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Abstract: Heating temperature is very important in the process of billet production, and it directly
affects the quality of billet. However, there is no direct method to measure billet temperature, so we
need to accurately predict the temperature of each heating zone in the furnace in order to approximate
the billet temperature. Due to the complexity of the heating process, it is difficult to accurately
predict the temperature of each heating zone and each heating zone sensor datum to establish
a model, which will increase the cost of calculation. To solve these two problems, a two-layer transfer
learning framework based on a temporal convolution network (TL-TCN) is proposed for the first
time, which transfers the knowledge learned from the source heating zone to the target heating zone.
In the first layer, the TCN model is built for the source domain data, and the self-transfer learning
method is used to optimize the TCN model to obtain the basic model, which improves the prediction
accuracy of the source domain. In the second layer, we propose two frameworks: one is to generate
the target model directly by using fine-tuning, and the other is to generate the target model by using
generative adversarial networks (GAN) for domain adaption. Case studies demonstrated that the
proposed TL-TCN framework achieves state-of-the-art prediction results on each dataset, and the
prediction errors are significantly reduced. Consistent results applied to each dataset indicate that
this framework is the most advanced method to solve the above problem under the condition of
limited samples.

Keywords: deep learning; temporal convolution network; transfer learning; generative adversarial
networks; furnace temperature prediction; multiple heating zones

1. Introduction

As one of the most important pieces of combustion equipment in the metallurgical production
process, the heating furnace is also the most important piece of energy consumption equipment in the
steel rolling production line. The optimization of the heating furnace is of great significance to iron and
steel metallurgical enterprises. The main function of the heating furnace is to heat the billet, make it
reach the predetermined temperature, and then roll it [1]. The heating temperature of billet determines
the quality of billet. However, the billet temperature cannot be directly measured. Therefore, we take
the temperature of the heating furnace collected by the thermocouple sensor as the billet heating
temperature. It is difficult to predict the furnace temperature accurately. It is mainly manifested in the
following aspects:

• Parameter complexity. There are many kinds of parameters in the production process of a heating
furnace, including the structural parameters of the heating furnace (heat exchanger model,
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thermocouple model), control parameters (furnace temperature of heating section, fan setting
opening, gas valve opening), thermal parameters (gas flow, oxygen content, nitrogen flow,
steam flow), etc., and the parameters have strong coupling and mutual influence.

• Temperature hysteresis. The heating process is a nonlinear, time-varying, and lagging process.
After the implementation of control, the effect will be delayed for a period of time. If the
corresponding countermeasures are made after the alarm is triggered, it will cause the loss of
production equipment and increase energy consumption. It is necessary to establish a time series
prediction model to predict the temperature change trend in advance, so as to adjust the control
strategy in time.

• Multi objective prediction. The heating process of billet in the furnace will pass through multiple
heating zones. Since different heating zones have independent adjustable control variables,
different heating zones correspond to different prediction tasks. At the same time, there is
parameter sharing between different heating zones, so the question of how to achieve efficient
and accurate prediction of multiple zones is a thorny problem.

In summary, the accurate prediction of furnace temperature is the core and foundation of furnace
optimization. The main purpose of forecasting the furnace temperature is to establish a billet heating
tracking model to provide the judgment basis for manual operation. If the furnace temperature
can be predicted and controlled correctly, the operator can maintain normal fuel distribution. Thus,
the operation cost can be minimized, the efficiency of the heating furnace can be optimized, and the
service life of the heating furnace can be improved. In addition, another purpose of our study is to present
a general algorithm for sensor data analysis of industrial systems with different task requirements.

As mentioned above, a heating furnace is a typical complex industrial control object. The heating
process of billet has the characteristics of large lag and large inertia, being multivariable, time-varying,
and nonlinear [2]. In addition, it is difficult to accurately predict the temperature distribution in the
furnace due to the difficulty in measuring the temperature in the furnace and many external interference
factors. Some scholars have tried to solve these problems: the autoregressive integrated moving
average model(ARIMA) [3] based statistical learning method and machine learning methods such as
support vector regression(SVR) [4] and tree model [5] have been applied to temperature prediction.
C. Gao et al. combine fuzzy algorithm and support vector machine to build a fuzzy least square
support vector machine to predict temperature [6]. However, the statistical learning method is not
suitable for fitting nonlinear and non-stationary data; machine learning methods such as SVR cannot
obtain the correlation of data in time series. In contrast, artificial neural network(ANN) has the
advantages of being nonlinear and self-learning, which makes the modeling of complex systems
simple [7]. Some scholars choose to establish time series models based on a BP neural network for
temperature prediction [8]. Chen et al.’s improved extreme learning machine(ELM) [9] method solves
the problems of ANN, such as overfitting and slow learning; however, due to the time lag of the
heating process, it cannot predict the billet exit temperature [10]. For the defects of the above models
applied to the prediction, the deep learning method provides an effective solution.

Multiple hidden layers in the deep learning structure can automatically extract the relevant
features and timing information of multiple variables in the heating process, giving the structure
a powerful feature learning ability [11]. At present, deep learning technology has been applied to
the prediction of furnace temperature. The most widely used methods include the recurrent neural
network (RNN) [12] and its variant short-term memory network (LSTM) [13]. However, RNN is prone
to the problem of gradient disappearance. LSTM solves the problem of gradient disappearance to
a certain extent through the gate control unit, but the training of LSTM needs a lot of data and takes a lot
of time. On the other hand, a deep convolution neural network (CNN) has been successfully applied in
target classification [14], natural language processing [15], and other applications. CNN is being used
to process sequence data by more and more scholars, and the hybrid CNN-LSTM model has achieved
magnificent performance in sequence processing [16]. Although RNN and its variants show good
performance in sequence processing, as shown in [17] and [18], there are still some problems which
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need to be solved, such as the fact that it is hard to introspect, difficult to train correctly, and not easy to
build an appropriate network architecture for better results. These problems affect the performance of
RNN and its variants when applied to furnace temperature prediction.

Recently published research shows that temporal convolutional network (TCN) models perform
significantly better than recurrent network structures in sequence modeling problems, including speech
analysis and synthesis tasks [19]. Compared to RNN and LSTM, TCN combines casual convolution
and dilated convolution [20], and it can capture input sequences of arbitrary length without leaking
information. By introducing a residual network mechanism [21], TCN can train deep networks
effectively to keep memories longer than LSTM. TCN reduces the training cost through layered sharing
of convolution kernels. In terms of structure, TCN does not have the complicated gating structure of
LSTM, and the overall framework is simpler. Considering the diversity of furnace variables, we believe
that convolutional networks can extract more useful features than RNN and its variants. Due to the
lag of furnace temperature prediction and the continuity of the heating process, this study belongs to
the category of time series modeling. Based on the above description, we redesigned a TCN structure
as the source model to predict the furnace temperature.

In actual production, however, the billet passes through multiple heating zones in the furnace.
The furnace temperature of each heating zone is affected by multiple control variables, so the data
collected from the thermoelectric coupling sensor will be unstable and nonlinear. Many industrial
sensor data have the above characteristics. Since the neural network has no extrapolation, the existing
neural network cannot accurately predict such industrial sensor data. In Section 3, we will take the
furnace as an example to introduce the data of this type of industrial sensor in detail. Based on the
above analysis, it is difficult to accurately predict the temperature of most heating zones in the heating
furnace system. In addition, training different models in different heating zones will increase the
calculation cost. In view of the above two difficulties, and combined with the characteristics of the
similarity of each heating zone, we propose a multi heating zone temperature prediction framework
based on transfer learning (TL) [22]. TL uses the knowledge learned from a problem to solve a related
but different problem, and it has been widely used in text classification [23], image recognition [24],
and other tasks [25]. Unfortunately, prior to this, there have been no studies applying TL to temperature
prediction in multiple heating zones. Therefore, we propose the deep transfer learning based on
temporal convolutional networks for heating furnace temperature prediction for the first time.

According to the disadvantages of the neural network, this paper chooses the suitable heating
zone as the source data. Then, we redesign and optimize TCN as the source domain model, fine-tuning
the high-level weight of the source model through the data generated by GAN to complete the transfer
of knowledge. The main contributions of this paper are summarized as follows:

• This paper describes the first time that transfer learning is used to solve the problem of temperature
prediction in multiple heating zones of the same furnace. First, we use the generative adversarial
loss for domain adaptation, and we then use the fine-tuning method to complete the target domain
task. The framework proposed in this paper can obviously improve the prediction accuracy.

• Combining with the auto-correlation function and maximum mean discrepancy (MMD), a sliding
window size selection method in the context of transfer learning is first proposed, which provides
a novel idea for window size selection.

• We propose a weight initialization method for neural networks based on transfer learning
in this paper.

• It is the first time that transfer learning is used to solve the problem of the neural network having
no extrapolation.

• We optimize the structure and parameters of TCN to improve its prediction performance for
time series.

• Through many experiments, we provide the consistent results of 10 different heating zones,
which prove that the TCN optimization method and the transfer learning framework proposed
in this paper are the most advanced methods for multiple heating zone prediction.
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The rest of this paper is organized as follows. Section 2 introduces the theoretical background of
the framework, including TCN, GAN, and TL. Section 3 introduces the structure of the framework and
the related preparations based on the framework. In Section 4, the framework is described in detail,
and nine target datasets are used for experimental research. Conclusions and future work are presented
in Section 5.

2. Related Work

From the above analysis, we can see that the heating process has the characteristics of hysteresis,
parameter diversity, and multi-objective prediction, so we need to predict the temperature change trend
in advance. Compared with the classical LSTM network, we believe that TCN has better performance
in furnace temperature prediction. Due to the sharing of the parameters in each heating zone, we use
transfer learning to solve the multi heating zone temperature prediction task. Therefore, this part
mainly introduces the related knowledge of TCN and transfer learning, as well as the improvements
we have made to them, so as to predict the furnace temperature more accurately.

2.1. Temporal Convolutional Network

As mentioned earlier, we need to establish a billet temperature prediction model to predict the
billet temperature in advance. Therefore, a mapping function as shown in Equation (1) needs to
be established in order to predict billet temperature; it can predict the output y at time t only by
input data {x1, x2, . . . xt−1}, without relying on future input data

{
xt, xt+1, . . . xT

}
. TCNs introduce causal

convolution to deal with such sequence problems without information leakage.

ŷt = f (x0, x1, . . . xt−1). (1)

Our goal is to find the mapping function f (·) that minimizes the error between the predicted
result and the actual value.

After the above analysis, the prediction model of furnace temperature can be regarded as a series
modeling problem based on the time data. Long-term and effective history data are required in order
to minimize the errors between predicted and observed values. For the TCN prediction model of
furnace temperature, the capturing history information is limited by the size of the convolution kernel.
Using dilated convolution makes it possible for the network to obtain a large receptive field with
a relatively small number of layers. More formally, for a 1 − D sequence input x ∈ Rn and a filter
f : {0, 1, . . . k− 1} → Rn , the furnace temperature F at time t is defined as follows:

F(t) = (xd ∗ f )(t) =
∑k−1

i=0
f (i) · xt−d·i, (2)

where d is the dilation factor, k is the filter size, and t − d · i accounts for the direction of the past.
The effective history of one such layer is (k − 1) · d. When d = 1, a dilated convolution becomes
a regular convolution. We provide an illustration in Figure 1a. The network’s receptive field RF is
defined as follows:

RF = k · dmax. (3)

The longer the dependency that it captures, the deeper the layers that it stacks. The increase in the
number of convolutional layers brings the problems of gradient disappearance, complex training,
and poor fitting effects. In order to solve these problems, TCN introduces residual connection [18]
to realize effective training of a deep network. Residual connection allows the network to transfer
information across layers, and it contains a branch that leads out to a series of transformations, F,
whose outputs are added to the input, x, of the block. A residual block consists of two layers of dilated
causal convolution and nonlinear mapping. Weight norm and dropout are added to each layer to
regularize the network. The residual block in the basic TCN structure is shown in Figure 1b.
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Formally, we consider defining residual blocks as follows:

o = Activation(F(x) + x). (4)

In addition, 1D fully-convolutional network (FCN) [26] architecture is also used in the TCN.
It accepts input of any size and uses the convolution layer to up-sample the feature map of the last
convolution layer, returning it to the same size as the input and then predicting. This gives our
framework the ability to handle arbitrary input length sequences.

Since we cannot directly measure the billet temperature, we need to accurately predict the furnace
temperature. In this regard, we improve the structure and parameters of the TCN. Considering the
diversity of heating parameters, we add a new convolution layer before the dense layer of the TCN to
extract more comprehensive features. In addition, we propose a weight initialization method based on
transfer learning. Details of these two improvements are presented in Section 4.

2.2. Transfer Learning for Time Series

As mentioned before, re-modeling in each heating zone will increase the calculation cost, and, due
to a series of characteristics of industrial data and the limitation of the number of samples, the prediction
error of the existing model may not meet the production requirements. Transfer learning is a novel
method to solve the temperature prediction of multiple heating zones in a heating furnace; it applies the
knowledge learned in the current heating zone to another different but related heating zone, making it
more efficient and more accurate when completing new tasks.

Although transfer learning and deep learning have been widely used in computer vision and
natural language processing, there is no complete and representative work in time series processing.
The authors of [27] systematically discuss time series classification based on deep transfer learning.
Knowledge transfer is accomplished by fine-tuning. Since then, transfer learning has been successfully
applied to time series fields such as wind speed prediction of different wind farms [28] and life prediction
of manufacturing tools [29]. However, none of the above papers introduce the domain adaptive
method of time series. Inspired by this, this paper first proposes a framework that combines transfer
learning and deep learning knowledge to solve the problem of multiple heating zone temperature
prediction. In addition, a GAN network is used to realize domain adaption in order to maximize the
similarity between the target domain and the source domain.

According to the general transfer method, the transfer learning method can be divided into
instance transfer, feature transfer, relationship transfer, and model transfer [30]. Since this article studies
the temperature prediction of different heating zones of the same furnace, the heating conditions of
each heating zone are similar. Therefore, we propose the transfer learning framework based on model
and feature. The model-based transfer learning method applies the learning model in the source
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domain to the target domain and then tunes it with the target domain data to form a new target model.
Feature-based transfer transforms the features of the source domain and target domain to the same
space through feature transformation for knowledge transfer.

2.3. Generative Adversarial Networks

GANs simultaneously train two models: a generative model, G, that captures the data distribution,
and a discriminative model, D, that estimates the probability that a sample came from the training
data rather than G [31]. The goal of D is to realize the two classifications of data sources: real data
or fake data G(z) from a generator. The goal of G is to generate fake data G(z) that make D unable to
discern the data source. In other words, D and G play the following two-player minimax game with
value function V(G,D):

min
G

max
D

V(D, G) = min
G

max
D

(Ex∼pdata(x)[log D(x)] + Ez∼px(z)[log(1−D(G(z)))]). (5)

In the above equation, the mathematical meaning is divided into two parts.
1. The generator G is fixed, and the discriminator D is trained.

max
D

(Ex∼pdata(x)[log D(x)] + Ez∼px(z)[log(1−D(G(z)))]). (6)

D is trained to maximize the value of the above formula. The real data are divided into 1 by D,
and the generated data are divided into 0. In the first term of the above formula, if there is a real datum
that is mistakenly divided into 0, then Ex∼pdata(x)[log D(x)]→ −∞ . In the second term, if one generated
datum is divided into 1, then Ez∼px(z)[log(1−D(G(z)))]→ −∞ .

2. The generator G is trained.

min
G

(Ex∼pdata(x)[log D(x)] + Ez∼px(z)[log(1−D(G(z)))]). (7)

G is trained to minimize the value of the above formula and make D unable to distinguish true
and fake data. The first term of the above formula does not contain G, which can be ignored:

min
G

(Ez∼px(z)[log(1−D(G(z)))]). (8)

In the existing research, GAN is almost used to generate images, but there is little research on
generating time series. In this paper, we use GAN as a feature generator to generate time series,
and the generated features replace the relevant features of the target domain to maximize the similarity
between the source domain and the target domain.

GAN often has the problem of pattern collapse, which is manifested in the poor results, and
even after the training time is extended, it cannot be improved very much [32]. To solve this problem,
after using GAN for unsupervised learning, we adopted a fine-tuning method to use the target
variables of the target domain for supervised learning in order to improve the prediction accuracy of
the target domain.

3. Data Processing and Analysis

3.1. Heating Process of Heating Furnace

The heating process of the heating furnace case studied in this paper is shown in Figure 2.
The heating furnace model is a walking beam type. The heating furnace is a three-stage heating furnace,
which is subdivided into a preheating section, a heating section, and a soaking section, with a total
of 10 heating zones. There is a pair of burners in each zone; the odd numbered zone is for upper
burn, and the even numbered zone is for lower burn. The temperature detection value is collected
by different types of thermocouple sensors of the heating furnace combustion system. In order to
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accurately monitor the furnace temperature, the thermocouple type is B series, the material composition
is PtRh-PtRh (IEC584), and the temperature monitoring range is 200–1800 ◦C. Finally, the sensor data
collected based on fieldbus technology are stored in the distributed database.
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The heating zones 1 to 4 are located in the preheating section, 5 to 8 in the heating section, and 9 and
10 in the soaking section.

3.2. The Overall Framework

According to the actual production situation, we present the framework of this case study as shown
in Figure 3. It includes the following three parts: (1) data collection and preprocessing, (2) optimization
of TCN model and application of transfer learning, and (3) evaluation of target model on actual data.
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Figure 3. The first part preprocesses the collected original data, including the selection of relevant
variables, the conversion of collected data into time series samples, the determination of sliding window
size, as well as the determination of the source domain and target domain of this case. The second part
trains and optimizes the structure and parameters of the TCN model according to the source domain
data and then uses the target domain data to monitor and learn the basic model. In the third part,
the prediction error and accuracy of the target domain model are evaluated by the target domain test
and finally output the target model.

Based on the framework, this section will introduce the first part of the framework in detail,
including data processing, source domain determination, and sliding window modeling.

3.3. Data Collection and Processing

The study collected actual production data of the furnace, which has 10 heating zones in a line of
1500 mm hot-rolled broadband. The data were acquired between 10:00 on 24 January 2019 and 10:00
on 25 January 2019. The sampling frequency of each heating zone is 1/30 Hz. First two missing values
are removed, so there are 2859 samples per heating zone. The control variables include 62 variables
such as air pressure, oxygen flow, gas flow, nitrogen flow, valve opening, etc. Finally, the first 70% of
each set of heating zone data is used as the training set and the last 30% is used as the test set.

Since these 10 heating zones are located in the same furnace, all heating zones have the same
heating system. After variable selection based on prior knowledge, we take heating zone 1 as the
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benchmark, and the number of different variables in other heating zones and heating zone 1 is shown
in Table 1. It can be seen from the table that there is high similarity between the heating zones, so we
have reason to use transfer learning to complete the task of temperature prediction in each heating zone.

Table 1. The number of different variables in the remaining zones and zone 1.

Heating zone 2 3 4 5 6 7 8 9 10

Number of different variables 1 2 3 4 5 6 7 8 9

3.4. Source Domain and Target Domain

In the process of transfer learning, there is no uniform standard for the selection of source domain,
which usually depends on the actual situation and prior knowledge. A superior source model can be
obtained by a suitable source domain. In this way, knowledge transfer results will be more ideal.

In the course of the study, we found that the extrapolation ability of the deep learning method is
not strong. This is due to the fact that a neural network can map virtually any function by adjusting its
parameters according to the presented training data. The output of the neural network is unreliable
for the variable space region without training data. In our case study, when the temperature range of
our test set is outside the temperature range of the training set, it is difficult to predict it accurately.
It can be roughly divided into two categories. Firstly, when the temperature range of the test set is
outside the temperature range of the training set, it is difficult to accurately predict. Secondly, when the
temperature range of the test set is within the temperature range of the training set, but the density of
the test set in the training set is very low, it is also difficult to predict accurately.

In our study, the heating zone 1 is selected as the source domain according to the actual production
situation and the distribution of the predicted target. Our reasons are as follows. The temperature
distribution of heating zone 1 is shown in Figure 4, and it can be seen that the test set of zone 1 falls
into a high-density training set. This means that the temperature value of the test set is repeatedly
trained in the training set, so as to ensure that the basic model of pre-training on the source domain can
achieve the optimal performance. Figure 5 shows two representative heating zones, Figure 5a shows
the temperature distribution of heating zone 2, and Figure 5b shows the temperature distribution
of heating zone 6. The temperature distribution of these two zones corresponds to the second case.
The temperature distribution and furnace temperature control requirements for the remaining heating
zones are shown in Figure A1 and Tables A1 and A2 of Appendix A. In order to ensure good migration
learning performance, we choose zone 1 as the source domain.

From Tables A1 and A2 in Appendix A, there are four different steel brands. The processing
technology of billets with the same steel brand is the same, and the heating process is similar. Therefore,
we only need to select the source domain once for each steel brand, and the source domain selected for
processing the same type of steel is the same. It avoids selecting the source domain every time.Sensors 2020, 20, x FOR PEER REVIEW 9 of 29 
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3.5. Sliding Window Model

After data collection, preprocessing, and source domain determination, the data should be
processed on the premise of retaining time sequence information. Our data format should conform
to the format of TCN input for supervised learning. To achieve this, the sliding window method is
commonly used.

An example of constructing time series samples using a sliding window is presented in Figure 6.
We assume that there are six time-series samples in the dataset, including T1, T2... T5 and T6. If the
window size ∆t = 3 for sample 1, it has T1, T2, and T3 as its features and T4 as its label. Similarly,
sample 2 and sample 3 are given. The size of the window will affect the number of time series samples
and the features in the sample. Therefore, it is necessary to define an optimal window size to ensure
that our model has an optimal prediction result.
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In this study, we use transfer learning to predict the temperature of multiple heating zones;
therefore, it is necessary to consider both the source domain prediction accuracy and the target domain
prediction accuracy. Considering the effectiveness of knowledge transfer, the method combining
auto-correlation function [33] and maximum mean discrepancy (MMD) [34] is proposed for the first
time to determine the sliding window size in the context of transfer learning. The auto-correlation
coefficient is used to determine the temporal correlation between the time series data themselves.
A larger value of the correlation coefficient means a time correlation and a stronger lagged effect. In this
paper, the auto-correlation coefficient is defined as follows:

ρt,t+∆t =
Cov(y(t), y(t + ∆t))

σy(t)σy(t+∆t)
, (9)
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where Cov(·) represents the covariance, and σ(·) represents the variance. It represents the correlation
of a time series at any t time and t + ∆t time. The calculation result of the target variable in the source
domain is shown in Figure 7.
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In general, an auto-correlation coefficient greater than 0.8 represents a high correlation. Figure 7
shows that, when the auto-correlation coefficient is greater than 0.8, the lag time step is 28. Therefore,
we narrow the sliding window size ∆t to (1, 28) for the next step.

The initial sliding window size is given by the source domain data, and we also need to consider
the prediction accuracy of the target domain. Our goal is to apply knowledge learned from the source
domain to different but related target domains. The transfer effect is best when the difference in data
distribution between the two domains is minimal. MMD can be used to measure the difference in data
distribution between two domains. Therefore, we propose to use MMD to determine the final sliding
window size. MMD was first proposed for the two-sample test problem to determine whether the
two distributions p and q are the same [35]. We assume that X and Y are two datasets obtained by
independent and identically distributed sampling from p and q. The squared distance of the two
distributions is defined as follows:

MMD(F, X, Y) := sup
f∈F

(
1
n

n∑
i=1

f (xi) −
1
m

m∑
i=1

f (yi)), (10)

where f is a continuous function on the sample space, and F is a given set of functions. When F is the
unit ball on the kernel Hilbert space, MMD can quickly converge. Therefore, MMD can be defined
as follows:

MMD2(F, X, Y) = ||
1
n

n∑
i=1

f (xi) −
1
m

m∑
i=1

f (yi)||
2
H, (11)

where f (·) represents a mapping function, and H represents that this distance is measured by f (·)
mapping the data onto the reproducing kernel Hilbert space (RKHS) [36].

Since the mapping function cannot be solved directly in high-dimensional space, we use Gaussian
kernel function k to skip the solution of mapping function. The final MMD calculation formula is
defined as follows:

MMD(X, Y) = ||
1
n2

n∑
i, j=1

k(xi, x j) −
2

nm

n,m∑
i, j=1

k(xi, y j) +
1

m2

m∑
i, j=1

k(yi, y j)||H. (12)

Based on the above theoretical analysis, the specific process by which MMD is used to determine
the sliding window size is as follows: (1) solve the MMD values of the source and target domains at
a sliding window size, (2) traverse all-time series samples under this sliding window size and find the
MMD mean of all samples under this sliding window size, and (3) traverse the range of sliding window
sizes determined by the auto-correlation function, traversing all sliding window size values in this
range. As shown in Figure 6 above, when the sliding window size is 3, the MMD scores of the source
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domain and the target domain in sample 1, the MMD scores of the source domain in sample 2, and the
MMD scores of sample 3 are calculated. Then, the MMD scores of these three samples are averaged.
When the sliding window size is other values, the same method is used to obtain the MMD score.

In our study, the size range of sliding window determined by the autocorrelation function is
(1, 28), so we obtain an MMD score in this range, as shown in Figure 8. It can be seen from the figure
that the larger the sliding window size, the smaller the MMD score. When the sliding window size is
28, the MMD score is the lowest, and the similarity between source domain and target domain is the
highest, so the transfer result is the best. Combining the auto-correlation function and the calculation
results of MMD, the sliding window size of this study was finally determined to be 28.
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Figure 8. Maximum mean discrepancy (MMD) scores of source domain and target domain under
different sliding window sizes. This score represents the similarity measurement between the rest of
the zones and zone 1. The figure in the upper right corner refers to the MMD scores of zone 2 and
zone 1, and the MMD scores of zone 3 and zone 1, all the way to zone 10.

4. Methodology and Results Analysis

4.1. Technical Details

All implementations of the transfer learning framework proposed in this article were performed
on personal desktops with Core i7-8700 (3.20 GHz), 16 GB RAM, NVIDIA GTX1060 6 GB, and 64-bit
operating system. The operating system was Windows10 Professional and Python 3.6 with
tensorflow and keras. Since the number of samples was not very large, all algorithms were run
in a CPU environment.

4.2. TCN for Furnace Temperature Prediction

Since the heating process was continuous, TCN was used as the prediction model in this
paper. In this study, we optimized the structure and parameters of the TCN model proposed
in [19]. The experimental results show that our improved TCN model has better performance in time
series prediction.

We set the size of 1−D, convolution kernel size k = 2, as mentioned before; the receptive field
of TCN was expressed as k · dmax. We entered a sliding window size of 28. Therefore, the maximum
dilation rate dmax of TCN was dmax ≥ 16. The dilation rate in this paper was [1,2,4,8,16]. The structure
of the TCN is shown in Figure 9a. After setting the hidden layer D = 16, we added the hidden layer C to
optimize the TCN structure. As shown in Figure 9b, in this layer, we did not use the residual structure,
and we used two convolution layers to extract features. This hidden layer can extract more effective
features to get better results. The proposed TCN structure includes input layer, initial convolution layer,
5 residual block structures, hidden layer C, and finally a fully connected layer. It has 56 layers in total.
We choose Keras [37] as our deep learning framework for training the TCN model. Considering the
effect of the rectified linear unit (RELU) activation function on the output, and in order to ensure the
consistency of the input and output variances, he-normal [38] is selected as the method of weight
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initialization. After simple tuning of TCN parameters, the number of convolution kernels was 64 per
layer, and the value of dropout rate was 0. When we trained the TCN model, we set the value of epoch
to 100 and selected Adam [39] as the optimizer to adapt to the learning rate.
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(a) shows the TCN structure used in this paper; hidden layer C is added to the TCN structure. (b) is the
structure of hidden layer C. (c) is the initial TCN structure proposed in [19].

In order to test this network structure, we first used the source domain dataset to compare its
prediction performance with several other commonly used prediction models, which included LSTM,
gated recurrent units (GRU) [40], convolutional neural network-LSTM (CNN-LSTM), and bi-directional
LSTM (BiLSTM) [41]. LSTM is an improved recurrent neural network (RNN) that exhibits excellent
performance in processing time series data. GRU simplifies the LSTM structure for faster training.
BiLSTM is based on LSTM and can learn from long-term dependencies in both forward and backward
data of the time series. CNN-LSTM is a combination of convolutional neural networks and LSTM,
which performs better in most studies. The detailed information of these networks is shown in Table 2,
where the parameters are determined by grid search.

Table 2. Parameters of the remaining neural networks for comparison with TCN.

Parameters CNN-LSTM LSTM BiLSTM GRU

Neurons 364 128 256 256
Batch Size 64 64 64 72

Epochs 100 100 100 70
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In order to measure the prediction results of each model, we choose the root mean square error
(RMSE) and the mean absolute error (MAE) as the main evaluation indicators of the regression
prediction. The definitions of RMSE and MAE are as follows:

RMSE =

√√√
1
n

n∑
i=1

(yi − ŷi)

2

, (13)

MAE =
1
n

n∑
i=1

∣∣∣(yi − ŷi)
∣∣∣. (14)

where n represents the number of samples, yi represents the observation of the ith sample, and ŷi
represents the predicted value of the ith sample. Lower RMSE or MAE is better than a higher
one. The smaller the RMSE and MAE values, the higher the prediction accuracy, and the better the
model performance.

As mentioned earlier, the data of heating zone 1 were used as the source domain data: the first
70% of the data were used as the training set, and the remaining 30% of the data were used as the
test set. The mean values of RMSE and MAE after multiple training procedures of these models are
shown in Table 3. From the data shown in the table, we can easily see that our proposed TCN model
performed best in this case. Although the reported mixed model CNN-LSTM is a relatively advanced
sequence processing model, this case does not support this statement. In addition, GRU and BiLSTM
perform better than LSTM.

Table 3. Different models for prediction of heating zone 1.

CNN-LSTM LSTM BiLSTM GRU TCN

RMSE 18.067 18.318 17.684 13.428 11.362
MAE 14.715 13.938 13.807 10.218 8.797

As mentioned earlier, we redesigned the structure of the TCN. As shown in Figure 9a, in the last
Add layer, six sources of information were added as hidden layers with dilation rates of 1, 2, 4, 8,
and 16 and hidden layer C. Among them, the hidden layer C was added in order to extract the features
of the previous hidden layers after the hidden layer with the dilation rate of 16. The initial TCN model
is shown in Figure 9c, and the final add layer adds the information of five hidden layers with dilation
rates of 1, 2, 4, 8, and 16. Therefore, our improved TCN can extract more comprehensive features and
obtain better results.

Therefore, we use the university of California, Irvine (UCI) open source dataset Beijing PM2.5
data for experimental verification. The dataset is described in Table 4. The time period of the data is
from 1 January 2010 to 31 December 2014, with a one-hour interval between each datum. We used the
attributes measured in the past 12 h, including dew point, temperature, pressure, and so on, to predict
the PM2.5 concentration in the next hour. We took the data of the first 3.5 years as the training set and
the remaining data as the test set. Since only 12 h of historical data were needed, we set the expansion
rate to dmax = 8, and the other parameters were the same as the furnace temperature prediction. Table 5
shows the score in comparison between the initial TCN and the improved TCN. The experimental
results show that the improved TCN is better than the initial TCN in time series prediction.

In addition to the improvement of the TCN structure, we used the idea of transfer learning
to optimize the TCN parameters. We called this a method of neural network weight initialization.
The specific process of optimization is to freeze the shallow weight of TCN and then use the training
set to update the parameters of the unfrozen high-level features, which we call self-TL-TCN. First of
all, we used the training set in the source domain (heating zone 1) to train a preliminary TCN model.
The TCN structure proposed in this paper contains 56 hidden layers, but only the weight and bias
of the convolution layer need to be updated. We froze from layer 20 of the pre-trained TCN—that
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is, from the hidden layer with an expansion rate of 4. Finally, we used the training set in the source
domain to update the parameters of the unfrozen layer to complete the fine-tuning. The reasons for
this are as follows: (1) the optimized model is given more appropriate initial weight compared to the
he-normal method, (2) the convolution layer with high dilation rate of the preliminary TCN model
may cause information loss. The training process is shown in Figure 10.

Table 4. Different models for prediction of heating zone 1.

Dataset Characteristics Number of Instances Attribute Characteristics Number of Attributes

Multivariate, Time Series 43,824 Integer, Real 13 1

1 The 13 attributes are as follows. No: row number; year: year of data in this row; month: month of data in this row;
day: day of data in this row; hour: hour of data in this row; pm 2.5: PM 2.5 concentration (ug/mˆ3); DEWP: dew
point (â„ƒ); TEMP: temperature (â„ƒ); PRES: pressure (hPa); cbwd: combined wind direction; Iws: cumulated wind
speed (m/s); Is: cumulated hours of snow; Ir: cumulated hours of rain.

Table 5. Performance of TCN before and after structure improvement.

Dataset TCN Improved TCN

Heating furnace RMSE 12.509 11.362
MAE 9.596 8.797

Beijing PM 2.5 RMSE 23.065 22.399
MAE 12.194 11.738
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Figure 10. Using self-transfer learning as a method of neural network initialization. Some of the
hidden layers of pre-training were frozen, and then the unfrozen layers were updated with their own
training set.

The performance of the TCN after parameter initialization under different freezing layers is shown
in Figure 11. It can be seen that, when the number of freezing layers is 29, we obtained the lowest
RMSE and MAE scores. Therefore, when optimizing the preliminary TCN model, the best prediction
performance can be achieved by freezing the first 29 layers and fine-tuning the parameters of the upper
layer. The self-TL-TCN model after two optimizations of structure and parameters is the final source
domain model in this study.

After determining the optimal number of freezing layers, we used the test set of the source domain
to evaluate. Figure 12 shows the prediction results of the TCN model before and after optimization.
It can be seen from the figure that the prediction accuracy of self-TL-TCN proposed by us is higher.

In order to verify the effectiveness of the proposed network, we also used the Beijing PM2.5
dataset to verify. Since we used the data from the first 12 h as the historical data, the TCN network was
layer 46, and we chose to freeze from layer 20. Figure 13 shows the scores of self and initial TCN under
different freezing layers. The comparison results between the optimized TCN model and the original
TCN model are shown in Table 6. As can be seen from the figure, the method using self-transfer
learning as initialization parameter can achieve better prediction results.
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Table 6. Performance of TCN before and after structure and parameter.

Dataset TCN Self-TL-TCN Improvement

Heating furnace RMSE 12.509 8.870 29.09%
MAE 9.596 6.781 29.33%

Beijing PM 2.5 RMSE 23.065 22.279 3.408%
MAE 12.194 11.589 4.958%

4.3. Transfer Learning for Furnace Temperature Prediction

As mentioned before, a heating furnace system has multiple heating zones. We need to accurately
predict the temperature of each heating zone, but because the heating furnace is a complex controlled
object, its temperature curve is nonlinear and unstable, among other characteristics; there will be some
heating zone temperatures which are difficult to accurately predict. For example, for a heating zone
such as zone 2, the neural network is ineffective. In addition, because all heating zones are in the
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same furnace, the heating process is similar. As shown in Table 1, the control variables of each heating
zone are very similar, and, at most, only nine variables are different. Therefore, we believe that the
knowledge learned by the neural network in each heating zone is also similar. Therefore, we can
transfer the knowledge learned by the neural network in a heating zone that can accurately predict
the temperature to the remaining heating zones. There are 10 heating zones in this case. If we build
a model for each heating zone, different heating zones may have different neural network models,
which will undoubtedly increase the calculation cost. This is also one of the reasons that we used
transfer learning.

Since our goal was to build a model that can solve different tasks of the same industrial equipment,
the data collected by industrial sensors can be divided into two types. The first is that different tasks
share a control system—that is, the same variable controls different tasks, such as the prediction of
water content and temperature at the outlet of the dryer in the tobacco factory. The control variables
of these two tasks are the same. The other is that different control systems control different task
requirements. For the first kind of sensor data, because the characteristics of each domain are the same,
the fine-tuning method was used to complete the knowledge transfer. For the second kind of sensor
data, we used the generative adversarial loss to complete the domain adaptation. We took the sensor
data of the heating furnace as an example to verify the performance of the two methods. This was also
the first time that transfer learning has been applied to the prediction of furnace temperature.

As mentioned before, because each heating zone is located in the same furnace, there is high
similarity between the target domain and the source domain. For example, only one control variable is
different in zone 1 and zone 2, and the difference between zone 1 and zone 10 is the largest, but only
nine variables are different. Each heating zone has 62 control variables. Therefore, we used the
fine-tuning method shown in Figure 14 to complete the transfer.Sensors 2020, 20, x FOR PEER REVIEW 17 of 29 
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obtain a new target model TL-TCN and then using the target domain test set to test the target model.

Through traversing all hidden layers of the network to determine the optimal number of frozen
layers in each heating zone, the optimal number of frozen layers in each heating zone was calculated,
as shown in Table 7. The reason that the number of freezing layers in the table is small is that the
neural network mentioned before has no extrapolation—that is, the distribution of the test set and
training set is quite different. This means that more parameters need to be updated for better results.
The temperature distribution of each zone is shown in Appendix A, Figure A1.

Table 7. Optimum number of freezing layers per heating zone.

Heating zone 2 3 4 5 6 7 8 9 10

Number of freezing layers 2 28 2 2 2 2 2 4 24
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For the different features of the source domain and the target domain, we used the generative
adversarial network to align the features, as shown in Figure 15. We used the source domain data as the
real data input discriminator. The discriminator uses three full connection layers as two classification
layers to judge the data source. To prevent overfitting, dropout layers were added between the second
and third layers. The first two layers use RELU as the loss function, and the third layer uses Sigmoid.
In this case, the generator in GAN was used as the feature extractor, and we used the 1−D convolution
to extract the target domain features. The generator generates time series features with higher similarity
to the source domain in order to replace the original target domain features. When the discriminator
cannot judge whether the data is generator data or real data, this shows that the features extracted by
the generator have high similarity with the features of the source domain. In addition, this case is
supervised learning. In order to further improve the prediction accuracy, we need to use the target
variable of the target domain to fine-tune the target model after using GAN as the feature alignment.
Therefore, we added a fine-tuning strategy after GAN to generate the final target model.Sensors 2020, 20, x FOR PEER REVIEW 18 of 29 
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Figure 15. The domain adaptation is achieved by the generative adversarial network, and the target
model is fine-tuned by the target variable of the target domain.

We established TCN, LSTM, BiLSTM, GRU, and CNN-LSTM models on nine target domains.
We chose the best performing model per target domain to optimize. The optimization method uses
self-transfer learning to change the network weight initialization. In addition, the transfer learning
method was based on the BiLSTM proposed by Jun Ma et al. [30], which greatly improved the air
quality prediction results. In our paper, first of all, the initial BiLSTM was established on the source
domain and was optimized based on the self-transfer to obtain self-TL-BiLSTM. Then, the target
domain model TL-BiLSTM was established based on transfer learning. We compared the prediction
results of these models with the two methods proposed in this paper. Table 8 shows the RMSE scores
of each model applied to nine target domains. Table 9 shows the MAE scores. The last column of
the two tables is obtained by comparing these two methods with the best-performing model without
knowledge transfer. Figure 16 is two histograms of RMSE and MAE scores for these models applied to
nine target heating zones.

Table 8. RMSE scores for different models applied to nine target zones.

GAN-TL Fine-Tune TL-BiLSTM Self-TL-TCN TCN LSTM BiLSTM GRU CNN-LSTM Improvement

Zone 2 16.376 16.622 26.737 29.923 45.937 46.683 50.034 49.908 57.514 45.27%
Zone 3 7.803 9.137 10.058 12.504 14.817 15.410 14.855 14.968 16.321 37.60%
Zone 4 1.644 1.567 1.744 3.049 3.759 4.365 5.244 4.275 5.074 48.61%
Zone 5 6.200 6.214 8.688 10.048 13.310 11.598 14.776 17.558 14.085 38.30%
Zone 6 3.062 3.204 3.793 5.064 7.017 7.935 7.838 7.804 7.534 39.53%
Zone 7 2.272 2.143 3.211 2.987 6.751 9.271 10.486 9.756 11.129 28.26%
Zone 8 3.560 4.072 5.427 7.096 10.944 12.563 11.771 11.104 11.929 49.83%

Zone 10 3.309 3.037 5.790 7.125 9.850 9.948 9.861 10.113 12.734 57.38%

GAN-TL Fine-Tune TL-BiLSTM Self-TL-GRU TCN LSTM BiLSTM GRU CNN-LSTM Improvement

Zone 9 2.866 2.124 4.063 3.791 6.360 7.106 6.727 6.206 7.064 43.97%
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Table 9. MAE scores for different models applied to nine target zones.

GAN-TL Fine-Tune TL-BiLSTM Self-TL-TCN TCN LSTM BiLSTM GRU CNN-LSTM Improvement

Zone 2 12.006 12.595 21.536 24.407 38.162 40.790 43.751 42.851 47.471 50.81%
Zone 3 6.116 6.936 8.163 9.092 10.964 12.215 11.420 11.567 12.712 32.73%
Zone 4 1.318 1.295 1.433 2.334 2.996 3.400 4.366 3.440 3.971 44.52%
Zone 5 4.683 4.792 6.988 7.848 10.219 9.640 11.834 14.846 11.427 40.33%
Zone 6 2.418 2.463 2.955 4.080 5.642 6.280 6.173 6.135 6.011 40.73%
Zone 7 1.696 1.680 2.731 2.400 5.354 7.438 8.924 8.573 9.201 30.00%
Zone 8 2.862 3.361 4.979 5.985 9.150 10.171 9.521 9.306 10.091 52.18%

Zone 10 2.448 2.285 3.935 4.724 5.456 6.194 6.261 6.541 7.020 51.63%

GAN-TL Fine-Tune TL-BiLSTM Self-TL-GRU TCN LSTM BiLSTM GRU CNN-LSTM Improvement

Zone 9 2.157 1.631 3.092 3.301 5.298 6.009 5.729 5.071 5.889 50.59%
Sensors 2020, 20, x FOR PEER REVIEW 19 of 29 

 

 
Figure 16. RMSE and MAE scores of different models applied to nine target zones. 

The following information can be obtained from these two tables and histograms: 

 The performance of the TCN model is better than the variant of the RNN in almost all zones, 
and the GRU is better than TCN only in heating zone 9. 

 The self-TL-TCN proposed by us has better performance than the common TCN model; the 
self-TL-GRU also has better performance than the common GRU model. This means that 
network performance can be improved by changing the initial weight of the network based on 
the migration learning idea. 

 Two transfer learning frameworks proposed by us can effectively solve the problem of large 
prediction error in some heating zones, which greatly reduces the prediction error. Zones 10 
and 9 have the largest error reductions, with RMSE reduced by 57.38% and 43.97% and MAE 
reduced by 51.63% and 50.59%. TL-BiLSTM also shows better performance than models 
without knowledge transfer in each zone but worse performance than our models. 

In addition, the reason that the fine-tuning method in zone 4, zone 7, zone 9, and zone 10 
performs better is because the original target data are more similar to the source domain feature than 
the new feature generated. Table 10 shows the similarity between the generated features and the 
source domain, as well as the similarity between the original features and the source domain. We 
use the Pearson coefficient to measure the similarity. We only measure the similarity between the 
source domain and the target domain. It can be seen that the similarity between the original data of 
the above four regions and the source domain is higher. Of course, both fine-tuning and GAN-TL 
have better performance than no knowledge transfer. That is to say, fine-tuning is a good solution 
when the time series of the same feature is transferred. When the time series of different features are 
transferred, the GAN-TL method that we proposed is also a suitable solution. 

Table 10. The similarity between the generated features and the source domain, as well as the 
similarity between the original features and the source domain. 

Zone Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9 Zone 10 
Original −0.19 −0.15 0.84 0.72 0.58 0.82 0.18 0.72 0.72 

Generated 0.90 0.37 0.71 0.88 0.82 0.74 0.80 0.60 0.60 

Figure 16. RMSE and MAE scores of different models applied to nine target zones.

The following information can be obtained from these two tables and histograms:

• The performance of the TCN model is better than the variant of the RNN in almost all zones,
and the GRU is better than TCN only in heating zone 9.

• The self-TL-TCN proposed by us has better performance than the common TCN model;
the self-TL-GRU also has better performance than the common GRU model. This means
that network performance can be improved by changing the initial weight of the network based
on the migration learning idea.

• Two transfer learning frameworks proposed by us can effectively solve the problem of large
prediction error in some heating zones, which greatly reduces the prediction error. Zones 10 and 9
have the largest error reductions, with RMSE reduced by 57.38% and 43.97% and MAE reduced by
51.63% and 50.59%. TL-BiLSTM also shows better performance than models without knowledge
transfer in each zone but worse performance than our models.

In addition, the reason that the fine-tuning method in zone 4, zone 7, zone 9, and zone 10 performs
better is because the original target data are more similar to the source domain feature than the new
feature generated. Table 10 shows the similarity between the generated features and the source domain,
as well as the similarity between the original features and the source domain. We use the Pearson
coefficient to measure the similarity. We only measure the similarity between the source domain and
the target domain. It can be seen that the similarity between the original data of the above four regions
and the source domain is higher. Of course, both fine-tuning and GAN-TL have better performance
than no knowledge transfer. That is to say, fine-tuning is a good solution when the time series of the
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same feature is transferred. When the time series of different features are transferred, the GAN-TL
method that we proposed is also a suitable solution.

Table 10. The similarity between the generated features and the source domain, as well as the similarity
between the original features and the source domain.

Zone Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9 Zone 10

Original −0.19 −0.15 0.84 0.72 0.58 0.82 0.18 0.72 0.72
Generated 0.90 0.37 0.71 0.88 0.82 0.74 0.80 0.60 0.60

Figure 17 shows the comparison of the prediction results based on transfer learning of all target
domains with the prediction results without knowledge transfer. These prediction results prove that
the neural network that we mentioned before has no shortcomings in terms of extrapolation. In other
words, the data with a large difference between the test set and training set cannot produce good
prediction results, such as in zone 2 and zone 6. However, we can solve this problem through transfer
learning. This is the first time that we propose to solve the non-extrapolation problem of the neural
network by using transfer learning.
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where D represents the number of convolutional layers, l represents the l-th convolutional layer, K 
represents the size of the convolution kernel, Stride represents the step length, lC  represents the 
number of output channels. In this paper, each convolution layer has 64 convolution kernels. Since 
this is one-dimensional convolution, the input dimension is 62 and the size of the convolution 
kernel is 62 × 2. 

This paper takes LSTM as an example to illustrate the computational complexity of recurrent 
neural networks. The complexity is defined as follows: 
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where D represents the number of hidden layers, l represents the l th hidden layer, X represents the 
input dimension, and H epresents for hidden layer size. 

Table 11 shows the calculation results of the complexity of each model based on the above two 
formulas. At the same time, we calculated the running time of each model on the same computer 
configuration, as shown in Table 12. 
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Figure 17. No transfer learning means that we do not use transfer learning to complete the prediction,
but we use self-transfer learning to change the initial weight of the neural network. TL-TCN refers to
the method with better results in fine-tuning and GAN-TCN, (a–i) shows the comparison of prediction
results of heating zone 2–10.

In order to measure the performance of the proposed transfer learning framework more
comprehensively, the complexity of the model is calculated. The complexity of the convolutional
network is defined as follows:

Complexity ∼ O(
D∑

l=1

K2
l ·Cl−1 ·Cl). (15)

where D represents the number of convolutional layers, l represents the l-th convolutional layer,
K represents the size of the convolution kernel, Stride represents the step length, Cl represents the
number of output channels. In this paper, each convolution layer has 64 convolution kernels. Since
this is one-dimensional convolution, the input dimension is 62 and the size of the convolution kernel is
62 × 2.

This paper takes LSTM as an example to illustrate the computational complexity of recurrent
neural networks. The complexity is defined as follows:

Complexity ∼ O(
D∑

l=1

4 · ((X l+Hl)Hl + Hl)). (16)

where D represents the number of hidden layers, l represents the l th hidden layer, X represents the
input dimension, and H epresents for hidden layer size.

Table 11 shows the calculation results of the complexity of each model based on the above two
formulas. At the same time, we calculated the running time of each model on the same computer
configuration, as shown in Table 12.

Table 11. The complexity of the transfer learning framework and other models.

Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9 Zone 10

TL-TCN 119,937 57,921 119,937 119,937 119,937 119,937 119,937 111,681 62,081
Self-TCN 181,890 181,890 247,938 132,244 181,890 243,906 223,234 173,634 247,938

TCN 123,969 123,969 123,969 123,969 123,969 123,969 123,969 123,969 123,969
LSTM 326,913 97,921 97,921 326,913 97,921 326,913 97,921 97,921 97,921
GRU 245,249 73,473 245,249 245,249 73,473 245,249 245,249 73,473 245,249

BiLSTM 653,825 195,841 195,841 653,825 195,841 653,825 195,841 195,841 195,841
CNN-LSTM 549,221 155,649 155,649 275,877 155,649 275,877 155,649 155,649 231,141

From the above two tables, and combined with the prediction results, we can see that the
framework proposed in this paper has the best performance, whether in terms of runtime or prediction
results. On one hand, the time prediction framework based on TCN is a stack of convolutional layers,
and the convolution kernels of each layer are shared, so the calculation time will be greatly accelerated.
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On the other hand, the target model only needs to train unfrozen parameters, which will greatly reduce
the number of parameters.

Table 12. Running time of each model (the unit is seconds).

Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9 Zone 10

TL-TCN 51 28 50 51 51 52 51 45 31
Self-TCN 125 125 145 101 124 142 138 119 143

TCN 90 91 90 92 90 90 91 92 91
LSTM 703 366 365 700 366 703 365 365 366
GRU 504 360 500 502 358 502 503 348 500

BiLSTM 1413 733 735 1415 733 1413 730 732 732
CNN-LSTM 302 255 256 283 255 285 254 255 280

In order to verify the idea that using transfer learning under similar tasks will produce better
results than not using transfer learning, we also used the aforementioned open source data from Beijing
PM2.5 for experimental verification. We conducted the hourly interval prediction before. However,
in the context of large time resolutions such as days and weeks, it is difficult to produce high-precision
prediction methods. Therefore, we used the research methods in this paper to transfer the learned
knowledge from a smaller time resolution to a larger time resolution. That is to say, we transferred
the knowledge that we learned at hourly intervals to predicting air quality at daily intervals. First,
we re-sampled the original data at daily intervals to form the target domain data. Since we only
re-sampled the original data with expanded frequency, we used the fine-tuning method for knowledge
transfer. The grid search determined that the prediction of the target domain was the best when
the source domain model froze the first 23 layers. Table 13 shows the score by comparison of each
model. It can be seen from the above table that the method proposed in this paper can improve the
prediction accuracy of PM2.5 concentration at large time resolutions. Compared with no transfer
learning, transfer learning achieves better results.

Table 13. Air quality prediction results with daily sampling interval.

TL-TCN TL-BiLSTM Self-TL-TCN TCN LSTM BiLSTM GRU CNN-LSTM

RMSE 92.8767 93.6835 93.9478 94.7354 96.4152 95.8696 96.2931 105.0256
MAE 65.3171 65.4864 65.4517 66.2132 66.5143 66.8429 67.4102 75.2448

In order to prove the rationality of source domain selection and the shortcomings of our neural
network without extrapolation. Combined with the temperature distribution diagram of Figure A1
in Appendix A, we chose heating zone 3, with uniform temperature distribution, as the source region.
Compared with other target regions, the distribution of the test set and training set in heating zone 3
was more uniform, but it was not as reasonable as that in heating zone 1. We used the fine-tuning
method to transfer knowledge. Tables 14 and 15 show the prediction results of the target domain when
zone 3 is the source domain.

Table 14. RMSE score when zone 3 is the source domain.

TL-TCN TL-BiLSTM Self-TL-TCN TCN LSTM BiLSTM GRU CNN-LSTM Improvement

Zone 2 16.244 26.737 29.923 45.937 46.683 50.034 49.908 57.514 45.71%
Zone 4 2.609 1.744 3.049 3.759 4.365 5.244 4.275 5.074 14.43%
Zone 5 8.528 8.688 10.048 13.310 11.598 14.776 17.558 14.085 15.13%
Zone 6 3.363 3.793 5.064 7.017 7.935 7.838 7.804 7.534 33.59%
Zone 7 2.984 3.211 2.987 6.751 9.271 10.486 9.756 11.129 0.1%
Zone 8 4.767 5.427 7.096 10.944 12.563 11.771 11.104 11.929 32.82%
Zone 10 3.574 5.790 7.125 9.850 9.948 9.861 10.113 12.734 49.84%

TL-TCN TL-BiLSTM Self-TL-GRU TCN LSTM BiLSTM GRU CNN-LSTM Improvement

Zone 9 3.924 4.063 3.791 6.360 7.106 6.727 6.206 7.064 −3.51%
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Table 15. MAE score when zone 3 is the source domain.

TL-TCN TL-BiLSTM Self-TL-TCN TCN LSTM BiLSTM GRU CNN-LSTM Improvement

Zone 2 14.266 21.536 24.407 38.162 40.790 43.751 42.851 47.471 41.55%
Zone 4 2.179 1.433 2.334 2.996 3.400 4.366 3.440 3.971 6.64%
Zone 5 6.882 6.988 7.848 10.219 9.640 11.834 14.846 11.427 12.31%
Zone 6 2.853 2.955 4.080 5.642 6.280 6.173 6.135 6.011 30.07%
Zone 7 2.234 2.731 2.400 5.354 7.438 8.924 8.573 9.201 18.20%
Zone 8 3.904 4.979 5.985 9.150 10.171 9.521 9.306 10.091 34.77%
Zone 10 2.899 3.935 4.724 5.456 6.194 6.261 6.541 7.020 38.63%

TL-TCN TL-BiLSTM Self-TL-GRU TCN LSTM BiLSTM GRU CNN-LSTM Improvement

Zone 9 3.477 3.092 3.301 5.298 6.009 5.729 5.071 5.889 −5.33%

Table 16 is a comparison of transfer results of zone 3 as source domain and zone 1 as source
domain. From Tables 14–16, it can be seen that, compared with zone 3 as the source domain, when zone
1 is the source domain, the scores of other heating zones are significantly better, except for the RMSE of
zone 2. Even when the knowledge learned by the neural network is transferred from zone 3 to zone
9, there is a negative transfer phenomenon. Therefore, this experiment verifies the rationality of our
source domain selection.

Table 16. Comparison of transfer results of different source domains.

Zone 2 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9 Zone 10

RMSE
Zone 1 16.622 1.567 6.214 3.204 2.143 4.072 2.124 3.037
Zone 3 16.244 2.609 8.528 3.363 2.984 4.767 3.924 3.574

MAE
Zone 1 12.595 1.295 4.792 2.463 1.680 3.361 1.631 2.285
Zone 3 14.266 2.179 6.882 2.853 2.234 3.904 3.477 2.899

For industrial sensor data, through this experiment, we can establish a source selection standard.
When the data distribution of the test set is outside the data distribution of the training set, or the
difference between the data distribution of the test set and the data distribution of the training set
is large, because the neural network has no extrapolation, the data as the source domain data may
have a negative transfer phenomenon. The modified standard is not only applicable to the data of the
heating furnace but also to other sensor data and could even be extended to more applications.

4.4. Discussion on Whether the Framework Is Overfitted

To verify the question of whether the presented transfer learning framework is “overfitted” for
a concrete situation, we conducted the following experiments measuring the following three factors:
(1) transfer between different pieces of equipment at the same time, (2) transfer between the same
pieces of equipment at different times, and (3) transfer between different pieces of equipment at
different times.

First of all, we conducted knowledge transfer of different equipment at the same time. We applied
this framework to transfer between different pieces of equipment. We called the above heating furnace
heating furnace 1, and we transferred the knowledge learned in zone 1 of heating furnace 1 to heating
furnace 2. The sensor data of the two heating furnaces were collected at the same time. We selected
three heating zones from the preheating section, heating section, and soaking section of furnace 2,
namely zone 1, zone 5, and zone 10, to verify the transfer results. Table 17 shows the comparison
between the proposed TL-TCN framework and the existing model.

It can be concluded from the above table that the prediction results based on TL-TCN are greatly
improved compared to those obtained without transfer learning. It proves the reliability of the
proposed framework to transfer between different devices. In addition, we selected three heating
zones in the three heating sections of the heating furnace 2 for knowledge transfer, which also proves
that the TL-TCN-based framework can transfer the knowledge learned from one source domain to any
heating zone of different heating furnaces.
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Table 17. The prediction results of each model in heating furnace 2.

Furnace 2 TL-TCN Self-TL-TCN TCN LSTM BiLSTM GRU CNN-LSTM

Zone 1
RMSE 4.173 6.912 9.188 9.177 10.197 9.227 12.208
MAE 3.209 5.677 7.718 7.454 8.147 7.303 10.287

Zone 5
RMSE 3.668 4.009 8.143 9.205 9.923 8.199 12.070
MAE 2.837 3.300 6.739 8.309 8.822 7.307 10.728

Zone 10
RMSE 4.168 9.697 9.725 10.070 10.188 9.879 11.350
MAE 3.407 8.681 7.889 8.946 8.651 8.976 10.200

Secondly, we conducted knowledge transfer between the same pieces of equipment at different
times. The previous data were collected from 10:00 on 24 January to 10:00 on 25 January 2019.
We transferred the knowledge that they learned to the data collected from 0:00 on 24 February to
0:00 on 25 February 2019. There was an interval of one month between the two datasets. The data
were collected by heating furnace 1. The source domain was still heating zone 1, and the target
domain was also heating zone 1, heating zone 5, and heating zone 10. Table 18 shows the scores after
knowledge transfer.

Table 18. Knowledge transfer between the same equipment at different times.

Furnace 1 TL-TCN Self-TL-TCN TCN LSTM BiLSTM GRU CNN-LSTM

Zone 1
RMSE 5.499 16.417 17.243 21.082 17.368 14.591 20.085
MAE 4.214 11.442 12.874 18.903 14.805 13.368 17.703

Zone 5
RMSE 5.097 6.196 8.344 9.191 13.456 9.159 9.353
MAE 4.196 5.327 6.945 7.251 10.175 7.916 6.784

Zone 10
RMSE 2.084 2.264 3.306 3.565 3.458 4.093 4.644
MAE 1.793 1.903 2.479 2.899 2.855 3.432 3.586

It can be seen from the above table that the proposed framework can be applied to the transfer of
the same equipment at different times. Moreover, the source domain model that we used has not been
recalibrated but only fine-tuned with historical data from the time before the target data were acquired
on 24 February. This experiment has proven that the knowledge learned by the proposed framework
can be applied to data acquired one month later.

Finally, we transferred the knowledge learned in the source domain of this article to the data of
different equipment at different times. The target domain data were collected from furnace 2 from
24 February at 0:00 to 25 February at 0:00. We also selected zone 1, zone 5, and zone 10 as the target
domains. Table 19 shows the prediction scores of each model.

Table 19. Knowledge transfer between different equipment at different times.

Furnace 2 TL-TCN Self-TL-TCN TCN LSTM BiLSTM GRU CNN-LSTM

Zone 1
RMSE 7.138 9.898 11.162 10.835 11.418 9.593 11.608
MAE 5.242 8.268 8.979 9.485 8.947 8.404 9.496

Zone 5
RMSE 11.632 14.522 14.694 14.714 17.596 12.288 15.439
MAE 8.721 10.711 11.228 10.284 12.971 10.298 11.281

Zone 10
RMSE 4.716 5.446 5.598 7.858 5.681 6.239 8.225
MAE 3.748 4.245 4.520 6.582 4.626 5.242 6.321

It can be seen from the table that the proposed framework can be applied to the transfer between
different pieces of equipment at different times, and we did not recalibrate the source domain model
but only used the target domain data to fine-tune it. This experiment has proven that the knowledge
learned by the proposed framework can be applied to data acquired one month later. However, it can
be concluded from the above three different experiments that the results of knowledge transfer between
different equipment and different times have not improved much. This is also the main direction of
future research.
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5. Conclusions

In conclusion, we have proposed two TL-TCN frameworks to solve the temperature prediction
problem of multiple heating zones in the furnace. Experimental results show that the framework
proposed in this paper has magnificent performance in 10 different heating zones. Based on the
similar heating processes in different heating zones and the background of sharing most of the
control variables, this paper proposes a transfer learning framework. First, the source zone is selected
reasonably according to the temperature distribution, and then the knowledge learned in the source
zone is transferred to the remaining heating zones. The transfer learning framework in this paper is
equivalent to expanding the training set, avoiding the extrapolation prediction of neural network, and
solving the problem of inaccurate prediction caused by unstable temperature distribution of heating
furnace. Fine-tuning can solve the different needs of the same control variables in the same equipment.
GAN-TL can solve different needs with different control variables. For the unstable and nonlinear
industrial sensor data, taking the sensor data of the heating furnace as an example, our transfer learning
framework provides a new way to solve the problem of the neural network without extrapolation.
In addition, our neural network weight initialization method based on self-transfer learning also
significantly improves the prediction performance of the network. However, when the two domains
are highly similar, it is necessary to further improve the feature extraction capability of GAN in the
GAN-TL framework. In future work, GAN needs to be further optimized in order to improve its
performance. In addition, our future work will also focus on solutions for multiple source domains,
which is also a common phenomenon in industrial systems.
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Appendix A

The appendix mainly supplements the data of heating furnace and the temperature control range
required for different steels in actual production. Figure A1 shows the temperature distribution of the
target variables for each heating zone.

The heating furnace that we studied this time is a three-stage heating furnace, which is divided
into a preheating section, heating section, and soaking section. There are 10 heating zones in the
three heating sections. The three heating sections have different temperature requirements. Moreover,
the type of billet and the temperature of slab entering the furnace will also lead to different temperatures.
The specific requirements for the required temperature are shown in Tables A1 and A2. However,
due to the confidentiality of the company, we did not show the specific steel brand.
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Figure A1. Temperature distribution of target variables in each heating zone except those mentioned
in the manuscript, (a–g) shows the temperature distribution of heating zone 3–10 except heating zone 6.

Table A1. Requirements for temperature control of cold slab furnace.

Representative Brand
Soaking Section (◦C) Heating Section (◦C) Preheating Section (◦C)

09, 10 07, 08
05, 06

04, 03
01, 02

Q *** 1300~1190 1310~1180 1250~1000
S *** 1310~1180 1300~1170 1250~1000
Q *** 1300~1180 1310~1170 1240~1000
X *** 1300~1180 1310~1170 1240~1000

Note: *** is composed of number, quality grade symbol and deoxidation method symbol.

Table A2. Requirements for temperature control of hot slab furnace.

Representative Brand
Soaking Section(◦C) Heating Section (◦C) Preheating Section (◦C)

09, 10 07, 08
05, 06

04, 03
01, 02

Q *** 1290~1190 1300~1180 1250~1000
S *** 1300~1180 1290~1170 1250~1000
Q *** 1290~1180 1300~1170 1240~1000
X *** 1290~1180 1300~1170 1240~1000

Note: (A) The slab temperature in the furnace <400 ◦C is the cold billet, and the slab temperature in the furnace
≥400 ◦C is the hot billet. (B) The temperature of the furnace in the table is allowed to fluctuate within 30 ◦C of the
instantaneous (<5 min) overrun. *** is composed of number, quality grade symbol and deoxidation method symbol.
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