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Abstract: Currently, many intelligent building energy management systems (BEMSs) are emerging for
saving energy in new and existing buildings and realizing a sustainable society worldwide. However,
installing an intelligent BEMS in existing buildings does not realize an innovative and advanced
society because it only involves simple equipment replacement (i.e., replacement of old equipment or
LED (Light Emitting Diode) lamps) and energy savings based on a stand-alone system. Therefore,
artificial intelligence (AI) is applied to a BEMS to implement intelligent energy optimization based on
the latest ICT (Information and Communications Technologies) technology. AI can analyze energy
usage data, predict future energy requirements, and establish an appropriate energy saving policy.
In this paper, we present a dynamic heating, ventilation, and air conditioning (HVAC) scheduling
method that collects, analyzes, and infers energy usage data to intelligently save energy in buildings
based on reinforcement learning (RL). In this regard, a hotel is used as the testbed in this study.
The proposed method collects, analyzes, and infers IoT data from a building to provide an energy
saving policy to realize a futuristic HVAC (heating system) system based on RL. Through this process,
a purpose-oriented energy saving methodology to achieve energy saving goals is proposed.

Keywords: reinforcement learning (RL); artificial intelligence (AI); building energy management
system (BEMS); energy optimization; internet of things (IoT)

1. Introduction

To help realize a worldwide sustainable society by saving energy in new and existing buildings,
many intelligent building energy management systems (BEMSs) are emerging. BEMS refers to a system
that integrates the internet of things (IoT) technology into a building to manage multiple building
facilities [1–3]. A BEMS aims to create a pleasant environment by managing the various facilities
used in buildings to save energy, reduce labor costs, and extend the lifetimes of the buildings [4].
BEMS in buildings that had smart IoT technology incorporated during construction are called new
BEMSs, and BEMS added to newly remodeled existing buildings are called existing BEMSs. Currently,
new BEMSs into which smart IoT technology is integrated from the planning stage of building
construction are emerging. However, IoT technology is also being integrated into existing BEMSs
to create new energy-saving smart BEMSs. Research is underway to improve energy efficiency by
eliminating wasteful energy elements throughout existing buildings [5].

To implement a BEMS in a new building, an IoT-based intelligent system can be installed from
the pre-planning stage at low cost. It is not problematic to select and apply high-efficiency building
equipment in the early stages of construction and to construct the latest IoT-based HVAC and integrated
management system. However, implementing a BEMS in an existing building involves higher costs,
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such as replacing expensive facilities and hiring additional building managers to apply the smart
IoT system. The wastage of energy can be reduced by replacing obsolete and expensive facilities
with BEMS retrofits in existing buildings; however, the most reasonable option is to install and apply
light and low-cost IoT [6–8] devices inside the building to monitor environmental and energy usage
information. It is reasonable to increase the energy operation efficiency in this way because of the high
costs (price, size, labor cost) involved in building a BEMS in an existing building.

The first important concept here is that of a light and cost-effective IoT device [9]. To build a BEMS,
IoT devices are attached to the building’s surface (highest layer) to perform important tasks. In other
words, IoT devices are installed on the building in high proximity to the user and the environment,
and they do not require the replacement of heavy and expensive equipment to implement a BEMS
in an existing building. In addition, IoT sensors and control interfaces are installed on the surface
of the facility to collect user and environmental information and to intelligently control the facility
based on this information. The second important aspect of the IoT is the use of large amounts of
data. By analyzing user and environmental information from large amounts of data collected from IoT
devices over a period of time, the most efficient guidelines for saving energy can be applied to the
HVAC system. The HVAC system references guidelines based on the analyzed data to provide an
optimal HVAC environment for the user while reducing energy. Currently, artificial intelligence (AI) is
the most extensively used state-of-the-art technology for data analysis [10,11].

1.1. AI-Based Energy Management

The main data analysis methods proposed in this paper are machine learning (ML) and
reinforcement learning (RL). ML is a type of AI that is part of the field of data science. Data science
is a multi-disciplinary field in which knowledge and insights are extracted from structured and
unstructured data [12–16]. Data science unifies statistics, data analysis, ML, and related methods to
understand and analyze actual phenomena using data [17]. AI is a typical area of data science [18].
ML and deep learning are key factors in AI, and this study uses RL technology, which is part of ML.
The basic principle of RL is learning, which is the ability to determine rules from given data and
algorithm-based intelligence [19]. A BEMS should recognize correlations in the data (User-HVAC)
that are generated in the building through learning and determine where to apply this knowledge to
obtain rewards. Although a number of studies have been conducted on implementing an ML-based
BEMS, it has only been used as a means of predicting the future based on a simple data analysis and
applying the results. However, to fundamentally apply RL to building energy management, it is
necessary to identify the relationships with regard to the HVAC system inside the building and apply
that information to the actual situation. This is a very important point, so we present the overall
structure for applying RL to the building. The related explanations are presented in Sections 3–5.

1.2. Intelligent Energy Data Analysis

In this study, ML-based reasoning models were applied to the analysis of time series data collected
from sensors. By analyzing past temperature sensor data, we inferred the temperature data figures
for the next two days or more to establish and provide a guideline policy on how to drive the
operation of the HVAC system [20]. Time series data refers to data that are represented as a function
of time. Examples of time series data include yearly sales values for the past five years and typhoon
positions every three hours, and these data are mainly used for prediction and inference for a certain
period of time in the future [4,21]. This study analyzes the time series data from real-time user and
building information collected by IoT sensors installed in the building. The data to be analyzed are
mainly temperature measurements, corresponding to the time series data. By analyzing the trends
in temperature changes in the user’s room with respect to time, it is possible to control the future
operations of the HVAC system. By inferring the trend in future temperature changes through the
analysis of time series data, the operation policy of the HVAC system can be adjusted accordingly.
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1.3. Purpose-Oriented Energy Saving and Optimization

This paper proposes a “purpose-oriented energy saving plan” to save energy on building HVAC
systems. Purpose-oriented energy savings refers to pre-setting the amount of energy savings that
have been achieved and then establishing energy saving policies. For example, assuming that the
maximum energy savings available to date for the current BEMS are 11%, the proposed system will
conclude that 25% of energy savings have already been achieved. For example, if the HVAC system
that consumes the most energy in the existing system brought an energy savings of 11% through the
pruning of wasted elements, the proposed plan is to drastically reduce the operating rate of the HVAC
system by 25%. In conclusion, it is a method of achieving an energy savings of 25% of the total energy
use of the HVAC system. The salient point is that the energy use of the HVAC system should be
reduced by 25%, and the corresponding reduction in heating should be made according to the user’s
needs and analyzed data. This method causes concern that the HVAC system’s QoS (quality of service)
will be reduced for the users. However, it will be controlled by converging the temperature setting
history and various complaints of the building users. That is, this method provides the best alternative
for satisfying the two conditions (achieving energy savings at the same time as satisfying the user’s
QoS) by identifying the time zones that do not affect the users of the HVAC system and using that
information to reduce the energy used.

1.4. The Purpose of This Study

This study is based on the four methods described above. To implement an IoT-based BEMS
more efficiently and intelligently target IoT-based energy-saving systems that are difficult to apply
to a current base building, a light and inexpensive IoT sensor is attached to the building surface to
collect user and environmental information. The collected data is then analyzed to provide intelligent
services in the future, whereby the user benefits from optimal temperature maintenance in the building,
to achieve optimal HVAC (heating) system energy savings. That is, data collected from the IoT sensor
is analyzed and, based on ML, used to provide the optimal temperature at the desired time for the
user. Thus, the energy use of the building is based on RL to reflect the needs of these users. In other
words, in this study, the user is provided with optimal conditions at the same time the energy use of
the HVAC system is reduced to optimize the building with four energy models. The main scope and
procedure of the study can be summed up as follows:

• Main scope

1. Smart IoT-based cost-effective BEMS for existing buildings
2. RL-based energy management model
3. ML-based data analysis for time-series data reasoning
4. Purpose-oriented energy saving and optimization methodology based on RL

• Total procedure

1. Step 1: Collecting data by installing a smart IoT device inside the building (Section 4).
2. Step 2: Establishing the relationship between the user and the building based on RL

(Section 3).
3. Step 3: Inferring the collected data based on ML (Section 5).
4. Step 4: RL-based building energy optimization by establishing an HVAC schedule to be

applied in the future based on the inferred data (Section 6).

First, in Section 2, related works, the key scenarios associated with this paper are analyzed and
the shortcomings of existing system and benefits of proposed system are explained. In Section 3,
system architecture, and Section 4, system configuration, the overall system architecture is presented,
including the flow chart and scenarios of the system. In the simulation results, the simulation results
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of the actual analysis (Section 5) and energy optimization are provided (Section 6). Finally, in the last
section, the business model, future prospect, and final conclusions are presented.

2. Related Works

2.1. ANN (Artificial Neural Network)-Based BEMS Modeling

Zhao, et al. [22] described the recent studies, including engineering, statistical, and artificial
intelligence based studies, related to modeling and forecasting building energy consumption. In the
aforementioned paper, it was suggested that the most widely used artificial intelligence methods
are artificial neural networks (ANNs) and support vector machines (SVMs). Kalogirou, et al. [23]
suggested various applications of neural networks in relation to energy systems. This demonstrates
the function of artificial neural networks as a tool for energy prediction and modeling in energy-related
fields. Chae, et al. [24] proposed a short-term building energy usage prediction model based on an
artificial neural network (ANN) using a Bayesian normalization algorithm and elucidated the effects
of network design parameters such as time delay, number of hidden neurons, and training data on
the performance of the model. Kalogirou, et al. proposed this paper [25] was to create a simulation
program that uses an ANN to model the thermal behavior of buildings by employing a multilayer
iterative architecture using a standard back propagation learning algorithm.

2.2. Reinforcement Learning (RL)-Based BEMS Modeling

Liu, et al. [26,27] summarize the RL techniques used to control building heat storage. Yu, et al. [28]
proposed a model-less method based on the RL scale to coordinate the supervisory controllers of
energy-saving building systems online. Therein, it was proposed that the supervisor learns the
optimal value of one parameter and selects the most suitable rule set based on the fuzzy rule set
generated by offline optimization, thereby reducing the learning time and computational requirements.
Kantamneni, et al. [29] investigated the application of a multi-agent system (MAS) in the control and
operation of microgrids. An MAS consists of a single agent or multiple intelligent agents that interact to
solve problems beyond the capabilities of the system. This paper discussed MAS concepts, architecture,
platform and process development, sample application provision, and limitations. This architecture is
similar to RL that is based on using simple agents in the environment. Dimeas, et al. [30] proposed a
general framework for microgrid control based on a multi-agent system technology. The proposed
architecture can integrate several functions to match the complexity and size of the microgrid.
To achieve this, the idea of hierarchical learning is used, and various controls and actions of agents
are grouped according to their impact on the environment. It also focused on how agents work
together to achieve their goals. At the heart of the collaboration is a multi-agent RL algorithm that
allows the system to operate autonomously in island mode. Vázquez-Canteli, et al. [31] presented
an integrated simulation environment combining CitySim, a high-speed building energy simulator,
and TensorFlow, a platform for the efficient implementation of advanced ML algorithms, in smart city
environments. Brandi, et al. [32] proved that deep reinforcement learning (DRL) can contribute to
significant energy savings in building environmental heating systems. A DRL-based heating system in
an office environment was proposed; energy savings of 5% and 12% were achieved by the proposed
energy saving scenarios.

2.3. Intelligent BEMS for Energy Optimization

Wang, et al. [33] proposed a pre-multipurpose optimization model for BEMS by integrating
solar power generation with other power generation methods as a source of economic and resident
comfort. User comfort includes three aspects with regard to the indoor environment: visual comfort,
thermal comfort, and indoor air quality comfort. By considering the controllable loads that can
participate in the demand and response (DR) program, a balance between various energy styles,
electrical, thermal, and cooling loads is ensured during the optimized operation. MATLAB’s YALMIP
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toolbox was applied to solve the optimization problem, and a case study was conducted to verify the
effectiveness and adaptability of the proposed model. Wang, et al. [34] proposed an occupancy-related
energy-cyber-physics system incorporating Wi-Fi probe-based occupancy detection. The proposed
framework extracts three types of occupancy information using an ensemble classification algorithm.
It enables automatic occupant detection and interpretation by creating a data interface to connect energy
management and cyber physics systems and assembling several weak classifiers for Wi-Fi signals.
To investigate the performance of the proposed occupied energy-cyber-physical system, verification
experiments were conducted in large office spaces, and it was found that the system saved energy
by approximately 26.4%. Degha, et al. [35] proposed an intelligent context-aware building energy
management system (ICA-BEMS). The ICA-BEMS uses a hybrid energy saving technology based on
smart context-awareness management (Smart-CAM). Smart-CAM uses smart building ontology to
gather smart building knowledge and provide contextual information using new context awareness
mechanisms. Park, et al. [36] presented that a human comfort-based control approach for intelligent
DR-based home energy management. The heating and lighting system was controlled by the elements
of thermal comfort and visual comfort. As a result, this paper showed that the proposed approach can
effectively reduce energy consumption and improve user comfort. Machine learning is a technology
that is effectively applied to intelligent energy saving in BEMS. Dey, et al. [37–39] shows optimized
energy saving and user convenience through machine learning based fault detection and diagnosis.
Jafarinejad, et al. [40] proposed a bi-level energy-efficient occupancy profile optimization method
integrated with a demand-driven control strategy to optimize the energy consumption within in a
university departmental building.

2.4. Novel Energy Saving Routing Algorithm with Q-Learning Algorithm

Zhang, et al. [41] researched MANET (mobile ad hoc network), VANET (vehicular ad-hoc network)
by the heuristic Q-Learning algorithm can dynamically adjust the routing path through interaction
with the surrounding environment. Zhang, et al. [42] proposed an energy-balanced routing method
based on forward-aware factor. The next-hop node is selected according to the awareness of link
weight and forward energy density, and a spontaneous reconstruction mechanism for local topology is
designed additionally.

Thus far, many papers related to AI-based intelligent modeling and intelligent BEMS energy
optimization have been published. Although there are numerous studies related to building energy
optimization, they have several limitations. Table 1 shows the limitations of existing systems and the
methods used by the system proposed herein to solve them.

Table 1. Merits of the proposed system.

Existing System Proposed System

• Data prediction is performed via simple data
analysis and energy optimization

• Energy saving is achieved by simple facility
replacement of stand-alone systems
after construction

• No purpose-oriented saving method

• Reinforcement learning (RL)-based
energy optimization

• IoT-based lightweight & cost-effective system
for existing buildings

• Purpose-oriented saving method

2.5. Problems of Existing System

1. Problem 1: Simple data prediction system using AI: Simple data analysis is only suitable for
weather predictions, such as temperature and fine dust predictions.

2. Problem 2: Energy savings via simple facility replacements for existing buildings: It is necessary
to replace existing low-efficiency, old facilities to build BEMSs in existing buildings. However,
these methods are expected to be expensive and difficult to install and require additional
installation costs.
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3. Problem 3: Passive energy saving measures: There is a lack of precise goal setting for energy saving.

This proposed system has the following advantages that effectively address the aforementioned problems:

2.6. Merits of the Proposed System

1. Solution 1: Reinforcement learning (RL)-based building energy optimization: This represents a
more advanced AI-based method that functions via interactive exchanges between the RL-based
user and HVAC.

2. Solution 2: IoT-based lightweight and cost-effective system for existing buildings: Energy management
is performed by installing a lightweight and cost-effective IoT system rather than replacing expensive
equipment to build BEMSs in existing buildings.

3. Solution 3: Purpose-oriented energy saving schedules: Energy-saving plans that are active,
rather than passive, are proposed. Existing energy-saving methods are insufficient for achieving
building energy savings up to 25%. Purpose-oriented energy saving plans means assuming that a
25% energy savings has already been achieved and then gradually complementing the user’s
complaints by controlling the HVAC.

3. System Architecture

3.1. RL-Based System Architecture

Figure 1a shows the basic structure of the RL architecture. It consists of the agent and environment,
as shown in the Figure 1. The main body is called the agent. The factors it interacts with, comprising
everything other than the agent, is called the environment. The agent selects actions, and the environment
responds to these actions, continually presenting new situations to the agent. The environment also provides
rewards, which are special numerical values that the agent seeks to maximize over time through its choice
of actions, to the agent [43,44].

In this study, we installed a smart IoT system for a real hotel building based on the RL architecture
and implemented a RL-based BEMS, as shown in Figure 1b. Figure 1b shows the RL architecture applied
to the BEMS. As shown in the figure, the system is structured to receive rewards via user-conditioning
system interactions. The following are possible relationships that can form between the agents and the
reward in the hotel. The term agent includes users, administrators, and cleaners. The environment
includes the HVAC system, windows, sunlight, and sensors. The rewards are user QoS and energy
savings. The final goal is optimal system management with regard to energy efficiency and user
QoS. In this study, there are two aspects, as shown in Figure 1b. In other words, when the agent is
the user and the environment is the HVAC system, the reward will be the user QoS. On the other
hand, when the agent is the BEMS system and the environment is the HVAC, the reward is energy
consumption and saving energy efficiency. The following figure presents a more detailed explanation.

As shown in Figure 1b, Box 1 and Table 2, the overall structure is divided into two parts:
the user-BEMS side and the BEMS-HVAC system side. Both aspects are considered in this paper.
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Figure 1. Reinforcement learning (RL)-based BEMS architecture.

Table 2. Relationship between the Agent and Environment in the BEMS.

Classification A B

Agent • All users: Guests • BEMS: IoT Infrastructure
Environment • BEMS: IoT Infrastructure • HVAC

Action • Setting the temperature:
rise/down • Energy saving: HVAC on/off

State • Temperature state • Energy state

Reward

• Positive reward: Positive
QoS, Optimal temperature

• Negative reward: Negative
QoS, Guest dissatisfaction

• Positive reward:
Energy saving

• Negative reward:
Energy consumption

Final Purpose • Optimal system management for energy efficiency and user QoS
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Box 1. Main procedure of RL-based BEMS model.

Main procedure
Step 1: Establish RL-based BEMS architecture
Step 2: Connection of RL-based main factor and BEMS factor
Step 3: Analysis of relationship of user-BEMS side and BEMS-HVAC system side

- User-BEMS side

a. Action A (User request)
b. Reward A (User Satisfaction or user dissatisfaction)

- BEMS-HVAC system side

a. Action B (Energy consumption)
b. Reward B (Energy saving)

Step 4: Optimization

3.1.1. User-BEMS Side

First, the user becomes an “agent” and affects the BEMS, which is the “environment.” The agent
has a target for the BEMS: to increase the user’s QoS. That is, the user, who is the agent, commands the
BEMS to raise or lower the temperature to increase his/her satisfaction. This is called the “User Request”
in Figure 2. If the user asks the BEMS to raise the temperature, the BEMS will raise the temperature to
give the user a high QoS as a reward. This is the structure of a general heating system.
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3.1.2. BEMS-HVAC System Side

However, in this study, we approached it from a different perspective and considered the second
side. This is the situation in which the BEMS acts as the agent. If the BEMS is the agent, the HVAC system
is the environment. The BEMS has one purpose: to save energy. For the purpose of saving energy,
the BEMS requests energy savings from the user, the environment. This is called the “BEMS Request”
in Figure 2. The BEMS asks the HVAC system for energy savings. However, rather than making
a request, the BEMS saves energy by arbitrarily lowering the temperature at a specific time period
based on the user’s past temperature-setting history. This time is selected based on when the user has
decreased the temperature or ventilated in the past. That is, a user in the past turned off the HVAC
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system or selected a point at which the temperature dropped sharply through ventilation, thereby
ceasing the operation of the HVAC system at that time. As this action is inferred and performed based
on past data rather than being requested by the user in real-time, the user’s QoS will be degraded.
However, the HVAC system does not consider this and arbitrarily reduces its use. Thus, the BEMS
achieves the goal of energy saving.

3.1.3. Optimization

The RL-based BEMS database server stores the data history between all users and the HVAC
system and establishes an HVAC policy through data analysis. The problem is resolving the QoS of
users when the HVAC system proceeds in this manner. The solution is to consider the user’s request or
complaint. If the user feels cold owing to a temperature drop, the user must raise the temperature
or complain to the manager through the interface of the HVAC system. When the complaint occurs,
the temperature is raised during the next scheduling. If a complaint does not occur, the state is
determined by the user to be at an optimum temperature, and the temperature is not raised. Thus,
the “optimization” in Figure 1b determines the optimal point by converging the user and BEMS
requests. In this paper, a method is proposed to find the most optimal compromise and to save energy
in the HVAC system while maintaining the user’s satisfaction.

4. System Configuration Test-Bed

4.1. System Installation

A smart IoT system was installed in hotels located in South Korea to implement the RL-based
purpose-oriented BEMS. The first was a pre-analysis of the “S” hotel, and an IoT system was designed
and built for that location. Table 3 shows the main analysis information of the hotel as well as a
blueprint for a smart IoT system installed on each floor, along with an analysis of the overall facilities
of the “S” hotel. Table 4 is a description of the IoT system installed therein.

The hotel consists of a total of 26 floors, as shown in Table 3. The total number of rooms is 383,
and heat is supplied to each room through two central boilers. The boilers can operate for 24 h a day,
and their uptime is adjusted according to the weather. Each room has a pan-coil for opening and
closing the duct slot on the ceiling of the room, providing centralized heat energy to each room. That is,
the user controls the temperature of the room via the interface in the room. Inside the room, a smart
IoT sensor and a gateway collect the environmental information from the room (temperature/humidity,
power, motion, etc.), as shown in Table 4. A detailed description of this is presented in Section 4.2.

4.2. System Configuration

The Figure 3 represents the structure of the IoT system actually installed in the hotel environment.
All IoT sensors used communicate based on Zigbee, which is IEEE 802.15.4 standard-based wireless
network technology; real data transmission rate was measured and confirmed to be over 2.5 kbps
(ACK transmitted ≈ ACK received). Data sampling rate is ‘1 sampling/min’. This cycle is changeable;
we collected data by setting it to the most reasonable ‘1 sampling/min’ considering the battery
consumption period. Figure 3a represents the installed IoT system structure; the entire system is
composed of a sensor (temperature/humidity, CO2, fine dust sensor), actuator (HVAC system), and data
center. The data center collects the temperature/humidity, CO2, fine dust, motion detection data,
and power sensor data from the power portion of the fan coil. The collected data is transmitted through
the gateway via a Zigbee-based wireless communication protocol and is transmitted to the central
server of the data center. The temperature and humidity data are transmitted from each room by
the temperature/humidity sensor and the air quality data in the room is transmitted by the CO2 and
fine dust sensors. The movement of the users in the room is detected by the motion detection sensor,
and the power information is collected and transmitted by the smart submeter installed in the power
portion of the fan coil of the in-room duct responsible for the HVAC heating and cooling. The power
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information from the fan coil can be measured whether the HVAC system in the room is activated.
Figure 3b shows pictures of the actual IoT devices installed inside the hotel.

Table 3. Hotel pre-analysis and smart-IoT installation.

Building Appearance Characteristics
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• Total number of floors: 26 (floors 1 and 2: commercial
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• Total number of rooms: 383
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Room 9; “B” heating system: Room 10 to Room 18 of
the entire floor control)

• The heating system is designed to operate 24 h a day,
and when guests check out, the cleaning personnel
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Table 4. Cont.

Items Characteristics Uses
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4.3. System Flow and Scenarios

Figure 4a shows the flow chart of RL-based HVAC optimization. When the temperature/humidity,
air quality, user movement, and power information from the fan coil are collected from the sensor,
they are transmitted to the data center via the gateway. The data center can monitor these data in real
time and collect and classify data hourly, seasonally, and annually to intelligently infer future progress.
This will create an energy-saving policy for future energy savings. Based on this, the administrator
carries out the energy saving policy by setting the HVAC schedule when the user requests a temperature
increase. As shown in Figure 4b, the HVAC schedule is performed during heating when the temperature
rise history is high, when the fan coil operation history is high, and when the user movement is high.
A detailed explanation is given in Section 5.
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5. Data Analysis

5.1. Temperature Data Analysis

This study implements optimal control scenarios for energy savings in heating systems by
analyzing the temperature rise history when heating hotels in the scenario. Box 2 shows a data
analysis procedure.

Box 2. Data analysis procedure.

Data analysis procedure
Step 1: Analyzing the temperature data of the hotel rooms (Figure 5)
Step 2: Extracting The inflection point (Figure 6).
Step 3: After analyzing the temperature data of the hotel rooms for the past seven days, predicted after the

change trend in the inflection point data was analyzed for two days (Figures 7–9)
Step 4: Finally applied to the schedule setting of the HVAC system based on the predicted data and the past

power (fan coil) data (Section 5.3).

Figure 5 shows a graph of the internal temperature change of the hotel. The data collection period
is 25 November 2019 to 1 December 2019, and it was collected by comparing the room and outdoor
temperatures in real time. Only the difference was analyzed for the temperature change trend in the
room. The reason for measuring the difference between the indoor and outdoor temperatures is to
analyze whether any event occurred in the room. In other words, it is to analyze the factors that caused
the temperature difference in the room and to remove the change due to the external temperature.
The difference between the internal and external temperatures shown in Figure 5 (orange) represents
the temperature change (removal of the effect of external environmental factors) due to only the passive
and active elements [2,45] that are inside the building. This allows for the determination of the events
that have occurred inside the room. Table 5 is an inference of events that may occur in the room.
Events that may occur:

Table 5. Expected Events in the Room by Analyzing the Temperature Graph.

Rapidly Slowly

Rising Sunlight shines into the room HVAC system on
Descending Ventilation due to windows HVAC system off

In other words, a sharp increase in the temperature difference may be due to sunlight entering
the room, and a slow increase may mean that the user manipulated the temperature on the HVAC
system panel. In addition, a rapidly decreasing temperature difference means that the customer or
manager has lowered the temperature by opening the window, and a slowly descending temperature
difference indicates that the HVAC system was turned off. The main factor of the change in the
difference temperature was confirmed that cannot escape from the four frameworks. Figure 6 shows
the inflection points of the temperature difference change. This graph is obtained by differentiating the
temperature data graph. That is, the inflection points were extracted from the difference between the
outdoor and indoor room temperatures. The inflection points represent the occurrence of events at
the vertices of the inflection point graph. Here, owing to the extraction of the inflection points, it is
possible to extract the on/off history of the thermostats in users’ rooms based on the factors affecting
the most temperature changes through a trend analysis of the inflection points. Through this analysis
of the on/off history of the user’s thermostat, it is possible to predict the future HVAC use schedule.
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5.2. Inflection Point Reasoning

In this study, the inflection point trend analysis of the temperature difference data over the past
seven days in the “S” hotel, as shown in Figures 7 and 8, is used to infer the data for the next two days.
The simple mean, exponential smoothing (ETS), and ML-based Arima model (Microsoft Azure Machine
Learning Studio) were applied for the inflection point analysis and reasoning. As shown in Figure 9,
the error rate was measured based on the mean absolute error (MAE). Based on the temperature data
from 25 November 2019 to 1 December 2019, the data for the next two days were inferred.

In this paper, temperature data are analyzed. Temperature data is in the form of a time series.
Time series refers to the flow of data distributed over time. There are quantitative prediction methods
based on time-series data include classical methods such as moving average, exponential smoothing,
and disaggregation methods, and probabilistic methods such as Arima model and econometric model.
In this paper, the classical model simple moving average and exponential smoothing (ETS) method are
used, and the probabilistic model ML-based Arima model is applied. The simple moving average
method infers future data by averaging past data through Excel. The exponential smoothing (ETS)
model is also a classical reasoning model for time series and is used for time series analysis. Next,
the most optimized algorithm for time series analysis is the Arima model. This model is built on the
recently released Microsoft Azure Machine Learning Studio, which makes it possible to take advantage
of this program. The data were inferred using these three methods, and as a result, an analysis
was obtained that the Arima model was highly accurate (Figure 9). The y-axis of Figure 9 is MAE
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(mean absolute error). The purpose of use is to evaluate the numerical prediction model. The equation
is as follows [46].

MAE =
1
n

∑∣∣∣ŷ− y
∣∣∣ (1)

In simple terms, it is the average of the absolute values of (predicted value-actual value). In other
words, it is the average of the absolute values of the errors. This allows you to compare the residuals
between models. However, since MAE is the average of the error distance, when comparing models
with large differences in the size of the error average, a model with a smaller error average is evaluated
as a better model. Here, it is the most accurate at 0%, and the higher the value, the more inaccurate.
The value can be over 100%.

Through this temperature change rate inference, it is possible to predict the future use of the
HVAC system and thus set a schedule for future energy savings. This schedule is used to provide
HVAC system control guidelines based on predicted data. What can be obtained due to the inference
of the inflection point of the sensor data is that the user’s QoS reward can be extracted. That is to say,
the user’s complaint is received by the user’s direct intervention from the point where the user has
raised or lowered the temperature due to the transition of the inflection point. The following section
shows how to save energy based on these user rewards.

5.3. Purpose-Oriented Optimization Method

The aim of the purpose-oriented HVAC system optimization is to achieve energy savings by
setting energy saving goals in advance. It has been determined that it is impossible to reduce the total
energy and measure the exact amount of energy savings in the various HVAC facilities of a BEMS.
Therefore, this paper suggests a method considering an HVAC system (heating) that exhibits time
dependent characteristics. The energy savings target (initial setting value) is assumed to be 25%. It is
also assumed that energy savings in HVAC systems have time-dependent characteristics.

Time-dependent means that the energy consumption is almost proportionally increased over
time, and an energy reduction of 25% means that the operation time of the HVAC system (boiler) is
reduced by 25%. In other words, the energy consumption of the HVAC system is reduced by 25% when
assuming a 25% time-dependent reduction in the uptime. An important aspect of this is determining
how the operation of the HVAC system (boiler) can be reduced to achieve a 25% energy savings. This is
based on the results of data analysis, shown in Figure 8. The operating policy of the HVAC system
is regulated through the temperature data inflection point of the ML-based inferred point shown in
Figure 8. That is to say, the HVAC system is controlled to find an optimized time domain for energy
savings to reduce energy consumption in that time zone. From the inflection point inference graph
presented in Figure 8, it is possible to classify the highest and lowest time zones of the inflection point.
The point at which the temperature change increases is the highest inflection point, and the point at
which the temperature change decreases can be said to be the lowest inflection point. This means
that the inflection point is in ‘+’ time zone, this means that the temperature change increases, and the
inflection point is in ‘−’ time zone, the temperature change is lowered. Thus, it is possible to deduce
the following interpretations.

This study determined that there is no situation other than those presented in Table 6. The selection
of the optimal energy saving time of the HVAC system through the inflection point data analysis
results presented above suggests a method for achieving purpose-oriented energy savings, as shown
in Figure 10. Based on the inferred data, the causes of the temperature increase and decrease inside
the room can be said to be the user’s request and the influence of the external environment. Of these,
the user’s request is the most important. Regardless of whether or not any change occurs owing
to external factors (sunlight, air inflow due to ventilation), the purpose of the HVAC system is to
determine the optimal point that may be requested by the user to increase the user’s QoS. That is to
say, it is possible to control the optimization to achieve energy savings within the user’s satisfaction
range by applying a schedule for which the HVAC system is activated when the inflection point is
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positive and not activated when the inflection point is negative. In addition, to measure the power of
the room’s fan coil to introduce the hot air inside the room to increase the accuracy, the on/off state of
the fan coil was measured. That is, the HVAC system is turned on/off in accordance with past pan coil
operation. In other words, the system plan was applied by scheduling a point that satisfies one of the
cases shown in Table 7. Figure 10 shows a description of the plan for scheduling a system based on the
inferred data.Sensors 2020, 20, x FOR PEER REVIEW 18 of 34 
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Table 6. Interpretations and Reasonings of Inflection Points.

Inflection Point: + Inflection Point: −

Meaning • Temperature change increases • Temperature change decreases

Reasoning 1

• The time in which the user is not
satisfied with the current temperature
and raises the temperature through the
temperature control panel, or the
interval in which the user requests a
temperature increase to
the administrator.

• The time in which the user is very
satisfied with the current
temperature and lowers the
temperature through the
temperature control panel, or the
interval in which the user requests a
temperature descent to
the administrator.

Reasoning 2 • Sunlight causes an increase
room temperature.

• The user opens the porch and
windows to lower the temperature
or proceeds with ventilation.

Reasoning 3

• The number of users increases, thereby
increasing the room temperature
owing to the users’ body temperatures
(It seems that this is almost impossible
because the number of people allowed
in the rooms is limited).

• If the administrator turns the HVAC
system off or on for cleaning,
the windows are also opened and
ventilation occurs.

Table 7. HVAC System Scheduling Point Based on Inferred Data.

HVAC System On HVAC System Off

Case 1: Temperature Data • Point of positive inflection • Point of negative inflection

Case 2: Power Data (Fan Coil) • Point of fan coil operation • Point of non-operation of
fan coil

6. Energy Usage Optimization

6.1. HVAC Scheduling Optimization for Energy Saving

Figure 10 shows the optimal control of the HVAC system achieved via changing the HVAC
system schedule. Usually, the existing building is the central HVAC system. To control this central
HVAC system, it is important to establish a careful pre-schedule policy. Because the guest cannot
control the room temperature directly, and owing to remnants of the cold heat generated by the HVAC,
the customer may open the duct of the room at the required time to control the temperature inside the
room. Therefore, it is important to supply the cold heat generated in the center by the HVAC system
boiler by predicting the time zone at which it is required by the user. In this study, that time zone was
determined by analyzing the temperature change inflection points collected from the user’s room in
the past by time of day to operate the HVAC system optimally. The information from the inflection
reasoning points in the analyzed temperature inflection point change graph provides energy saving
scheduling guidelines.

It was confirmed that the central HVAC system (heating) in the hotel was operating in December
for an average of 8–15 h (Operating History Report, 1 December 2018). To achieve a 25% energy
reduction from the past eight hours of operation history, it was necessary to shorten the total operation
time by two hours and save a total of 6–12 h of uptime. To decrease the operation by two hours
compared to the eight hours for which the HVAC was operating in the past, it will be necessary to
operate the HVAC system intensively in the sections of the temperature history with user requests.
Table 8 shows the expected benefits of the proposed system.
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Table 8. Expected Benefits of the Proposed System.

Classification Operation Time Time Zone Expected Energy Saving Rate

Current System 8 Unassigned -
Proposed System 6 AM 3 h, PM 3 h 20–25%

As seen in Figure 10, the proposed system was applied to the scheduling of the HVAC system
using the data inferred based on ML. By analyzing the inferred data inflection points, it was confirmed
that the temperature change was greatest at the vertices of the inflection points, and the HVAC system
schedule was adjusted near the inflection points. That is, based on the comparison with the past
operation of the HVAC system, a dynamic scheduling is set up so that the HVAC system is operated at
times corresponding to the vertices of the positive inflection points, and the operation of the HVAC
system is reduced at times corresponding to the vertices of the negative inflection points. In addition,
the fan coil data was also analyzed to operate the HVAC system primarily at the points where the
fan coil was operated in the past. The resultant energy savings rate is estimated to be 20–25. It will
continue to be optimized by the RL-based optimization method presented in Section 3 to achieve
optimal energy savings between the user and the HVAC system.

6.2. RL-Based Algorithm

The following steps (Box 3) are required to obtain a typical RL algorithm [47].

Box 3. Main procedure of RL algorithm.

Main procedure of RL algorithm
Step 1: The agent interacts with the environment by performing an action.
Step 2: The agent performs an action and moves from one state to another.
Step 3: The agent will receive a reward based on the action it performed.
Step 4: The agent will understand whether the action was good or bad.
Step 5: If the agent received a positive reward, the agent will prefer performing that action or else the

agent will try performing another action, which results in a positive reward. It is basically a trial and error
learning process.

6.2.1. Markov Decision Process (MDP)

The Markov decision process (MDP) provides a mathematical framework for modeling
decision-making situations. Almost all the reinforcement learning problems can be modeled as
a MDP [44]. The following important elements represent the MDP (Table 9):

Table 9. Elements description of MDP.

Element Description

S A set of states (s) the agent can actually be in.

A A set of actions (a) that can be performed by an agent for moving from one state to another.

γ Discount factor, which controls the importance of immediate and future rewards.

Pa
ss′

Transition probability, which is the probability of moving from one state (s) to another (s’)
by performing some action a.

Ra
ss′

Reward probability, which is the probability of an agent acquiring a reward for moving
from one state (s) to another (s’) by performing some action a.

As shown in Figure 1a, the agent receives status st from the environment at every point in time,
and selects the optimal action at from the set of possible actions through its policy π. The environment
moves to the new state st+1 according to the agent’s action and provides the agent with a reward rt+1
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for the action. The following shows return Equation (2), which represents the total sum of rewards
Equations (3) and (4), and the discount factor Equation (5).

Rewards and returns:
R t = rt+1 + rt+2 + rt+3 + . . . rT (2)

R_A t = QoSt+1 + QoSt+2 + QoSt+3 + . . . QoST (Agent A) (3)

R_B t = ESt+1 + ESt+2 + ESt+3 + . . . EST (Agent B) (4)

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . . =
∞∑

k=0

γkrt+k+1 (5)

Discount factor:
Reinforcement learning is conducted as an evaluation of the future reward Eπ[ Rt|st = s], if

the environment continues to act according to policy ‘π’. This is called the state value function
Equations (6) and (7). It shows how good the resulting state ‘s’ is according to policy π.

State value function:
Vπ(s) = Eπ[ Rt|st = s] (6)

Vπ(s) = Eπ[
∞∑

k=0

γkrt+k+1 | st = s] (7)

The value considering the case of performing an action in a state is derived as a state-action
value function (Q function). It is defined as Eπ[ Rt|st = s, at = a, ], the sum of the expected rewards
when taking action a in state s and subsequently following a certain policy π. The purpose of the
MDP is to find the policy with the greatest value through the state-action value function (Q Function).
A state-action value function is also called the Q Function Equation (8). The Q Function specifies how
good it is for an agent to perform a particular action in a state with a policy π [44].

State-action value function (Q function):

Q(s, a) = Eπ[
∞∑

k=0

γkrt+k+1 | st = s, at = a] (8)

To obtain the value function Vπ(s) considering the policy π, the expected value must be calculated
for all future compensations, so the total sum of infinite future rewards at the current time t is obtained
through the Bellman Equations (9) and (10) [44]. The Bellman equation is a method based on that the
loop can be converged from the initial value to obtain the expected value of the infinite future. Expected
values include the probability of doing something and the probability of going to a certain state when
acting, so it can be defined the expected value through the policy and state variation probability in
Bellman’s expectation equation. The value function starts by initializing to a meaningless initial value
and converges so that the left and right terms have the same value through iterative calculation of the
Bellman equation. The value function that maximizes future compensation is called the optimal value
function, and the policy at this time means the optimal policy π∗, which has the highest expected value
among all policies Equations (11) and (12).

6.2.2. The Bellman Equation and Optimality

The Bellman equation is most important equation for solving the MDP. Solving the MDP means
finding the optimal policies and value functions. There can be several different value functions
according to different policies. The optimal value function V∗(s) is the one that yields the maximum
value compared with all other value functions [44]:

Bellman equation of optimal value function:

V∗(s) = maxπVπ(s) (9)
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V∗(s) = maxaQ∗(s, a) (10)

Bellman equation of value and Q function:

Vπ(s) =
∑

a
π(s, a)

∑
s′

Pa
ss′

[
Ra

ss′ + γVπ(s′)
]

(11)

Qπ(s, a) =
∑

s′
Pa

ss′

Ra
ss′ + γ

∑
a′

Qπ(s′, a′)

 (12)

V∗(s) = maxa

∑
s′

Pa
ss′

Ra
ss′ + γ

∑
a′

Qπ(s′, a′)

 (13)

A Bellman equation can be driven for the Q function; the final equation is as follows:

Q(s, a) = Transition Probability ∗ (Reward Probability + Gamma ∗ value_o f _next_state) (14)

The optimal value function V∗(s) is the sum of the rewards when following the optimal policy
with the maximum value for all policies Equation (13). The optimal policy can be obtained by updating
the current policy with a better policy. It is an optimal value function that is converted into a form
that can calculate expected values. The optimal action value function can also be derived in the same
way. Optimal policy means the action with the largest value of the optimal value function in each state.
Through Figures 2 and 11, we can find the best point to satisfy the user’s optimal QoS and save the
proper energy, and search for the best point through RL-based BEMS to save energy, at the same time,
maintain user satisfaction.
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6.3. RL-Based Optimization

First, before implementing the algorithm, it is required the pre-analysis of the relationship between
the user and the air conditioning system to apply RL presented in this paper. As can be seen in
Figure 1b, BEMS considers two aspects: user and HVAC. That is, in order to implement the algorithm
considering two aspects of Agent 1 (user) and Agent 2 (HVAC), two elements, Reward A and B must
be required. As shown in Table 2, Reward A can be called User QoS. That is, the positive reward is set
to the most optimal temperature, and the negative reward is unsatisfactory to the user. Reward B can
be used as energy use, positive reward means that energy use decreases, negative reward means that
energy use increases. In other words, as shown in Figure 11, you should find the best point to satisfy
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these two rewards at the same time without biasing them in one place. Figure 11 below shows a graph
of QoS and energy saving (ES). It has two properties as follows [48].

1. It consumes unnecessary energy even though it already satisfies QoS
2. Energy is saved too much and QoS is not satisfied

As showed in Figure 11, it needs to find the optimal point to satisfy the user’s optimal QoS while
saving the energy. Therefore, this research proposed a system architecture that can save energy by
searching for the optimal point through RL-based BEMS and maintain user satisfaction.

First, as a Box 4, in order to perform RL-based optimization, the architecture suggested in Section 3
must be linked with BEMS. In other words, there must be an analysis of what Agent, Environment,
Action, State, and Reward are in BEMS. The Table 10 shows the analysis.

Table 10. The factor of RL-based BEMS.

Classification A B

Agent • Guests • BEMS
Environment • BEMS • HVAC

Action • Temperature rise (+)/down (−) • HVAC on (1)/off (0)
State • Temperature state (T1~T5

◦C) • Energy saving state (P1~P5%)

Reward • Positive user QoS/Negative user
QoS (−1~1)

• Energy saving/Energy
consumption (−1~1)

Box 4. RL-based optimization procedure.

RL-based optimization procedure
1. User-BEMS side
Step 1: Action A: Agent A (Guest) will raise and lower the temperature to satisfy the temperature. This was

called Action A.
Step 2: State A: Accordingly, the temperature inside the room would be changed, and the temperature inside

the room at this time was referred to as State A (T1 (21 ◦C) to T5 (25 ◦C)).
Step 3: Reward A: At this time, the reward that the user can receive can be said to be user satisfaction

(−1 and 1).
2. BEMS-HVAC system side
Step 4: Action B: Agent B (BEMS) will turn HVAC on/off to maintain temperature and save energy. This was

called Action B.
Step 5: State B: Accordingly, the heating system will repeatedly turn on/off and change the temperature

inside the building, and the state of energy use at this time is called State B (P1 (21%) to P5 (25%)).
Step 6: At this time, the Reward that the BEMS can receive may be referred to as an Energy Saving Grade

(SAG). Energy efficiency ratings are given in the form of rewards with a decimal value between (−1 and 1).

As can be seen in the Table 10, BEMS can be viewed from two aspects as shown in Figure 1.
If the relationship between Guest and BEMS is A, and the relationship between BEMS and HVAC
is B, Agent A can be considered as Guest. Guest will raise and lower the temperature to satisfy the
temperature. This was called Action A (Step 1). Accordingly, the temperature inside the room would
be changed, and the temperature inside the room at this time was referred to as State A (Step 2). State A
is assumed to range from T1 (21 ◦C) to T5 (25 ◦C) as the temperature state. At this time, the reward that
the user can receive can be said to be user satisfaction. User satisfaction is given in the form of a reward
with a decimal point value between (−1 and 1) (Step 3). On the other hand, Agent B can be viewed as
BEMS. BEMS will turn HVAC on/off to maintain temperature and save energy. This was called Action
B (Step 4). Accordingly, the heating system will repeatedly turn on/off and change the temperature
inside the building, and the state of energy use at this time is called State B (Step 5). State B is Energy
Saving State (ES), which is assumed to range from P1 (21%) to P5 (25%). At this time, the Reward that
the BEMS can receive may be referred to as an energy saving grade (SAG). Energy efficiency ratings
are given in the form of rewards with a decimal value between (−1 and 1) (Step 6).
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The important part here is how to extract the rewards from A and B. In order to calculate user
satisfaction and energy efficiency class, this paper approached the inflection point point presented
above. As shown in Table 6, when the inflection point is a + part and a − part, Table 11 shows the
reward relationship can be extracted.

Table 11. Relationship of reward and inflection point.

Classification Inflection Point: + Inflection Point: −

Reward A • Negative Reward: Negative
QoS (−1~0)

• Positive Reward: Positive
QoS (0~1)

Reward B • Positive Reward: Positive ES (0~1) • Negative Reward: Negative
ESG (−1~0)

Figure 12 and Box 5 shows the revised value iteration algorithm by Bellman equation in dynamic
programming for RL-based BEMS [47]. Value iteration algorithm of the Bellman equation produces
representative algorithm for solving problems about Markov decision process (MDP) [44,47,49,50].
Reinforcement learning is a theory that emerged to solve the MDP problem, and it is a learning method
that allows agents under the state to select the optimal action through interaction with the environment.
It is done similarly to the process of learning new knowledge by a person, and by increasing the good
behavior more and more by differentiating the reward according to the behavior, the agent can learn
even without any prior knowledge. This indicates the RL-based algorithm formula presented in this
paper. Next, we explain the step-by-step optimization via the value iteration algorithm.
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Box 5. Value iteration algorithm for RL-based optimization.

Value iteration algorithm for RL-based optimization
Step 1: Initialize the random value function of A and B (Table 12)
Step 2: For each state, calculate Qa (s, a) and Qb (s, a): Q table (Tables 13 and 14)
Step 3: Update the value function with the max value of Qa (s, a) and Qb (s, a): Q Function table (Table 15)
Step 4: Estimated optimal value function table (Table 16)

6.4. Implementation

Figure 13 is a diagram of the RL-based optimization process. The temperature and energy-saving
areas were divided into five zones each. Each zone represents a state, which in turn represents
the temperature and energy-saving rate allocated from T1 to T5 and from P1 to P5, respectively.
Agents in each area perform an action (up/down) aimed at finding the most optimal temperature
and energy-saving rates. The most important aspect here is to find the optimum value based on the
previous temperature data. A step-by-step explanation is presented next. The algorithm shown in
Figure 12 is used to find the optimal value. Using this algorithm, the following initial random value
function, and the transition and reward probabilities were extracted. Table 12 shows the initial random
value function of RL-based BEMS [47].
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Table 12. Initial random value function of RL-based BEMS.

State A (Temperature) Value A State B (Energy Saving) Value B

T1 (21 ◦C) 0 P1 (21%) 0
T2 (22 ◦C) 0 P2 (22%) 0
T3 (23 ◦C) 0 P3 (23%) 0
T4 (24 ◦C) 0 P4 (24%) 0
T5 (25 ◦C) 0 P5 (25%) 0

6.4.1. Step 1: Initialize Random Value Function of A and B

Table 12 is called an initial random value function table. To initialize the table, all states assigned
zeros, as shown.

6.4.2. Step 2: For Each State, Calculate Qa (s, a) and Qb (s, a): Q Table

Table 13 shows the transition and reward probabilities used to obtain the Q table. The Q value
implies the value of an action in each state. For calculating (11), the transition and reward probabilities
are needed. The transition (Pa

ss′) and reward (Ra
ss′ ) probabilities are shown as following:

Table 13. The transition and reward probability of RL-based BEMS.

State Action Next State Pa
ss′

Ra
ss′ State Action Next State Pa

ss′
Ra

ss′

T1 + T1 0.3 1 P1 1 P1 0.2 0.8
T1 + T2 0.4 1 P1 1 P2 0.5 0.6
T1 + T3 0.2 1 P1 1 P3 0.4 0.4
T1 + T4 0.1 0.6 P1 1 P4 0.3 0.2
T1 + T5 0 0.7 P1 1 P5 0.2 0.1
T1 - T1 0.3 0.2 P1 0 P1 0.3 0.1
T1 - T2 0 −0.2 P1 0 P2 0.2 −0.2
T1 - T3 0 −0.2 P1 0 P3 0.1 −0.4
T1 - T4 0 −0.2 P1 0 P4 0 −0.6
T1 - T5 0 −0.3 P1 0 P5 0 −0.8
T2 + T1 0.1 −0.1 P2 1 P1 0.1 1
T2 + T2 0.3 0.2 P2 1 P2 0.2 0.8
T2 + T3 0.4 1 P2 1 P3 0.5 0.6
T2 + T4 0.2 0.5 P2 1 P4 0.4 0.4
T2 + T5 0.1 0.6 P2 1 P5 0.3 0.2
T2 - T1 0.4 1 P2 0 P1 0.5 0.3
T2 - T2 0.3 0.2 P2 0 P2 0.3 0.1
T2 - T3 0.1 −0.2 P2 0 P3 0.2 −0.2
T2 - T4 0 −0.2 P2 0 P4 0.1 −0.4
T2 - T5 0 −0.2 P2 0 P5 0 −0.6
T3 + T1 0 −0.2 P3 1 P1 0 1
T3 + T2 0 −0.1 P3 1 P2 0.1 1
T3 + T3 0.2 0.2 P3 1 P3 0.2 0.8
T3 + T4 0.3 1 P 3 1 P4 0.5 0.6
T3 + T5 0.2 1 P 3 1 P5 0.4 0.4
T3 - T1 0.3 0.4 P3 0 P1 0.4 0.5
T3 - T2 0.4 1 P3 0 P2 0.5 0.3
T3 - T3 0.2 1 P3 0 P3 0.3 0.1
T3 - T4 0 −0.2 P3 0 P4 0.2 −0.2
T3 - T5 0 −0.2 P3 0 P5 0.1 −0.4
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Table 13. Cont.

State Action Next State Pa
ss′

Ra
ss′ State Action Next State Pa

ss′
Ra

ss′

T4 + T1 0 −0.3 P4 1 P1 0 1
T4 + T2 0 −0.2 P4 1 P2 0 1
T4 + T3 0 −0.1 P4 1 P3 0.1 1
T4 + T4 0.2 1 P4 1 P4 0.2 0.8
T4 + T5 0.3 0.4 P4 1 P5 0.5 0.6
T4 - T1 0.2 0.5 P4 0 P1 0.3 0.7
T4 - T2 0.3 0.4 P4 0 P2 0.4 0.5
T4 - T3 0.4 1 P4 0 P3 0.5 0.3
T4 - T4 0.2 1 P4 0 P4 0.3 0.1
T4 - T5 0.1 −0.2 P4 0 P5 0.2 −0.2
T5 + T1 0 −0.4 P5 1 P1 0 1
T5 + T2 0 −0.3 P5 1 P2 0 1
T5 + T3 0 −0.2 P5 1 P3 0 1
T5 + T4 0 −0.1 P5 1 P4 0.1 1
T5 + T5 0.2 1 P5 1 P5 0.2 0.8
T5 - T1 0.1 0.6 P5 0 P1 0.2 0.9
T5 - T2 0.2 0.5 P5 0 P2 0.3 0.7
T5 - T3 0.3 0.4 P5 0 P3 0.4 0.5
T5 - T4 0.4 0.3 P5 0 P4 0.5 0.3
T5 - T5 0.2 1 P5 0 P5 0.3 0.1

It is worth noting that the transition (Pa
ss′) and reward (Ra

ss′) probabilities are calculated based
on the user’s QoS and energy efficiency rating scenarios, which reflects data from the previous seven
days. It is crucial to find the optimal point following this procedure because it is measured based on
the user’s preferred scenarios. The Q Function table can be obtained following Table 13 step-by-step
and the calculation Equation (3). The following is a detailed description of this process.

As suggested in Section 6.2.1, the Q Function can be obtained as the following equation [47].

Q(s, a) = Transition Probability ∗ (Reward Probability + Gamma ∗ value_o f _next_state)

Gamma is the discount factor; it was set as 0.6.
Q value for state T1 and Action +:

Q(T1, +) = P+
T1T1

∗

(
R+

T1T1
+ γ ∗Value o f T1

)
+ P+

T1T2
∗

(
R+

T1T2
+ γ ∗Value o f T2

)
+ P+

T1T3
∗

(
R+

T1T3
+ γ ∗Value o f T3

)
+ P+

T1T4

∗

(
R+

T1T4
+ γ ∗Value o f T4

)
+ P+

T1T5
∗

(
R+

T1T5
+ γ ∗Value o f T5

)
= 0.96

(15)

Q value for state T1 and Action −:

Q(T1, −) = P−T1T1
∗

(
R−T1T1

+ γ ∗Value o f T1
)
+ P+

T1T2
∗

(
R−T1T2

− γ ∗Value o f T2
)

+ P−T1T3
∗

(
R−T1T3

+ γ ∗Value o f T3
)
+ P−T1T4

∗

(
R−T1T4

+ γ ∗Value o f T4
)
+ P+

T1T5
∗

(
R−T1T5

+ γ ∗Value o f T5
)

= 0.06

(16)

Q value for state P1 and Action 1:

Q(P1, 1) = P1
P1P1

∗

(
R1

P1P1
+ γ ∗Value o f P1

)
+ P1

P1P2
∗

(
R1

P1P2
+ γ ∗Value o f P2

)
+ P1

P1P3
∗

(
R1

P1P3
+ γ ∗Value o f P3

)
+ P1

P1P4

∗

(
R1

P1P4
+ γ ∗Value o f P4

)
+ P1

P1P5
∗

(
R1

P1P5
+ γ ∗Value o f P5

)
= 0.7

(17)
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Q value for state P1 and Action 0:

Q(P1, 0) = P0
P1P1

∗

(
R0

P1P1
+ γ ∗Value o f P1

)
+ P0

P1P2
∗

(
R0

P1P2
+ γ ∗Value o f P2

)
+ P0

P1P3
∗

(
R0

P1P3
+ γ ∗Value o f P3

)
+ P0

P1P4

∗

(
R0

P1P4
+ γ ∗Value o f P4

)
+ P0

P1P5
∗

(
R0

P1P5
+ γ ∗Value o f P5

)
= −0.05

(18)

Next, these are updated in the Q Function table of the first iteration, as shown in Table 14.

Table 14. Q Function table of the first iteration.

State A Action A Value A State B Action B Value B

T1 + 0.96 P1 1 0.7
T1 − 0.06 P1 0 −0.05
T2 + 0.61 P2 1 0.78
T2 − 0.61 P2 0 0.1
T3 + 0.54 P3 1 0.72
T3 − 0.72 P3 0 0.3
T4 + 0.32 P4 1 0.56
T4 − 0.8 P4 0 0.55
T5 + 0.2 P5 1 0.26
T5 − 0.6 P5 0 0.77

This step must be repeated for several iterations, i.e., we repeat steps 2 (Table 15) and 3 (Table 16),
while calculating the Q value and updating the value function until the optimal value is obtained.
The Q Function tables of the second and third iterations are given in Tables 15 and 16, respectively.

Table 15. Q Function table of the second iteration.

State A Action A Value A State B Action B Value B

T1 + 1.4136 P1 1 1.384
T1 − 0.2328 P1 0 0.2128
T2 + 1.0822 P2 1 1.4046
T2 − 0.8234 P2 0 0.5704
T3 + 0.8424 P3 1 1.206
T3 − 1.1256 P3 0 0.945
T4 + 0.524 P4 1 0.9014
T4 − 1.3298 P4 0 1.2724
T5 + 0.272 P5 1 0.386
T5 − 1.0044 P5 0 1.3238

Table 16. Q Function table of the third iteration.

State A Action A Value A State B Action B Value B

T1 + 1.689036 P1 1 1.964788
T1 − 0.314448 P1 0 0.440032
T2 + 1.379596 P2 1 1.937052
T2 − 1.041596 P2 0 0.989092
T3 + 1.034964 P3 1 1.648428
T3 − 1.369248 P3 0 1.502736
T4 + 0.660368 P4 1 1.182188
T4 − 1.654412 P4 0 1.885912
T5 + 0.320528 P5 1 0.4952
T5 − 1.336968 P5 0 1.948352
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6.4.3. Step 3: Update the Value Function with the Max Value of Qa(s, a) and Qb(s, a): Q Function Table

The Q Function can be calculated as Table 17 by applying the transition and reward probability in
each state to obtain Q (s, a) to the Bellman Equation (14). This is the result of iteratively calculating the
loop to minimize the change in the difference between each value in order to calculate the optimal
value function. As a result, the estimated optimal value function as shown in the table was calculated.

Table 17. Q Function table with max iteration value.

State A Action A Value A State B Action B Value B

T1 + 2.140461707 P1 1 10.83261728
T1 − 0.445283107 P1 0 3.714355894
T2 + 1.879474769 P2 1 10.35792026
T2 − 1.398131522 P2 0 7.037297157
T3 + 1.376917547 P3 1 8.644272198
T3 − 1.768587559 P3 0 9.777649313
T4 + 0.927345189 P4 1 5.946635124
T4 − 2.197902471 P4 0 11.29521464
T5 + 0.429064595 P5 1 2.315948923
T5 − 1.908871623 P5 0 11.55501165

6.4.4. Step 4: Estimated Optimal Value Function Table

From this Q Function table, the maximal value is selected in each state. Finally, the optimal value
function table is extracted, as shown below:

Figure 14 shows the estimated optimal values of QoS and energy saving per iteration. Figure 15
shows the estimated optimal values of QoS and energy saving per γ (discount factor). Figure 16 shows
the variation of optimal values of QoS and energy saving per iteration and γ. Each graph represents a
graph of changes according to the iteration of the algorithm and the change of the discount factor (γ).
As the algorithm was iterated, a graph of a certain shape was drawn, and according to the change of γ,
it was found that it was most stable when γ: 0.6.
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Generally, high QoS and energy efficiency points are extracted at T4 (24 ◦C), T5 (25 ◦C), T1 (21 ◦C)
and P5 (25%), P4 (24%), P1 (21%) based on the estimated optimal value function table as Table 18. It can
be seen that when the RL-based simulation is implemented based on the past data, the point of the
temperature and energy saving rate are generally optimized at the T4 (24 ◦C) and P5 (25%). However,
this method is not yet a perfect optimization method. This is because the associated value between QoS
and ES is not expressed. Currently, the RL-based energy optimization method has not been released
yet, but it is necessary to continuously study how to provide the user’s QoS in this way while achieving
optimal energy saving, and this method still requires a lot of research results. We expect to see an
infinite prospect in the field of BEMS energy optimization.
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Table 18. Estimated optimal value function table (γ: 0.6).

State A Value A State B Value B

T1 (21 ◦C) 2.1404617 P1 (21%) 10.832617
T2 (22 ◦C) 1.8794748 P2 (22%) 10.35792
T3 (23 ◦C) 1.7685876 P3 (23%) 9.7776493
T4 (24 ◦C) 2.1979025 P4 (24%) 11.295215
T5 (25 ◦C) 1.9088716 P5 (25%) 11.555012

7. Future Prospects and Business Model (BM)

This paragraph presents a business model (BM) that employs the BEMS presented in this
paper (Figure 17). This paper has presented an RL-based purpose-oriented BEMS for energy usage
optimization. The primary aim of this paper is to provide guidelines for reducing the energy usage
of HVACs and simultaneously maintaining the users’ QoS via a BEMS. The proposed system will
save 20–25% of the heating energy in the building. Importantly, these services are based on data
that already exist. The advancement of the service is determined by the presence of data collected in
the past. In this regard, the business model (BM) that can be created based on the system presented
above provides energy saving guidelines through a data center. As shown in Figure 10 and Table 15,
intelligent data analyses can reduce “deployment time and installation cost” via their application to
other cities through AI-based shared data centers.
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The return on investment (ROI) is extracted from BM 2 and BM 3, as shown in Table 19. In BM 2,
the ROI per building was calculated to be approximately 7.14 years (if the energy saving rate is 25%,
the hotel’s thermal energy savings is approximately $35,338, and the smart-IoT system installation costs
are approximately $252,419), and in BM 2, the ROI was calculated to be 7.16 years [27], considering
that the additional cost saving rate of the IoT system deployment is 15.9% [4,27]. By utilizing existing
BEMS data and linking it to other regions, it is expected that RL-based data center-based services can
create a new level of service based on the data from BEMSs, and the advanced service will play an
important role in future ICT fields.

Table 19. Derivative Business Model.

Classification Details Target Advantages

Business Model 1
• Mass-Customization-

based Intelligent BEMS

• Create a derivative
revenue model by
linking meaningful
data between homes
and other buildings

• Building owners
• Users

• Saving time and cost of
IoT system deployment

Business Model 2 • RL-based Experiential
BEMS Management

• Save energy through
RL-based experiential
building management

• Building owners
• Residents

• Energy saving rate:
25%

• ROI: 7.14

Business Model 3 • Intelligent Smart
Energy City Guideline

• Expand to new regions
based on existing
experience data

• Businesspersons
• Urban architects

• Cost saving rate of IoT
deployment: 15.9%

• ROI: 7.16

8. Conclusions

In this paper, an RL-based purpose-oriented BEMS for energy usage optimization has been
presented. This study implemented smart IoT sensors in an actual hotel testbed. Currently, temperature,
humidity, motion detection, and power data are transmitted from the room in real time, and it is possible
to monitor and simulate the data in the data center. This will play an important role in expanding to
the future smart cities and will serve as an innovative guideline for the intelligent deployment of IoT
systems. RL in artificial intelligence plays a key role in applying intelligent elements in the field of ICT,
and this paper uses the RL algorithm to implement and simulate a BEMS. This system established
a structure for the distribution of rewards among users and the HVAC system through user–HVAC
system interactions. Furthermore, an optimization method that achieves energy savings for the HVAC
system while increasing the QoS through RL-based user-HVAC system interactions was proposed.
In addition, using the ML-based temperature data inference and purpose-oriented energy reduction
measures proposed in this study, it was possible to calculate a 25% energy saving expectation for
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the hotel’s HVAC system, which could substantially contribute to the technological advancement of
intelligent BEMSs in the future.
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