USA), 16 GB main memory, and nVidia GeForce TitanX GPU (nVidia, Santa Clara, CA, USA).
The model is implemented using Python with Pytorch library. Our multi-column structured emotion
recognition model was derived from our previous research [13]. The structure of our emotion
recognition model is illustrated in Figure 6. In this work, we build our recognition model with
five recognizing modules, since Yang et al. revealed that five modules showed the best performance in
recognizing emotion.
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(a) A CNN‐based recognizing module

(b) The multi‐columned structure of our model with 5 recognizing modules

Figure 6. Our multi-columned emotion recognition model with five recognizing modules: Each
module is composed of four convolutional layers, one max pooling layer and four fully connected
layers. The activation function we employ is a tanh function, which produces values in (−1,∼ 1).
The result of each module is a paired value of valence and arousal.

Hence the model was trained with a DEAP dataset [32], we provided a similar setup with the
DEAP. We used LiveAmp 32 and LiveCap [33], which allowed us to set up 32 channels following a
standard 10/20 system [34].

4.2. Data Collection

We followed the data collection strategy in [13]. For a training, we downsampled the EEG
signals of DEAP dataset to 128 Hz and applied a 4.0–4.5 Hz band pass filter. As a result, we sampled
128× 60 samples from each trial for 40 channels. Among them, we excluded eight channels for the
normalization. 32 channels of EEG signal became one row of our 2D input. Therefore, we sampled
32 consecutive samples from a single input for our model. Figure 7 illustrates the construction of a
single input data. For a test, we similarly built 32× 32 input data using the EEG signals captured
from participants.
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32 samples 32 samples

32 channels

32 channels

32 samples
Recognition model

Figure 7. The construction of input data: 32 consecutive samples captured from 32 EEG channels
constructs a single input vector for a recognizing module. Since we use five modules in our recognition
model, five consecutive samples are captured.

4.3. Deep Emotion Recognition Model

As we described before, three scenes were selected from each animation. We assumed that
contrast would more or less affects emotional response by the mood of the scene. 30 participants were
asked to watch each of the positive, neutral, and negative scenes from an animation, then move to next
animation after 30 s of rest. After nine playbacks, another nine playbacks were followed with increased
contrast, then last nine with decreased contrast. Each playthrough, consisting of 27 playbacks, was
preceded by 3 s of baseline recording. All recordings were started/stopped by human control, allowing
less than 1 s of error.

4.4. Model Training

To streamline our data to DEAP dataset, similar preprocessing is taken. We used EEGLab
with MATLAB to preprocess those recordings alongside the channel location file. The data were
downsampled to 128 Hz with a bandpass frequency filter from 4.0–45.0 Hz was applied. The order
of the channels was same as that of DEAP. The data were segmented into 27 trials. Our emotion
recognition model got preprocessed data and produced estimation upon valence and arousal level for
each trial.

Our model was trained using the DEAP dataset according to the strategy presented by [13].
For training and validation, DEAP dataset, which was composed of the EEG signals captured from
32 participants, was segmented into three subsets: 22 participants for training, five for validation,
and five for testing. Since each participant executed 40 experiments, the experiment data in the
datasets for training, validation and test were 880, 200, and 200, respectively. Furthermore, we sampled
32 consecutive values from equally-spaced different positions of an experiment data whose distance
was 7680/(32 ∗ k). Note that k is the number of modules of our model. We set k as 5 in this study.
In total, the number of training, validation and test samples for our model was 42,240, 9600 and 9600.

In many related literatures, various models have been presented to estimate valence and arousal
from EEG biosignal. They employ either classic machine learning techniques [2–8] or deep learning
techniques [9–13]. According to [13], the machine learning technique-based schemes present 71.66%
accuracy for valence and 69.37% for arousal in average, and the deep learning-based schemes present
81.4% and 80.5%, respectively. These research trends present a strong background for us to employ a
deep learning-based model for estimating valence and arousal using the EEG signals captured from
users. We present the precision, recall and F1 score of our model in Table 1, which was estimated in [13].

Table 1. The precision, recall and F1 score.

Precision (%) Recall (%) F1 Score (%)

Valence Arousal Valence Arousal Valence Arousal

85.57 86.66 80.18 81.02 82.79 83.75
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4.5. Experiment

We hired 30 human participants for our experiments and group them into three groups.
The distribution of gender and age of the participants for each group are suggested in Table 2.
Each group was required to watch three movie clips. We organized the movie clips into nine categories
as illustrated in Figure 8. The groups represented by three colors such as green, blue and yellow were
assigned to movie clips of different emotions.

Table 2. Gender and age distribution of the participants.

Gender Age

Female Male < 20 20s 30s > 40

group 1 6 4 2 7 1 0

group 2 5 5 1 7 1 0

group 3 5 5 1 8 1 0

positive neutral negative

Contrast 
up

Original

Contrast 
down

Group 1

Group 2

Group 3

Figure 8. Nine categories of movie clips combined by contents of three emotions and three contrast
variation. The color of each category corresponds to the human participant group.

A participant of a group was guided to watch three movie clips that belong to the same category.
The order of three movie clips was shuffled randomly. Each clip was played for 60∼90 s. After watching
three movie clips that belonged to one category, the participants had a day break to neutralize their
emotional responses. The schedule of our experiment is illustrated in Figure 9.
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day1 day2 day3 day4 day5

Group 1 Neutral‐
original break Negative‐

contrast down break Positive‐
contrast up

Group 2 Positive‐
original break Neutral‐

contrast down break Negative‐
contrast up

Group 3 Negative‐
original break Positive‐

contrast down Break Neutral‐
contrast up

Figure 9. The schedule for experiment of three groups.

Their emotional responses expressed by their EEG signals were processed through our multi-stage
emotion recognition module to extract valence and arousal. We present the valence and arousal
extracted from our experiment in Figures 10–12, respectively.

Neutral

Loving Vincent  The old man and the sea The man who plants trees

Original Contrast Up Contrast Down Original Contrast Up Contrast Down Original Contrast Up Contrast Down

val. arou. val. arou. val. arou. val. arou. val. arou. val. arou. val. arou. val. arou. val. arou.
0.1 0.05 0.54 0.06 ‐0.3 0.04 0.13 0.02 0.26 0.02 ‐0.32 0.04 0.14 0.07 0.11 0.04 ‐0.11 0.12
0.07 0.08 0.47 0.07 ‐0.37 0.12 0.09 0.06 0.18 0.14 ‐0.27 0.05 0.08 0.03 0.09 0.02 ‐0.17 0.06
0.02 0.05 0.48 0.03 ‐0.35 0.03 0.11 0.1 0.31 0.01 ‐0.27 0.01 0.03 0.01 0.21 0.01 ‐0.21 0.01
‐0.03 0.06 0.42 0.05 ‐0.28 0.04 0.05 0.02 0.3 0.05 ‐0.34 0.1 0.06 0.05 0.16 0.06 ‐0.09 0.05
‐0.01 0.1 0.4 0.09 ‐0.31 0.05 0.02 0.05 0.21 0.03 ‐0.29 0.14 0.01 0.03 0.18 0.07 ‐0.17 0.07
0.01 0.04 0.49 0.07 ‐0.42 0.08 ‐0.03 0.12 0.27 0.09 ‐0.21 0.02 0.09 0.02 0.06 0.12 ‐0.19 0.11
0.04 0.02 0.45 0.04 ‐0.36 0.05 ‐0.07 0.09 0.19 0.11 ‐0.25 0.03 ‐0.12 0.08 0.12 0.01 ‐0.11 0.03
‐0.05 0.03 0.39 0.01 ‐0.29 0.02 ‐0.06 0.03 0.21 0.12 ‐0.28 0.11 ‐0.07 0.06 0.22 0.06 ‐0.07 0.04
0.05 0.07 0.53 0.04 ‐0.33 ‐0.02 ‐0.11 0.07 0.39 0.04 ‐0.26 0.07 ‐0.01 0.02 0.19 0.09 ‐0.15 0.02
‐0.03 0.01 0.47 0.05 ‐0.25 0.05 ‐0.01 0.14 0.28 0.09 ‐0.36 0.08 ‐0.04 0.12 0.11 0.11 ‐0.14 0.05

(a) The data from user test

(b) The data plotted in valence‐arousal axis

valence valence valence

arousal arousal arousal

Figure 10. The valence and arousal extracted from the visual contents of neutral emotion.
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Positive

Loving Vincent The Old man and the sea The man who plants trees 

Original Contrast Up Contrast Down Original Contrast Up Contrast Down Original Contrast Up Contrast Down
val. arou. val. arou. val. arou. val. arou. val. arou. val. arou. val. arou. val. arou. val. arou.
0.48 0.02 0.72 0.01 0.21 0.12 0.51 0.05 0.74 0.01 0.43 0.02 0.38 0.07 0.62 0.03 0.17 0.03
0.51 0.06 0.76 0.04 0.15 0.1 0.63 0.01 0.85 0.03 0.45 0.01 0.53 0.03 0.66 0.01 0.25 0.06
0.53 0.07 0.74 0.06 0.13 0.04 0.62 0.12 0.72 0.05 0.4 0.06 0.48 0.01 0.69 0.05 0.21 0.04
0.56 0.01 0.77 0.02 0.09 0.03 0.55 0.03 0.75 0.13 0.51 0.03 0.45 0.05 0.72 0.01 0.35 0.13
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(a) The data from user test

(b) The data plotted in valence‐arousal axis
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arousal arousal arousal

Figure 11. The valence and arousal extracted from the visual contents of positive emotion.
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(a) The data from user test

(b) The data plotted in valence‐arousal axis
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arousal arousal arousal

Figure 12. The valence and arousal extracted from the visual contents of negative emotion.

5. Analysis

5.1. Analysis 1: The Comparison of Groundtruth Emotions

In the first analysis, we compared the valence and arousal of the original three emotions suggested
in Figures 10–12 through t-test. As illustrated in Table 3, p values for the valence of the pair of neutral
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and negative and neutral and positive from the three contents were less than 0.01, which denotes that
the difference of valence was significant. Meanwhile, p values for the arousals were all greater than
0.01, which denotes that the difference of valence was not significant. From the t-test, we concluded
that the movie clips we selected from the three contents showed distinctive valence and similar arousal.

Table 3. p values for the valences and arousals between neutral, positive and negative emotions from
the three contents.

Loving Vincent The Old Man and the Sea The Man Who Plants Trees

val. arou. val. arou. val. arou.

Neutral and Positive 3.84936× 10−14 0.82521 2.09928× 10−11 0.39830 7.92079× 10−12 1.0

Neutral and Negative 4.30645× 10−14 0.10998 2.28149× 10−11 0.01567 6.66321× 10−12 0.27336

5.2. Analysis 2: The Difference of Emotions from the Control of Contrast Affects Valence

In the second analysis, we compared the change of valence and arousal due to the control of
contrast. As illustrated in Figure 13, we recognized that the enhancement of contrast (up) increased
the valence of the contents and the reduction of contrast (down) decreased the valence for all the three
status of the emotion (neutral, positive and negative). Even though the amount of increase or decrease
of the valence varied according to the content, the increase or decrease happened for all the contents.

On the contrary, the arousal did not show a specific change from the control of contrast. As
illustrated in Figure 14, the control of contrast produced very minute change of arousal. Therefore,
we conclude that the control of contrast affected the valence only. Furthermore, the enhancement of
contrast increased valence and the reduction decreased valence. We executed t-test for the valence and
arousal suggested in Figures 13 and 14 and demonstrated that the valence was different significantly
and that the arousal was similar. The result of the t-test is suggested in Table 4.

valence

emotion contrast Loving 
Vincent

The old man 
and the sea

The man who 
plants trees average

neutral

up 0.46  0.26  0.15  0.29 

original 0.02  0.01  0.02  0.02 

down ‐0.33  ‐0.29  ‐0.14  ‐0.25 

positive

up 0.74  0.76  0.66  0.72 

original 0.48  0.57  0.51  0.52 

down 0.15  0.45  0.26  0.28 

negative

up ‐0.22  ‐0.05  ‐0.28  ‐0.18 

original ‐0.45  ‐0.44  ‐0.53  ‐0.47 

down ‐0.61  ‐0.74  ‐0.74  ‐0.70 
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Neutral Positive Negative
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up      original      down       up      original     down       up      original      down

Average of valence
Neutral Positive Negative

(a) The amount of change of valence due to the contrast control

(b) The change of valence from contrast control for each content (c) The averaged valence change from contrast control

Figure 13. The change of valence from controlling contrast.
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arousal

Loving Vincent The old man and the sea The man who plants trees
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arousal

emotion contrast Loving 
Vincent

The old man 
and the sea

The man who 
plants trees average

neutral

up 0.05 0.07 0.06 0.06 

original 0.05 0.07 0.05 0.06 

down 0.05 0.07 0.06 0.06 

positive

up 0.07 0.07 0.05 0.06 

original 0.05 0.06 0.05 0.05 

down 0.06 0.06 0.03 0.05 

negative

up 0.05 0.07 0.06 0.06 

original 0.08 0.13 0.07 0.09 

down 0.05 0.08 0.06 0.06 

(a) The amount of change of arousal due to the contrast control

(b) The change of arousal from contrast control for each content (c) The averaged arousal change from contrast control

Figure 14. The change of arousal from controlling contrast.

Table 4. p values for the valences and arousals between original contents and contrast controlled
contents for three original emotion.

Original Emotion Loving Vincent The Old Man and the Sea The Man Who Plants Trees

Emotions Control val. arou. val. arou. val. arou.

neutral original & up 7.766× 10−14 1.0 5.879× 10−7 1.0 5.342× 10−4 0.5527

original & down 6.859× 10−12 0.7343 7.803× 10−9 0.7941 3.451× 10−5 0.6606

positive original & up 1.754× 10−10 0.4495 2.194× 10−8 0.5248 1.754× 10−10 0.8598

original & down 9.166× 10−12 0.8502 1.025× 10−6 0.8198 9.166× 10−12 0.3604

negative original & up 3.296× 10−8 0.2025 1.695× 10−12 0.2526 3.773× 10−7 0.8279

original & down 1.618× 10−6 0.0716 4.981× 10−11 0.0332 2.108× 10−6 0.7278

5.3. Analysis 3: Comparison of Enhanced Emotions to the Original Emotions

In this analysis, we compared the enhanced valence from the control of contrast to the valence
of original contents. In Figure 15, the enhanced valence and reduced valence from the contents of
originally neutral state were compared with the valence from the original positive and the original
negative, respectively. Figure 15b shows the comparison for three contents and Figure 15c shows the
comparison for the averaged valence from the three contents. In the graphs, we concluded that the
enhanced or reduced amount of the valence did not reach the valence of original contents. For example,
the valence from the originally neutral emotion was enhanced due to the contrast up, while the amount
of the increased valence did not reach the valence of originally positive emotion.

The same result was observed for the originally positive and negative emotion. In Figure 16,
we compared the reduced emotion due to contrast down from originally positive emotion to the
neutral emotion. Even though the valence was reduced from the positive emotion, the valence was
still greater than the valence of neutral emotion.
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Similarly, in Figure 17, the emotion due to contrast up from originally negative emotion was
enhanced, which was recognized in the increase of valence. In this case, the valence enhanced from
the negative emotion was still less than the valence of neutral emotion.

original enhanced Loving Vincent The old man and  the sea The man who plants trees average

Negative ‐0.45  ‐0.44  ‐0.53  ‐0.47 

contrast down from 
neutral original ‐0.33  ‐0.29  ‐0.14  ‐0.25 

Neutral 0.02  0.01  0.02  0.02 

contrast up from 
neutral original 0.46  0.26  0.15  0.29 

Positive 0.48  0.57  0.51  0.52 

‐0.60

‐0.40

‐0.20

0.00

0.20

0.40

0.60

0.80

Loving Vincent The old man and  the sea The man who plants trees
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Neutral 
original
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from neutral 

Enhanced due to 
Contrast Up  
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‐0.60

‐0.40

‐0.20

0.00

0.20

0.40

0.60

Negative 
original
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original

Neutral 
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Reduced due to 
Contrast Down  
from neutral 

Enhanced due 
to  Contrast Up  
from neutral

(a) The comparison between the enhanced emotions from neutral and the original positive and negative emotions: 
Negative original emotions are compared to  the contrast down from neutral original, and positive original emotions are 
to the contrast up from neutral original.

(b) The graph of the comparison between the enhanced emotions    
from neutral and the original positive and negative emotions for 
the individual visual contents

(c) The graph of the comparison between the enhanced emotions    
from neutral and the original positive and negative emotions in  
average

Figure 15. Comparison of the enhanced emotions from neutral and the original positive and negative
emotions.

original enhanced Loving Vincent The old man and  the sea The man who plants trees average

Neutral 0.02  0.01  0.02  0.02 
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Positive original 0.15  0.45  0.26  0.28 

Positive 0.48  0.57  0.51  0.52 
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(a) The comparison between the enhanced emotion from positive and the original neutral emotion.

(b) The graph of the comparison between the enhanced emotion  from 
positive and the original neutral emotion for the individual visual contents

(c) The graph of the comparison between the enhanced emotion    
from positive and the original neutral emotion in  average

Reduced due to 
Contrast Down  
from positive 

Figure 16. Comparison of the enhanced emotions from positive and the original neutral emotion.
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original enhanced Loving Vincent The old man and  the sea The man who plants trees average

Negative ‐0.45  ‐0.44  ‐0.53  ‐0.47 
Contrast Up f rom 
Negative original ‐0.22  ‐0.05  ‐0.28  ‐0.18 

Neutral 0.02  0.01  0.02  0.02 

‐0.60

‐0.50

‐0.40

‐0.30

‐0.20

‐0.10

0.00

0.10

Loving Vincent The old man and  the sea The man who plants trees
‐0.50

‐0.40

‐0.30

‐0.20

‐0.10

0.00

0.10Negative 
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(a) The comparison between the enhanced emotions from negative and the original neutral emotion.

Enhanced  due to 
Contrast Up  
from negative 

Neutral  
original

Negative 
original

Enhanced  due to 
Contrast Up  
from negative 

Neutral  
original

(b) The graph of the comparison between the enhanced emotion  from 
negative and the original neutral emotion for the individual visual contents

(c) The graph of the comparison between the enhanced emotion    
from negative and the original neutral emotion in  average

Figure 17. Comparison of the enhanced emotions from negative and the original neutral emotion.

5.4. Analysis 4: Mostly Changed and Leastly Changed Contents

We compared the contents whose valence changed in the greatest scale in Figure 18 and in the least
scale in Figure 19. In Figure 18, we present three scenes whose emotions changed in the greatest scale.
As visually recognized, these contents contained landscape scenes with natural lights. Since these
scenes contained many components of various color and tone, the increase of the contrast enriched the
colorful expression of the scene, which enhanced the valence of the original contents. The decrease of
the contrast, on the contrary, blunted the colorful expression of the scene, which reduced the valence
of the original contents.

contents original change of 
valence

Contrast controlled scenes
Contrast Down Original Contrast Up

Loving Vincent neutral 0.40 

The Old man 
and  the sea negative 0.35 

Loving Vincent positive 0.30 

Figure 18. The contents whose emotions are mostly changed.
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The scenes in Figure 19 were affected in the least scale from the control of contrast. Since these
scenes were either fantastically illuminated scenes or indoor scenes, the colors in the components of
the scenes were not diverse. These monotonous colors were less affected by the control of contrast,
which resulted in the least enhanced or reduced valences from the original emotions.

contents original change of 
valence

Contrast controlled scenes

Contrast Down Original Contrast Up

The Old man 
and  the sea positive 0.16 

The man who 
plants trees neutral 0.14 

Figure 19. The contents whose emotions are leastly changed.

5.5. Analysis 5: Existing Study

Since most other works considered mono-color as stimuli, it was hard to directly compare our
result with other models. Jun et al. [26] pointed out that contents and contextual information may
affect emotional response alongside with color itself, therefore we carefully chose certain scenes with
emotional backgrounds. These scenes contained various colors and context, then raised leads in mixed
emotional response. Our model was to make “scene-wise” change in contrast, rather than changing
specific colors.

5.6. Limitation

An unexpected result of our contrast control scheme is that the intensity of the image also varies.
Enhancing the contrast may increase the average intensity of the image and reducing may reduce the
average intensity. In Figure 20, we sampled an image from three contents and estimate the change of
contrast and average intensity. The change of contrast was measured by sorting the pixels according to
their intensities and subtracting the average intensity of highest 10% pixels from that of darkest 10%
pixels. The results are illustrated in the rightmost column of Figure 20.

Even though the average intensity of an image varied, we still argued that the increase or decrease
of valence comes from the change of contrast rather than the average intensity in the following two
points. The first point is that the magnitude of the change of contrast is greater than the magnitude
of the change of average intensity. Since the change of contrast shows greater magnitudes than the
change of average intensity, we argued that the change of valence is affected by the change of contrast
rather than the change of average intensity.

Our second point is from existing literatures. Even though brightness is known to one of the cause
of emotional response, the study of Wilms and Oberfeld [35] indicates that brightness is relatively
weak driver of the change of emotional response. It causes limited increase for arousal and valence
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only for zero to lowly saturated colors. Therefore, we could assume that brightness is not the major
driver of observed effect.

Our third point is to employ user-annotated valence-arousal values. Considering user-annotated
valence-arousal values with the valence-arousal values estimated from EEG signals through emotion
recognition model can improve the confidence on the performance of our approach. However, our
experiment on participants collected only their EEG signals. Our next experiment on estimating human
emotion using EEG signals will collect user annotated valence-arousal values as well as EEG biosignals
and compare them to improve the confidence of our experiment.
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Figure 20. The change of contrast and intensity according to the contrast control.

6. Conclusions and Future Work

In this paper, we have proved that the contrast control of visual contents affect the valence of the
people who watch the contents. The enhancement of contrast increases valence, while the reduction
decreases. Arousal is not affected by the change of contrast. We have proved our argument by
extracting EEG biosignals from human participants and by recognizing valence and arousal using a
deep emotion recognition model.

We have a plan to extend this study to review the relations between other properties of contents
such as color with the emotion of visual contents. We also have a plan to apply the result of this study
in manipulating visual contents to satisfy users.
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Appendix A

The contrast-controlled scenes from the selected visual contents.

From A man who plants trees

From Loving Vincent

From A man who plants trees

Original scene

Original scene

Original scene

Enhanced contrast

Enhanced contrast

Enhanced contrast

Reduced contrast

Reduced contrast

Reduced contrast

Figure A1. The contrast-controlled positive scenes.
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From A man who plants trees

From Loving Vincent

From A man who plants trees

Original scene

Original scene

Original scene

Enhanced contrast

Enhanced contrast

Enhanced contrast

Reduced contrast

Reduced contrast

Reduced contrast

Figure A2. The contrast-controlled neutral scenes.
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From A man who plants trees

From Loving Vincent

From A man who plants trees

Original scene

Original scene

Original scene

Enhanced contrast

Enhanced contrast

Enhanced contrast

Reduced contrast

Reduced contrast

Reduced contrast

Figure A3. The contrast-controlled negative scenes.
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