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Abstract: In taekwondo, poomsae (i.e., form) competitions have no quantitative scoring standards,
unlike gyeorugi (i.e., full-contact sparring) in the Olympics. Consequently, there are diverse fairness
issues regarding poomsae evaluation, and the demand for quantitative evaluation tools is increasing.
Action recognition is a promising approach, but the extreme and rapid actions of taekwondo
complicate its application. This study established the Taekwondo Unit technique Human Action
Dataset (TUHAD), which consists of multimodal image sequences of poomsae actions. TUHAD
contains 1936 action samples of eight unit techniques performed by 10 experts and captured by
two camera views. A key frame-based convolutional neural network architecture was developed
for taekwondo action recognition, and its accuracy was validated for various input configurations.
A correlation analysis of the input configuration and accuracy demonstrated that the proposed model
achieved a recognition accuracy of up to 95.833% (lowest accuracy of 74.49%). This study contributes
to the research and development of taekwondo action recognition.

Keywords: gesture recognition; action recognition; convolutional neural network; taekwondo;
poomsae; human action dataset

1. Introduction

Vision-based action recognition is an important research topic in the domain of human action
recognition. Many action recognition studies have adopted vision sensors because of the rich
information they provide, despite their limited field of view and sensitivity to lighting changes [1].
Recent advances in artificial intelligence technology and vision sensors have promoted vision-based
action recognition for various applications, such as education [2], entertainment [3,4], and sports [5–12].
Various studies have proposed novel algorithms [13–23] or established datasets [1,24–27] for
vision-based action recognition.

Sports is one sector with significant adoption of vision-based action recognition. Several action
recognition algorithms have been proposed for sports, including soccer [5], golf [6,7], tennis [8–10], table
tennis [11], and baseball [12]. Vision-based action recognition systems have been applied to provide
quantitative scoring standards or systems to assist referees. However, relatively few studies have
investigated the application of vision-based action recognition to martial arts. The actions of martial arts
are significantly more rapid than normal movements, which complicates the acquisition of continuous
actions with sufficient clarity and without the loss of inter-frames. In addition, martial arts poses require
rapid posture changes and an extreme range of action, which complicates the application of existing
human action databases and software libraries developed for normal actions [28]. Many studies have
used skeleton data obtained with RGB-D sensors for action recognition [16,19–23,29,30]. Such skeleton
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data provide information on the locations of joints over time, which can be utilized for action
recognition [29]. In the literature, skeleton data have been combined with machine learning algorithms
such as the convolutional neural network (CNN) [16,19,21–23] or recurrent neural network [29,30] for
human action recognition. However, using such data for martial arts with a wide range of movements,
and extreme and rapid actions is difficult because the RGB-D sensors have low skeleton extraction
accuracy for those actions [31,32]. Several studies on action recognition for martial arts have sought to
address these challenges. Zang et al. [32] and Soomro et al. [33,34] proposed action recognition methods
that can be applied to martial arts as well as general sports and routine movements, and Heinz et al. [35]
attached sensors to users for kung fu action recognition. Salazar et al. [36] proposed using Kinect to automate
the evaluation process of martial arts forms, and Stasinopoulos and Maragos [37] proposed an algorithm
based on the historiographic method and hidden Markov model for martial arts action recognition from
videos. However, while studies focused on typical human action recognition could leverage various action
datasets and recognition algorithms, previous studies on martial arts action recognition had no public
datasets and recognition algorithms specific to martial arts that were available to them.

Taekwondo is an official Olympic sport consisting of two major categories: gyeorugi and
poomsae. Gyeorugi is a type of full-contact sparring between opponents that uses a quantitative
and accurate electronic scoring system to facilitate objective judgment. In contrast, poomsae is a
form competition where a single competitor arranges basic attack and defense techniques in a certain
order. Unlike gyeorugi, which has quantitative and accurate scoring, poomsae is scored by judges.
Except for certain penalties such as timeouts and borderline violations, the judging is subjective
and qualitative. In addition, situational constraints mean that judges must often evaluate multiple
competitors simultaneously. Therefore, issues have arisen over scoring fairness and consistency for
poomsae, not only in competitive events but also in promotion examinations.

Several studies have focused on vision-based action recognition for taekwondo.
De Goma et al. [28] proposed a taekwondo kick detection algorithm with skeleton data preprocessing.
Choi et al. [38] proposed a system for remotely scoring poomsae by comparing actions acquired from
multiple vision sensors with corresponding reference actions. Seo et al. [39] suggested a Poisson
distribution-based recognition algorithm that uses one-dimensional spatial information extracted from
image sequences as its input. Kong et al. [40] extracted taekwondo actions from a broadcast competition
video and classified them with high accuracy by applying a support vector machine and defining a
taekwondo action as a set of poses. However, these studies had limitations such as low accuracy despite
a complex recognition system [38], restricted applicability arising from limited movements [28], and
vulnerability to the movement of subjects because of the exclusive use of histogram images [39]. Despite a
high recognition accuracy rate, Kong et al.’s method [40] requires two training and recognition models each
for a single frame and action classification process, and the pose order needs to be defined for all action
classes. This results in unique actions that greatly influence the behavior definition. Thus, if an action is
performed in a different pose order (e.g., a transitional action), the recognition accuracy can decrease [40].
Furthermore, the task of labeling 16 poses requires a significant amount of time and resources.

To address these problems, a simpler system, dataset optimized for taekwondo, and method
to minimize manual intervention in the action recognition process are required. In this study, the
Taekwondo Unit technique Human Action Dataset (TUHAD see Supplementary Materials) was
compiled for taekwondo action recognition, and a key frame-based action recognition algorithm was
proposed. The proposed algorithm was validated through an accuracy analysis for various input
configurations. The main contributions of this study are as follows:

1. TUHAD was constructed for application to taekwondo action recognition, and it includes the
representative unit techniques of taekwondo. All actions were performed by taekwondo experts
and were collected in a controlled environment for high reliability.

2. A key frame-based CNN architecture was developed for taekwondo action recognition. The accuracy
of the proposed model was analyzed according to various input configurations regarding the image
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modality, key frame position, camera view, and target action to determine the optimal settings for
data gathering and action recognition based on taekwondo-specific characteristics.

2. Materials and Methods

Figure 1 shows the proposed method for taekwondo action recognition, which includes data
collection, action recognition, and accuracy analysis. For data collection, image sequences of the
taekwondo unit techniques were acquired to establish TUHAD. All unit techniques in TUHAD are
from the first three chapters of Poomsae Taegeuk (i.e., set of forms), and they were performed by
professional taekwondo experts. A mono RGB-D camera was used to acquire the multimodal image
sequences. The key frame-based CNN action recognition architecture was trained with TUHAD.
The accuracy of the recognition model was then tested with various input configurations to determine
the optimal configuration for taekwondo action recognition.
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Figure 1. Overall process of the proposed action recognition method.

2.1. TUHAD: Taekwondo Unit Technique Human Action Dataset

TUHAD consists of approximately 100,000 image sequences of eight basic unit techniques of
taekwondo performed by 10 experts. All actions were recorded from the front and side views.
The experimental protocol was approved by the Konkuk University Institutional Review Board
(7001355-202004-HR-375).

2.1.1. Subjects

Ten professional taekwondo poomsae demonstrators (or equivalent) of various heights and body
types participated in the experiment to collect action data for TUHAD. No clothing restrictions were
imposed on the subjects. The subjects were designated as T1–T10.

2.1.2. Data Modalities

Microsoft Kinect v2 was used to collect image sequences and capture RGB, depth, and infrared
images concurrently. The depth and infrared images that were input to the dataset had a raw resolution
of 512 × 424 pixels. The RGB images were down-sampled from 1980 × 1080 pixels to 786 × 424 pixels
to reduce memory requirements and match the horizontal resolution of the depth and infrared images.
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All images were captured from two different camera views: front and side. The front-view images were
filmed so that the subject approached the camera from the starting point, and the side-view images
captured the movements of the subject from the starting point to the right of the camera. In total,
99,982 image frames were captured for each image modality and input to TUHAD.

2.1.3. Capture Setup

Figure 2 shows the setup for capturing actions from the front and side views with a single RGB-D
sensor. During data collection, each subject performed eight unit techniques in a predefined order
while the sensor recorded the action from a fixed location. The capture space was a 5 × 5 m square
set up so that the subjects would remain within sensing range considering the range of movement of
the unit techniques. The camera was located 0.5 m from the center of the reference wall. To capture
the front- and side-view images, the subjects performed the same actions twice in different directions.
For the front-view image capture, a subject performed an action while moving towards the sensor
from the starting point located 4 m away from the center of the reference wall. For the side-view image
capture, the subject moved to the other starting point, which was 1 m to the left of the front-view
starting point, and repeated the same action while moving parallel to the reference wall. All movements
were recorded indoors and under artificial lighting. To reduce the influence of background elements
on the training process, 30% of the subjects were recorded in another environment under different
background and lighting conditions, as shown in Figure 3.
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2.1.4. Action Classes and Action Samples

Figure 4 shows the hierarchical structure of TUHAD. The dataset is classified first by subject
(T1–T10) and then by camera view (F, S) in the subsequent child node. Each view subset comprised
eight action classes (A1–A8) corresponding to the eight unit techniques of the first three chapters
of Poomsae Taegeuk. Figure 5 shows front and side views of a representative pose for each action.
These unit techniques are the basics of taekwondo and comprise three makki (block), three jireugi
(punch), one chigi (strike), and one chagi (kick). For each subject, one action class set comprised
12 action samples (S1–S12), each representing a set of consecutive images for one-unit technique.
Each action sample consisted of three different image modalities: RGB, depth, and infrared. For data
collection, four action samples were captured in a single take as the subject performed the same action
continuously four times while moving forward from the starting point. This procedure was repeated
three times, with the subject returning to the starting point each time, to acquire 12 action samples for
one action class. There were no restrictions on the stride or standing posture to allow for variability
within the actions. Therefore, different subjects executed the same unit technique with variations in
the standing posture, position on the screen, and transitional actions. Figure 6a shows the differences
between the standing postures of subjects T2 and T4 performing action class A3, and Figure 6b shows
the difference between subjects T5 and T3 performing A8. Some of the unit techniques were mistakenly
performed four times, and the additional samples were added to the dataset in the same manner as the
other data samples without any modification. However, action samples (e.g., A3 by subject T5) that
were performed incorrectly were excluded from the dataset. There should normally be 96 samples for
each camera view (eight action classes × 12 action samples), but these mistakes are the reason for the
irregularities in the number of samples among subjects as given in Table 1.

Table 1. The number of acquired action samples by subject and camera view.

View T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

Front 96 100 96 100 88 100 96 104 100 96 976
Side 96 96 96 104 84 96 96 96 96 100 960
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Figure 5. Eight taekwondo actions in TUHAD: (a) arae makki (low block, A1), (b) eolgul makki (high
block, A2), (c) sonnal makki (knife hand block, A3), (d) momtong jireugi (middle punch, A4), (e) eolgul
jireugi (high punch, A5), (f) sonnal mokchigi (knife hand strike, A6), (g) dubeon jireugi (double punch,
A7), and (h) abchagi (front kick, A8). All actions were recorded with two camera views.
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2.1.5. Data Organization

An action class captured in a single take was manually divided into four action samples,
where the beginning and ending frames were marked for each unit technique as shown in Figure 7.
Three annotators indexed and crosschecked the data several times to ensure data reliability. First,
each annotator individually searched the frames corresponding to the beginning and end of an action
while watching the image sequence frame by frame and recorded the frame number in a separate
document. Second, the initial indexing results produced by each annotator were compared, and the
correct indexing result was selected by majority. If there was no majority indexing result, then all
annotators searched the beginning and end frames of an action together again, and a final agreement
was derived through discussion. Third, the final indexing results were carefully verified one more
time by the annotators to ensure the integrity of the database. Finally, the action samples separated
from the long take were placed in hierarchical data folders, as shown in Figure 4.
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2.2. Key Frame-Based Action Recognition with CNN

In studies on vision-based action recognition, image frames extracted from the action sequence
(i.e., static pose images) have been used to recognize complex human actions [17,40,41]. Kong et al. [40]
defined 16 preset poses and assumed that all taekwondo actions could be represented as a combination
of these poses. Although their method achieved a mean classification accuracy of up to 91.3%, the
recognition rate was relatively low for transitional actions (i.e., movements connecting different actions
or poses). This was because their method strongly depended on manual adjustments to set each pose
combination. In this study, a key frame-based action recognition algorithm is proposed that is based on
a CNN architecture, which is known to be effective for image pattern recognition. The key frames are the
set of images representing the distinct features of a target action and are used as the input for the CNN
classifier. Regardless of differences in the action speed and technique of subjects, poses corresponding
to the moment as a proportion of the entire action sequence can be assumed similar because unit
techniques need to be performed in certain ways in taekwondo. Under this assumption, key frames
can be selected automatically according to a predefined proportional position with the entire action
sequence. The CNN classifier was customized for key frame-based taekwondo action recognition, and
the optimal key frame positions were determined through recognition accuracy analysis.

2.2.1. CNN Input Data

One set of multichannel images was used as the input for the key frame-based CNN classifier.
The size of each input image was set to 120 × 120 pixels, and the images used for training and testing
were resized to match. All RGB images needed their edges cropped before resolution adjustment
because they had different resolution ratios compared to the depth and IR images. As shown in
Figure 8, the input images comprised a stack of image groups of a specific data modality, and each
image group comprised two to four key frames extracted from the action samples of the unit techniques.
Various input data configurations were obtained for the three independent variables: image modality,
key frame position, and camera view. The dependence of accuracy on the input data configuration
was analyzed as follows.

Image modalities: Action samples of the unit techniques were acquired with three different image
modalities: RGB, depth, and infrared. Previous studies have employed methods that superimpose
different image modalities into one multichannel image to improve the classification and action
recognition performances [41,42]. In this study, various modalities of key frame images were simply
stacked into one multichannel image, which was used as the input for the CNN classifier. Seven input
image configurations were created from different combinations of the three modalities. The seven
input configurations were used to analyze their correlation with the recognition accuracy, and the
optimal configuration was selected for subsequent analyses.
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Key frames: A minimum of two images was required for accurate recognition because all unit
techniques consist of changes in poses over time. Several key frames were defined and used to extract
multiple images from one action sequence. The images located at a constant ratio were extracted
based on the start and end of an image sequence. The first image of each action image sequence was
designated as the 0% position, and the last image was taken as the 100% position. The frame images
located at 25%, 50%, 75%, and 100% of the image sequence were then defined as key frames and
were labeled as p25, p50, p75, and p100, respectively. There was no designation of p0 because the
first image of the action sequence was intentionally excluded in consideration of the characteristics
of taekwondo: even for the same technique, the initial pose and movement depend on the previous
technique. For example, arae makki (low block, A1), which begins in the preparation stance and
is performed following other techniques, does not always have the same initial stance. Therefore,
the initial image frame of actions did not have generality, and only the other key frame positions were
used. Two to four key frames were used as the input data for the different training models. This yielded
six input configurations with two key frames, four input configurations with three key frames, and
one input configuration with four key frames. The correlation between the number of key frames and
recognition accuracy was analyzed, and the optimal key frame containing the most important features
of an action was identified.

Camera views and action classes: The actions of unit techniques were captured in two different
viewpoints: front and side viewpoints. All unit techniques were sampled independently in each view.
These separate action samples were used to analyze the variation in the recognition accuracy as a
function of the camera view. In addition, the accuracy for each action class was analyzed to detect
taekwondo characteristics that could be utilized in action recognition.

2.2.2. CNN Architecture

The CNN architecture for action classification was constructed by considering existing CNN-based
action recognition architectures [11,16,41,43]. In total, four convolutional layers were used with 16
5 × 5 filters, 32 3 × 3 filters, 64 3 × 3 filters, and 128 3 × 3 filters. All hidden layers used the rectified
linear unit (ReLU) as the activation function. Max pooling was performed after each convolutional
layer over 2 × 2 spatial windows with a stride of 2. After the data were passed through two fully
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connected layers, a softmax layer was applied to obtain the classification score. Figure 9 shows the
proposed CNN architecture for taekwondo action recognition, and Table 2 presents the number of
training parameters and the output shapes of each layer.Sensors 2020, 20, x FOR PEER REVIEW 9 of 20 
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Table 2. Details of the structure of the key frame-based CNN.

Layer Index Conv1 Conv2 Conv3 Conv4 FC1 FC2 Total

Output shape 58 × 58 × 16 28 × 28 × 32 13 × 13 × 64 5 × 5 × 128 3200 × 1 128 × 1 -
# of parameters 1 3216 4640 18,496 73,856 409,728 1032 514,168

1 Number of parameters from the training model using the RGB+D modality and p50 + p100 key frames.

2.2.3. Training Steps

Parametric training was conducted with 90% of the samples, and the remaining 10% were used to
test the trained model. The training and test samples were selected randomly from the entire dataset
that contains action samples of all subjects. During the training process, fivefold cross-validation was
used to obtain the generalization accuracy of the predictive models. All data were flipped left and
right during the training process because taekwondo is divided into right-handed and left-handed
actions, even for the same technique. However, these actions have perfect bilateral symmetry, and
there are no other differences. Therefore, the images were flipped to double the number of training
samples. The ADAM optimizer was applied to train the parameters [44]. The maximum number of
epochs was set to 200. The cross-entropy loss was used as the objective function. Table 3 summarizes
the characteristics of the training and test data.

For a multichannel input image set of n samples:

• Flipped samples: 2n;
• Number of test samples: 2n × 0.1;
• Number of validation samples: 2n × 0.9 × 0.2;
• Number of training samples: 2n × 0.9 × 0.8.

Table 3. Types and number of training and test samples.

Camera View Action
Samples

Flipped
Samples

Validation
Samples

Training
Samples Test Samples

Front 976 1952 352 1404 196
Side 960 1920 343 1382 192
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3. Results

The experimental results and recognition accuracy of the proposed method for the various input
configurations are presented here. The recognition accuracy was analyzed with regard to the image
modality, key frames, camera view, and action class.

3.1. Image Modalities

The recognition accuracy was evaluated for seven input configurations comprising various
combinations of the three image modalities, as given in Table 4. All four key frames (i.e., p25, p50, p75,
and p100) were used for the multimodal input data to prevent them from influencing the accuracy.
Table 4 and Figure 10 present the accuracy of the proposed method according to the input image
modalities. The accuracy was measured by using test samples that were not used during the training
process. To evaluate the recognition accuracy, 196 and 192 test samples were used for the front and
side views, respectively. Combining the RGB and depth image modalities provided the highest
accuracy for both the front and side views at 87.7% and 94.2%, respectively. The lowest accuracy was
obtained by using only the infrared image modality for both the front and side views at 77.0% and
80.2%, respectively.

Table 4. Recognition accuracy with different image modality combinations.

Modality Accuracy (%)

Front View Side View

RGB 85.7 89.5
Infrared 77.0 80.2
Depth 83.1 93.7

Infrared + Depth 77.0 84.3
RGB + IR 82.1 88.5
RGB + D 87.7 94.2

RGB + IR + D 77.5 83.3
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3.2. Key Frames

The effect of each key frame on the recognition accuracy was analyzed. In total, 11 input
configurations were created from various combinations of the four key frames (i.e., p25, p50, p75, and
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p100). Table 5 and Figure 11 present the key frame combinations and obtained recognition accuracy for
the front and side views. The recognition accuracy was evaluated with 196 and 192 test samples for the
front and side views, respectively. The highest recognition accuracy with two key frames was obtained
by combining p50 and p100 at 88.2% and 95.8% for the front and side views, respectively. With three
key frames, the highest accuracy was obtained for the combination of p25, p50, and p100 at 89.7% and
95.3% for the front and side views, respectively. The combinations with the highest accuracy were p25,
p50, and p100 for the front view and p50 and p100 for the side view.

Table 5. Recognition accuracy according to key frames.

Number of Key Frames Key Frames Used
Accuracy

Front View Side View

2

p25 p50 81.1 90.6
p25 p75 74.4 81.2
p25 p100 85.2 91.1

p50 p75 78.5 83.8
p50 p100 88.2 95.8

p75 p100 80.6 89.2

3

p25 p50 p75 77.5 86.9
p25 p50 p100 89.7 95.3
p25 p75 p100 80.1 90.6

p50 p75 p100 88.2 92.7

4 p25 p50 p75 p100 87.7 94.2
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Table 6 and Figure 12 present the average recognition accuracy for a specific key frame. In Table 6,
the accuracy of each key frame indicates the average accuracy of all combinations that includes this
key frame. If p25 is taken as an example, the accuracy for two key frames was calculated by averaging
the accuracies of (p25 + p50), (p25 + p75), and (p25 + p100). The accuracy for three key frames was
calculated by averaging the accuracies of (p25 + p50 + p75), (p25 + p50 + p100), and (p25 + p75 + p100).
The accuracies of the other key frames were calculated in the same manner. The highest average
accuracy was obtained with p100, and the lowest average accuracy was obtained with p75.



Sensors 2020, 20, 4871 12 of 19

Table 6. Average recognition accuracy by key frames.

Key Frame

Accuracy

Total Average AccuracyTwo Key Frames Three Key Frames

Front View Side View Front View Side View

p25 80.2 87.6 82.4 83.4 85.2
p50 82.6 90.1 85.2 85.9 87.2
p75 77.8 84.7 81.9 81.5 83.5

p100 84.6 92.0 86.0 87.5 88.9Sensors 2020, 20, x FOR PEER REVIEW 12 of 20 
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3.3. Camera Views and Action Classes

Table 7 presents the recognition accuracy for each action class and camera view. As indicated
in Tables 4 and 5, the accuracy was about 2–10% higher with the side view than the front view for
almost all analyses. The same trend can be observed in Table 7. The average accuracy was 88.8% with
the side view and 81.8% with the front view. This tendency was confirmed for each unit technique
except for A2. With regard to action classes, the three jireugi actions (A4, A5, and A7) and one chigi
action (A6) had lower accuracies than the others, as shown in Figure 13. Figure 14 shows the confusion
matrices for the action classification. The most frequently confused actions were momtong jireugi
(middle punch, A4) versus dubeon jireugi (double punch, A7) and sonnal mokchigi (neck-high knife
hand strike, A6) versus eolgul jireugi (high punch, A5).

Table 7. Recognition accuracy according to the camera view and action class.

Action Class
Accuracy (# of Test Samples)

Front View Side View

A1 83.9 (398) 94.6 (408)
A2 91.1 (414) 90.2 (396)
A3 86.9 (374) 92.7 (356)
A4 74.0 (396) 87.1 (426)
A5 74.3 (447) 87.8 (395)
A6 80.6 (443) 83.9 (436)
A7 74.1 (432) 81.9 (437)
A8 91.1 (428) 93.4 (410)

Average 81.9 (3332) 88.8 (3264)
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3.4. Backgrounds

Table 8 shows the effect of the background to the recognition accuracy. TUHAD was captured in
two different backgrounds as shown in Figure 3. In total, 70% of images were captured in a background
shown in Figure 3a and remaining 30% of images were captured in the other background shown
in Figure 3b. To compare the recognition accuracy regarding the backgrounds, the accuracies were
evaluated for five sets of training and test samples having different background configurations as
shown in Table 8. The recognition accuracy of the model trained with the samples captured in the
background A and tested with the images captured in the background B was 44.2% and 47.4% for the
front and the side viewpoint, respectively. On the contrary, when training was conducted with images
captured in the background B and tested with the images captured in the background A, the accuracy
was 30.0% and 30.7% for front and side viewpoints, respectively. These cases, in which training and
testing were conducted with images of different backgrounds, showed significantly lower accuracy
than the model trained with the images of both backgrounds. However, there were no significant
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differences in recognition accuracy for the cases in which the training was conducted with the images
of both backgrounds. These results imply that the problem of such overfitting may arise if the training
data is captured in a specific environment.

Table 8. Recognition accuracy according to the backgrounds.

Training Samples Test Samples
Accuracy (%)

Front View Side View

Background A Background B 44.2 47.4
Background B Background A 30.0 30.7

Background A + B Background A 85.3 93.7
Background A + B Background B 88.3 94.1
Background A + B Random 88.3 95.8

3.5. Comparison with Previous Datasets and Recognition Algorithms

In this paper, we proposed the dataset and the recognition algorithm specialized for taekwondo
action recognition. This section compares the proposed dataset (TUHAD) and the recognition algorithm
with the existing datasets and recognition algorithms, respectively. Table 9 shows the comparison of the
proposed dataset with the previous one containing sports and martial arts actions. The datasets were
compared regarding the field, recording environment, modality, number of action classes, samples,
and subjects. The comparison with previous datasets demonstrates that the proposed dataset contains
sufficient action samples, subjects, and classes with various image modalities for a relatively narrow
field of taekwondo compared to the previous datasets.

Table 9. The comparison between datasets containing sports and martial arts.

Datasets Field Recording
Environment Modality # of Classes

(Martial Arts)
# of

Subjects
# of

Samples

MAHD [27]
Routine human actions,
including some sports Studio captured

RGB-D,
Skeleton,

IMU
27 (0) 8 861

UCF Sports Action Dataset Overall sports Broadcasting video RGB 10 (0) 150 150

TTStroke-21 [11]
Sports

(table tennis)
Video with similar

camera position RGB 20 (0) 129 129

MADS [32]
Martial arts, dancing,

sports Studio captured RGB-D,
Skeleton 36 (12) 5 216

TUHAD
Martial arts

(taekwondo) Studio captured RGB-D, IR 8 (8) 10 1936

The performance of the proposed key frame-based taekwondo action recognition algorithm was
quantitatively compared with the previous algorithms [39,40] applied for taekwondo action recognition
regarding the recognition accuracy and computation time required for the action recognition. Since the
previous algorithms were specialized for their own datasets, it was difficult to apply the algorithms
to TUHAD. Thus, the previous algorithms have been slightly modified to fit into our dataset while
maintaining their methodology. RGB image of key-frame p100, which shows highest recognition
accuracy among the key frames, was given as the input to the previous algorithms receiving single input
image. The recognition accuracy of the proposed method was evaluated as the average recognition
accuracy of the key frame p100 shown in Table 6 for fair comparison. The computation time was
measured in the machine equipped with NVDIA GeForce RTX 2060 GPU, Intel i7-9700 CPU, and
64 GB Ram. Table 10 shows the results of performance comparison. For the recognition accuracy,
the proposed method was 24.7% and 8.5% higher than that of the previous method [40]. For the
computation time, the proposed method also showed the superior result which was two times faster
than the previous method [40].
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Table 10. The comparison with taekwondo action recognition algorithm.

Method
Accuracy (%)

Computation Time (ms)
Front View Side View

Seo at al. [39] + Yolo V3/SVM 50.0 51.1 42.8
Kong et al. without SPOT [40] 52.1 56.8 16.4

Kong et al. with SPOT [40] 60.7 81.3 48.4
Proposed method 85.4 89.8 7.57

4. Discussion

Implications and insights obtained from the analysis of how the various input configurations
affected the recognition accuracy are presented here. They are pertinent to understanding the important
features of taekwondo action recognition and can be utilized for improved accuracy and reliability in
further research.

4.1. Image Modalities

The analysis of the input image modalities indicated that combining RGB and depth images
provided the highest recognition accuracy. In contrast, image modality combinations that included
infrared images achieved relatively low accuracy compared to the other combinations. For example,
adding infrared images to the RGB and depth images lowered the recognition accuracies by 14.5% and
11.6% for the front and side views, respectively. This result is interesting because the accuracy declined
even though more information was given to the action classifier. The results confirmed that simply
stacking image modalities is a feasible approach to improving the recognition accuracy, rather than
using various image preprocessing techniques or creating new types of images [11,40,41].

4.2. Key Frames

The proposed action recognition algorithm uses 2–4 key frames extracted from a sequence of
images of the target action. Using only the key frames rather than the entire image sequence allows
the proposed algorithm to achieve acceptable recognition accuracy while maintaining computational
efficiency. The correlation between the recognition accuracy and different combinations of key frames
(p25, p50, p75, and p100) were analyzed. As shown in Figure 11, the highest accuracy for the side view
was achieved by combining p50 and p100, followed by combining p25, p50, and p100. For the front
view, the highest accuracy was achieved by combining p25, p50, and p100, followed by combining p50
and p100. This implies no relationship between the number of key frames and recognition accuracy.
If a critical key frame presents a distinct feature of an action, sufficient recognition accuracy can be
achieved even without using the information from all frames. This conclusion is further supported by
the fact that the accuracy was higher with p50 and p100 than with all of the key frames for both the
front and side views. However, the position of the key frame greatly affected the recognition accuracy,
as demonstrated in Table 6 and Figure 13. Regardless of the camera view, p100 provided the highest
recognition accuracy followed by p50, p25, and p75. This implies that the last pose of a taekwondo
action contains its most distinct features.

4.3. Camera Views and Action Classes

The recognition accuracy was 2–10% higher with the side view than with the front view for
all action classes except for A2, as shown in Figure 13. This was expected because of the nature of
taekwondo actions, in which many movements are made while looking forward. When a limb is
extended toward the front (e.g., jireugi (punch)), extracting shape information for the arms and legs
from the front view is difficult. Therefore, action features can be observed more easily from the side
than from the front. Four action classes (three jireugi (middle punch, A4; high punch, A5; double
punch, A7) and one chigi (neck-high knife hand strike, A6)) had lower recognition accuracies than the
other classes for both the front and side views. For the four action classes, a common feature was the
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arms were swung while straight. In particular, the recognition accuracy was below 80% for the three
jireugi actions from the front view, which can be attributed to their high visual similarity. As discussed
previously, determining the angles of the arms from the front view was difficult. In addition, the
fist may overlap the torso, which makes it difficult to recognize. In contrast, these techniques can be
distinguished more clearly from the side view because the front of the arm does not overlap with the
torso. This conclusion is supported by the fact that the recognition accuracy for the jireugi actions was
relatively high from the side view.

The low recognition accuracy for the front view due to visual similarity is also shown in Figure 14.
The most frequently confused movements were momtong jireugi (middle punch, A4) versus dubeon
jireugi (double punch, A7) and sonnal mokchigi (neck-high knife hand strike, A6) versus eolgul jireugi
(high punch, A5). A4 and A7 only differ in the number of punches performed, and the punching
action and target point are the same; thus, these two actions result in the same pose at p100. A5 and
A6 are aimed at the face and neck, respectively, so they have similar heights for the hand position at
p100. Obviously, these actions can be sufficiently distinguished by considering the entire trajectory, but
discerning them by analyzing only key frames is a challenge. In particular, the similarity in poses at
p100, which is the most critical key frame, had a large influence on the reduced recognition accuracy.

In contrast, high recognition accuracy was achieved for the rest of the action classes, which had
little visual similarity. Abchagi (front kick, A8) is the only kick motion, and it achieved the highest and
second-highest recognition accuracies for the side and the front views, respectively. This is because it
involves unique lower-body movements that can be clearly distinguished from the other actions. A1,
A2, and A3 also have distinct visual characteristics. Arae makki (low block, A1) and sonnal makki
(knife hand block, A3) have huge differences in the movement of the arm and the final pose at p100.
Eolgul makki (high block, A2) is a unique motion in which the arms are placed above the subject’s
head horizontal to the ground, as shown in Figure 8. Due to these characteristics, A1, A2, A3, and A8
all had high recognition accuracies above 90% with the side view, and they had higher recognition
accuracies than other actions with the front view. Eolgul makki (high block, A2) was unique because
it achieved a high recognition accuracy with the front view, while most of the other action classes
obtained a high recognition accuracy with the side view. This may be because the arms blocked the
face when they were above the head or horizontal, which made the features of this action class more
apparent from the front view.

Several studies have used multi-view images that were captured simultaneously using multiple
cameras for improving the recognition accuracy [32,38]. Although TUHAD provides images captured
in two camera viewpoints, the recognition accuracy of the multi-view images cannot be evaluated
because the action samples of the front and side views were captured separately. This is one limitation
of TUHAD.

4.4. Backgrounds

The results of cross-background test show lower recognition accuracy compared to the test result
of the model trained with both backgrounds as represented in Figure 8. This results clearly demonstrates
that background feature was reflected in the training process and affected the resulting recognition
accuracy. In the case of a model that trained with both backgrounds, there was no significant difference in
recognition accuracy between two background samples, even though the number of samples with that
background A is more than twice of the background B. This implies that features other than actions can be
intervened in the training process even when a high-performance feature extractor such as CNN is used
in the action recognition process. However, at the same time, it is possible to prevent the model becoming
overfitted to secondary features like background by adding a few different types of samples to the dataset.

4.5. Comparison with Previous Recognition Algorithms

Table 10 shows the comparison result between recognition algorithms. The proposed method
trained with TUHAD achieved the higher accuracy and less computation time compared to the
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previous taekwondo action recognition algorithms. However, as mentioned above, the previous
recognition algorithm is specialized in their own dataset, some degree of accuracy decline was
inevitable. The recognition algorithm proposed by Seo at al. [39] has a simple structure that calculates
the image histogram and classifies it. However, due to the limitations of the method using simple
histogram, it seems that the accuracy decreases in the dataset with diversity of brightness and
subjects. Kong et al. [40] recognized the actions of taekwondo in the broadcast image with high
accuracy. However, it also showed a limitation that it cannot be used in an action class that is not
defined preliminarily. For this reason, only one input image was used in the performance evaluation
without motion sequence information. For this reason, the accuracy of this method was evaluated
relatively low compared to the value presented in their paper. However, the recognition accuracy
improvement through the de-noising technique with modified SPOT was remarkable. Despite the
additional computational time, it seems that it can be adopted to the proposed algorithm to improve
recognition accuracy.

5. Conclusions

In this study, TUHAD was established to provide data for accurate vision-based action recognition
of taekwondo. TUHAD contains 1936 samples representing eight fundamental unit techniques
performed by 10 taekwondo experts who were recorded from two camera views. A key frame-based
CNN classifier was developed, and the recognition accuracy was analyzed according to the image
modality, key frame, and camera view. The results demonstrated that the CNN classifier achieved a
recognition accuracy of up to 95.833%. TUHAD and the proposed classifier can contribute to advancing
research regarding taekwondo action recognition, and the results on the optimal image capture setup
can have broader applicability. For example, this information may also be applicable to other situations
entailing the recognition of rapid actions outside the range of normal human movements. However,
a critical prerequisite for applying the proposed method to action recognition is that the beginning
and ending frames of the action (i.e., action detection) should be given prior to action classification.
This will be explored in following research papers. TUHAD will be expanded to include more unit
techniques as well as combinations of various unit techniques to recognize more complex and diverse
taekwondo actions. In addition, more advanced action recognition and detection algorithms, such as
trajectory-based and multi-view conditions, will be investigated.

Supplementary Materials: The following is available online at http://gofile.me/6AOtN/UePI6h55H, Data S1:
Taekwondo Unit technique Human Action Dataset (TUHAD).
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