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Abstract: Classification of foot–ground contact phases, as well as the swing phase is essential in
biomechanics domains where lower-limb motion analysis is required; this analysis is used for
lower-limb rehabilitation, walking gait analysis and improvement, and exoskeleton motion capture.
In this study, sliding-window label overlapping of time-series wearable motion data in training
dataset acquisition is proposed to accurately detect foot–ground contact phases, which are composed
of 3 sub-phases as well as the swing phase, at a frequency of 100 Hz with a convolutional neural
network (CNN) architecture. We not only succeeded in developing a real-time CNN model for
learning and obtaining a test accuracy of 99.8% or higher, but also confirmed that its validation
accuracy was close to 85%.
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1. Introduction

Human motion recognition (HMR) is a technology domain that recognizes and distinguishes
different types of human activities using sensor data [1]; it is widely used in rehabilitation and
medical treatment like the classification and rehabilitation evaluation of patients with hip osteoarthritis,
neurological disorders such as stroke, and Parkinson’s disease through gait analysis [2–11]. It also
has been used in training assistance like exercise coaching through motion tracking and feedback,
speed and position tracking in sports training [12–17], sudden fall prevention [18] along with the
development of wearable sensor technology. This paper describes the development of a foot–ground
contact phase classification (FGCC) algorithm as FGCC is one of the most fundamental and elemental
processes in lower-limb motion analysis.

The major sensors used in HMR research can be categorized as cameras, force sensors, and inertial
motion sensors. According to Farooq et al. [19], 20 human motions were classified with 74.4% accuracy
using an RGB-Depth camera. However, in order to obtain an acceptable quality of three-dimensional
(3D) point cloud data (PCD) of the entire human body, which is necessary for algorithm training,
the camera must be accurately aligned with the coronal or frontal plane of the human body; noise such as
outliers in the depth map must be eliminated as well. Abellanas et al. [11] and Kim et al. [20] achieved
99.8% and 93.1% accuracy in foot–ground contact detection with force plates and force sensitive
resistors (FSRs), respectively. However, as their methods were based on measuring the physical
contact between the foot and the ground, lower-limb motion could not be analyzed simultaneously.
Qui et al. [7] and Mohammad et al. [9] proposed a method for the independent detection of walking,
squatting, and jumping using wearable inertial sensors. Although a wearable inertial sensor is very
easy to use and has limitless measurement workspace [21], acceptable detecting accuracy has not been
continuously obtained owing to sensor drifts as well as initial calibration issues [22].
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In HMR algorithms, rule-based applications for class prediction based on a threaded range of
feature data extracted through sensor data analysis as well as various neural network paradigms,
such as convolutional neural network (CNN) and region-based CNN (R-CNN) have been utilized.
In the study by Kim et al. [23] and Teufl et al. [24], a rule-based classifier with 99% accuracy was
developed after examining the major features of the foot-to-ground contact phase classification through
data-driven analysis. Shin et al. [1] developed an inertial and altitude sensor data based human
activity classifier with a long-short term memory (LSTM) architecture. The model was able to classify
six static gestures with 99.92% classification accuracy. Similarly, Hsu et al. [25] applied principal
component analysis (PCA) and support vector machine (SVM) for the classification of 10 different
routine activities and 11 dynamic activities. They achieved classification accuracies of 98.23% and
99.55% for routine and dynamic activities, respectively. However, they discussed the limitation of
their model in that the accuracy was greatly affected by individual datasets and the number of routine
and dynamic activities. The study conducted by Janidarmian et al. [26] classified activities using 293
different machine learning algorithms. Their work used PCA to identify the features in the data from
70 activities in real environments allowing for the fact that a wearable acceleration sensor’s attachment
position, posture, and learning algorithm affects the performance of the recognition model. As a result,
it was suggested that the human activity of all subjects could be recognized with an average accuracy of
96.44% through the K-fold evaluation method, and that human activity recognition could be performed
with an average accuracy of 79.92% for each subject. To improve this, Almaslukh [27] proposed a
method that could recognize human activity in real-time while not being affected by the location of the
attachment. Using RealWorld Human Activity Recognition (HAR) public data [28], a hyper-parameter
tuning was performed for optimal learning on CNN and eight dynamic activities were classified
with 84–88% accuracy. In the study conducted by Um et al. [29], 50 upper-limb resistance exercise
movements were recognized with 92.1% accuracy by a CNN unrelated to the sequence of time, instead
of by a recurrent neural network suitable for time series data. The data set they used was the time-series
data of an inertial sensor, which was given by the PUSH Sensor Company; the time-series data could
be imaged through the sliding window method to learn the classification model on CNN. However,
as 99% of the exercises ended within 3.92 s, input image format was performed within 3.92 s for all
exercises, which led to a limit in recognition in real-time owing to an inability to distinguish various
phases that make up one action, such as the foot–ground contact phase and the swing phase.

In this study, based on a lower-limb wearable inertial sensor and CNN model, an FGCC algorithm
is developed that can recognize the four phases of heel strike (HS), full contact (FC), heel off (HO),
and swing (SW) in real time. In order to distinguish the multiple phases in real time in a very short
time interval based on time-series data of lower-limb behavior collected by inertia sensors, it is most
important to secure a labeled time-series motion dataset and convert it to a neural network (NN) input
image. Therefore, in this study, a sliding window-based label overlapping (SLO) method is proposed
to secure an effective labeled time-series motion dataset. The most significant research contribution of
the proposed method is that it makes it possible to obtain a dataset capable of learning a real-time
FGCC algorithm with high-recognition precision based on the NN structure without modification of
the existing time-series motion data acquisition method. The 13,837 raw time-series datasets collected
directly in this study were expanded to 575,880 through data augmentation, then, divided into 60%
training sets and 40% test sets; the performance of the proposed method was verified through actual
validation experiments.

In this paper, Section 2 defines the research objective; the experimental equipment, data collection,
and data labeling are also explained. Section 3 consists of a description of the data preprocessing and
application of the SLO method. In Section 4, the model design, selection of optimal parameters using
the Taguchi method and validation are described. Finally, in Section 5, the paper concludes with a
discussion of the results, limitations of this study, and future research possibilities.
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2. Foot–Ground Contact Phases and Labeling Method

In biomechanics and ergonomics, the walking phases are generally divided into a swing and
a stance phase, according to the contact between the foot and the ground. As shown in Figure 1,
the stance phase, defined as the foot–ground contact phase in this study, can be subdivided into the
following four sub-phases: heel strike, full contact, heel off, and toe off [23,30]. As the goal of this
study is to accurately and individually detect these multiple sub-phases only with wearable inertial
motion sensors on the lower-limb part, an additional measurement device for labeling the sampled
inertial motion sensor data according to the sub-phase should be considered in the training dataset
acquisition process.
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Figure 1. Foot–ground contact phase definition: swing, heel strike, full contact, heel off, and toe off.

In this study, FSR-arrayed insoles were fabricated, as shown in Figure 2 Considering the foot
pressure distributions in each sub-phase, one FSR sensor was attached to each of the three following parts:
the distal phalangeal tuberosity of the first toe, the metatarsophalangeal joint, and the calcaneus [31].
A single board computer equipped with Bluetooth modules was also assembled onto the FSR-arrayed
insole, as shown in Figure 2, so that the lower-limb motion data acquisition and the data labeling
process could be simultaneously achieved without any restrictions on the subjects’ walking range.
Figure 3 shows how to determine the individual foot–ground contact phase according to the 3-ch FSR
measurement result. (Refer to Appendix A for Pseudocode of four sub-phase labeling process.).
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To examine the feasibility of real-time and individual detection of these four foot–ground contact
phases, and to identify how many times each sub-phase is detected in one stance phase while walking
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at a normal pace, a feasibility study, as shown in Figure 4, has been performed. Thus, a motion
capture system was built to track the walking trajectories and speeds with six OptiTrack Prime 13
vision cameras. The number of detections per each sub-phase at various walking speeds and in
various directions has been successfully recorded in real time. As a result, as shown in Figure 5, it was
confirmed that the walking speed range was 0.2–1.5 m/s, and the walking range was found to be within
3 m × 2 m.
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Figure 5. Walking trajectories (a) and speeds (b) of every subject measured with six OptiTrack Prime
13 cameras.

Figure 6 shows the results of the performed feasibility study in terms of numbers of the max.,
min., and average detection per sub-phase. An average of 1.93 toe off phases were detected during one
cycle, which is a very short time period corresponding to just 1.59% of a single walk. Because we are
going to use the sliding window to extract the wearable motion sensor data, it is expected that the
average and minimum number of detections for each phase have a very significant correlation with
the sliding window capture width and the FGCC accuracy. This is the reason why we now check the
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number of detections of each sub-phase per walk prior to determining the class. We will discuss effects
of the correlation between these two factors in Section 3 in more detail.
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3. Data Acquisition and Preprocessing

This section may be divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation as well as the experimental conclusions that can be drawn.

3.1. Training Dataset Acquisition

To obtain labeled walking motion data for the lower limbs, wearable experimental equipment was
designed with five wireless inertia measurement unit (IMU) sensors [32] attached to each segment of
the lower-limb part and a wireless FSR-arrayed insole unit for sub-phase labeling, as shown in Figure 7.
An operating console for integrated data collection and preprocessing is installed near the subjects.
The IMU sensors, measuring 3-axis orientation, 3-axis angular velocity, and 3-axis acceleration at
100 Hz, were fixed on each foot, shank, and waist using rubber straps.
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Owing to the nature of the wearable sensors, every sensor attached to a lower-limb part has at first
different positions and orientations. However, because IMU sensor output is expressed with respect
to its own sensor-fixed coordinate frame, we created a common reference coordinate frame by using
initial sensor calibration gestures. In this study, the standing–stooping calibration motion, which is the
result of our preceding research [23], as shown in Figure 8, was applied.
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In the operating console, the wearable motion sensor data were integrated with the label from the
FSR-arrayed insole as shown in Figure 9. A single integrated message is composed of a timestamp,
labels (left FSR, right FSR), and IMU sensor feature data, in that order.
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3.2. Data Augmentation

In this study, three subjects, as shown in Figure 10, participated in flat ground walking experiments
at a speed of 0.24–1.37 m/s to collect a labeled walking motion dataset of the lower limbs. Around 14,000
raw labeled datapoints were successfully obtained.

In order to significantly improve the generalization accuracy of the trained models without
actually collecting new datasets, white noise was added to the entire raw dataset, as in Equation (1):

S[n] ±
{
max

(∣∣∣S[n]∣∣∣)− |mean|
}
× 0.1 = N[n] (1)

where, S[n]denotes the feature data of Rn×1. As a result, the raw data were increased by about 25 times
to a total of 359,924 datapoints.
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3.3. Standardization

As shown in Figure 11, because the augmented raw feature dataset still comprises data of various
scales, standardization, which is the process of rescaling one or more features so that they have a mean
value of 0 and a standard deviation of 1, had to be performed. Let us suppose this standardization
process is not performed before training our models. If the distribution of a specific feature data is
relatively low compared to the distribution of other feature data, the feature data may possibly be
incorrectly evaluated as a feature that does not contribute to improving classification accuracy owing
to its relatively low sensitivity in the corresponding class.

This is the reason why we performed standardization according to Equations (2) and (3) on the
augmented raw feature dataset. Basically, as standardization assumes that the data has a Gaussian
distribution, this process is more effective if the distribution of the feature data is Gaussian. It was
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confirmed that the distribution of our data does not follow an exact Gaussian distribution, but shows a
very similar trend.

σ j =

√∑N
i=1

(
xi, j − E

(
x j

))2

N
(2)

x̃i, j =

(
xi, j −

−
x
)

σ j
(3)

where, N and j denote the total number of the feature dataset and the feature index, respectively. xi, j

and E
(
x j

)
represent a feature datapoint and a mean of the j-th feature x j, respectively. σ j and x̃i, j are the

standard deviation and standardization results of x j, respectively.
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Figure 11. Box plot results of the augmented raw feature dataset with mean, standard deviation for
each label, (a) label 2, (b) label 3, (c) label 4, (d) label 5.

The standardization results through Equations (2) and (3) are shown in Figure 12. It could
be confirmed that the relative differences in scale of specific feature data within each label were
significantly reduced. In addition, it is expected that the distribution pattern of features between labels
will show a distinct difference, which will be a positive factor for multiclass classifier learning. (Refer
to Appendix B for mean and standard deviation values for all subjects and Appendix C for mean and
standard deviation plots for each subject.)
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Figure 12. Box plot results of the feature dataset after standardization with mean, standard deviation
for each label, (a) label 2, (b) label 3, (c) label 4, (d) label 5.

3.4. Sliding-Window Label Overlapping Method

In our preceding studies, it has been confirmed that the beta angles, also considered as the pitch
angle, has significant sensitivities in the foot–ground contact detection [23], as well as some regular
changing patterns over time during walking. As shown in Figure 13, the overall patterns of the beta
angles of three subjects show quite similar tendencies; the difference in its values according to the
label is very significant. Therefore, if a certain period of these feature data with distinct differences
according to labels is extracted and converted into an image, class classification may be possible with
an NN architecture, such as CNN.
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Figure 13. Pitch angles of foot and shank of three subjects.
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Based on this, only the features that could contribute to the FGCC were carefully selected and the
corresponding feature data plot over time only includes the right foot and shank motion data, as shown
on the left side of Figure 14. Figure 14 shows the entire process of the SLO method. A width of the
sliding window can be considered as the desired time span to be extracted of the time-series feature
data. If the sliding window width and the sampling frequency are set at 14 and 100 Hz, respectively,
a finite-horizon of the sliding window including 14 series of labeled feature data shifts right every
10 ms; hence, the name sliding-window label overlapping. It is important to note that the extracted
feature data with SLO of a 22 (height) × 14 (width) window may be mixed with several different labels
of the FGCC. As mentioned earlier, because label overlapping must inevitably occur due to the nature
of the time-series data obtained in the stance phase, it should be noted that one sliding window may
include one to three labels. However, because it is very rare to include three different labels at the same
time, a sliding window including three different labels is regarded as an outlier. That is, for the HO
phase, most sliding windows including the HO phase are outliers, because the HO phase is detected
only 1.93 times on average during one walking step as well as being located between the TO and SW
phases. Therefore, HO is integrated into the TO, which has a similar tendency to SW in the phase
adjacent to HO. The pseudocode in Appendix D describes how to assign a label in the label-overlapped
sliding window and how to convert the window into the image in more detail. The mat2gray function
in MATLAB is used to convert the NN data to grayscale image in this study [33].
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3.5. Validation Dataset Acquisition

In addition to the training dataset, the data of new subjects were collected to examine the validity
of the trained model as shown in Figure 15. The data were collected on a 49.6 m long flat ground at a
speed of 1.21–1.37 m/s; the collected data were preprocessed using the same method except for the data
augmentation (refer to Appendix B for standard deviation and mean values of each label) described
earlier to generate a total of 1506 efficient validation image sets.
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4. CNN Model for Real-Time FGCC

The structure of CNN in this study was designed as shown in Figure 16. It consists of three
consecutive convolutional layers and a fully connected layer at the end. Each convolutional layer
performs convolution internally and a pooling process repeatedly to produce various feature maps
for the input image. The initial hyper parameters are presented in Table 1, and the learning rate is
set to 0.001 as the default value. ReduceLROnPlateau was used to lower the learning rate when the
loss did not improve so that the local minimum could be exited. In addition, to prevent overfitting,
the callback function EarlyStopping was used to stop learning when the performance of test loss no
longer increased.
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Table 1. Input parameters and hyper parameters of CNN model.

Input Parameter CNN Model Parameter

SLO
width

Image
Shape

Pooling
method

Layer
no.

Filter
size

Drop-out
rate

Stride
width

Activation
function

14 22× 14 Average-Pooling 3 m× n 0.3 1 ReLU

Sensitivity Analysis

As CNN was originally developed for image recognition [34], it is important to select the optimal
hyper parameter that affects the learning accuracy of the image used. One of the input images in this
study is represented in Figure 17, and we can see that certain features have a regular gray gradient
shape over time.
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Figure 17. Sample input image.

Based on observations of several input images, it is reasonable to expect that the filter in the
convolution layer will act as an important factor in extracting the features of the image. It is also
expected that the label overlapping ratio, which shows how many past datapoints are used to encode
current labels, will play an important role in improving FGCC accuracy. This is the reason why we
performed a sensitivity analysis of the two major parameters for finding an optimal combination of
these two parameters.

In this study, level average analysis using the Taguchi method was applied to examine the
individual sensitivity of all parameters in terms of width, height of the convolution filter and label
overlapping ratio; every combination was evaluated in terms of the training, test, and validation
accuracies, which are the so-called the-larger-the-better indices. As a result, the three 3-level parameters
to be examined are shown in Table 2, and an orthogonal array table of L9(33) is also shown in Table 3
with results of the training, test and validation accuracies by parameter combination.

Table 2. 3-level parameter table including SLO ratio and size of the convolution filter.

Level SLO Ratio [%] Filter Width Filter Height

1 30(4) 3 3
2 50(7) 5 5
3 70(10) 7 7
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Table 3. Orthogonal array of L9(33) with training, test and validation accuracies by combination.

No. SLO Ratio Filter Width Filter Height Train Acc [%] Test Acc [%] Val Acc [%]

1 1 1 1 99.97 99.84 84.80
2 1 2 2 100 99.88 79.40
3 1 3 3 99.99 99.86 79.29
4 2 1 2 99.90 99.48 78.23
5 2 2 3 99.87 99.33 76.96
6 2 3 1 99.86 99.35 77.55
7 3 1 3 99.99 99.49 78.77
8 3 2 1 99.99 99.51 81.41
9 3 3 2 99.90 99.32 74.92

60% and 40% in the entire dataset of 360,000 were used for training and test, respectively. And 1506
validation datapoints were predicted with each model obtained by a combination of orthogonal array
tables. After performing learning along the orthogonal array table, the level average analysis, as in
Figure 18, confirmed that the SLO ratio was the parameter that had the greatest effect on learning and
validation accuracy, and that all three parameters showed the highest accuracy at 1st combination.
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Figure 18. Results of the level average analysis of three major hyper parameters in terms of training,
test, and validation accuracy.

As a result of the level average analysis, the best combination of the parameter levels was
confirmed as being the first combination in training with a batch size of 4000 and 10,000 epochs.
The feature map created by the filter for each layer at this combination is presented in Appendix E.

Figure 19a indicates the loss change of the model: the loss change for the training-set was 0.000954
and the test-set was 0.005478. In addition, Figure 19b represents the accuracy change of the model,
with a value of 0.9997 for the training-set and a value of 0.9984 for the test-set.
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Figure 19. Results of the CNN model training: (a) model loss, (b) model accuracy.
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In addition, validation data was predicted through the trained model, and the four positions
were classified with an average probability of 84.80%. Detailed accuracy results by label are shown in
Table 4.

Table 4. Result of experimental validation set data [%].

SW HS FC HO Total

Accuracy 82.27 81.61 82.12 93.18 84.80

5. Results and Discussion

In this study, the SLO method is proposed to accurately detect the foot–ground contact phases
composed of three sub-phases, as well as the swing phase using only wearable motion sensors attached
to the foot and shank. We succeeded in developing a CNN model with a learning and test accuracy of
99.8% or more and confirmed that its validation accuracy was close to 85%.

Especially, whereas many previous studies did not consider overlapping labels in sliding
window-based time-series data capture, this study shows that FGCC via CNN at a rate of 100 Hz
can be realized with the proposed SLO method. Studies without labeling overlap have significant
disadvantages in terms of real-time monitoring and reliability as they can only be used in limited
situations. In this study, to overcome these shortcomings, a sliding window method was applied,
which opens wider fields of applications and research.

However, more diverse studies are needed to verify the data augmentation method utilized in
this study. Although the method of applying noise generated by sensors was sufficiently useful, there
was a limitation in that the disturbance or deformation generated while walking could not be applied.
In future studies, it is necessary to investigate various methods for improving classification accuracy in
the real-world through sensor fusion of EMG [35], IMU, etc. as well as the data augmentation.
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Appendix A

Algorithm A1 Pseudocode of four sub-phase labeling process

1: Interrupt Service Routine (every 10 ms)
2: if (read FSR0 > 10 kgf)
3: FSR0 = True
4: else
5: FSR0 = False
6: if (read FSR1 > 10 kgf)
7: FSR1 = True
8: else
9: FSR1 = False
10: if (read FSR2 > 10 kgf)
11: FSR2 = True
12: else
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13: FSR2 = False
14: if (FSR0 and FSR1 = False and FSR2 = True)
15: Output = Heel Strike
16: else if (FSR0 = False and FSR1 = True and FSR2
17: = True) or (FSR0 = True and FSR1 = False
18: and FSR2 = True)
19: Output = Full Contact
20: else if(FSR0 = True and FSR1 = True and FSR2
21: = False)
22: Output = Heel off

23: else if(FSR0 = True and FSR1 = False and
24: FSR2 = False)
25: Output = Toe off

Appendix B

Table A1. Means, standard deviations of every feature of each label.

Label 2

Orientation Acceleration Angular Velocity Rate of Euler Angle

Yaw(α) Pitch(β) Roll(γ) ax ay az wx wy wz
.
α

.
β

Foot −0.1551
(±0.4065)

−0.0377
(±0.3778)

−0.1357
(±1.0435)

−0.0044
(±0.6404)

0.0074
(±0.2723)

0.0367
(±0.2364)

0.0494
(±0.4883)

0.0514
(±0.6035)

−0.2059
(±0.5320)

−0.00019
(±0.6639)

0.1616
(±0.3891)

Shank 0.3824
(±0.5310)

0.2539
(±0.4975)

−0.0946
(±1.0713)

0.4032
(±0.6129)

−0.3422
(±0.4613)

0.0198
(±0.3701)

0.3205
(±0.4281)

0.3953
(±0.4091)

−0.2978
(±0.4173)

0.1115
(±0.4251)

0.4286
(±0.2765)

Label 3

Orientation Acceleration Angular Velocity Rate of Euler Angle

Yaw(α) Pitch(β) Roll(γ) ax ay az wx wy wz
.
α

.
β

Foot −0.3302
(±0.4323)

−0.2600
(±0.3925)

0.0593
(±0.8412)

−0.0069
(±0.8265)

−0.0069
(±0.6012)

0.2146
(±0.5781)

0.0421
(±0.5644)

−0.0461
(±0.4672)

−0.0828
(±0.6505)

0.0063
(±0.8427)

0.1086
(±0.4537)

Shank −0.2768
(±0.5474)

−0.4322
(±0.4090)

0.2467
(±0.8486)

−0.2761
(±0.8104)

0.2586
(±0.8352)

0.0909
(±0.7499)

0.3244
(±0.5664)

0.2431
(±0.3592)

−0.1093
(±1.0977)

−0.0776
(±0.9521)

0.2585
(±0.3217)

Label 4

Orientation Acceleration Angular Velocity Rate of Euler Angle

Yaw(α) Pitch(β) Roll(γ) ax ay az wx wy wz
.
α

.
β

Foot −0.5414
(±0.6849)

−0.9097
(±0.6816)

0.0868
(±1.0554)

0.0475
(±1.4317)

−0.0921
(±1.5240)

−0.4572
(±1.5838)

0.1292
(±0.9869)

0.0885
(±0.8901)

0.4093
(±1.0212)

−0.0021
(±0.9594)

0.0802
(±1.0908)

Shank −1.0112
(±0.6641)

−1.0129
(±0.5170)

−0.1106
(±0.9957)

−0.6221
(±0.8928)

0.5041
(±1.0838)

−0.1153
(±1.8441)

−0.0473
(±1.1490)

−0.1010
(±0.8285)

0.6609
(±1.1596)

0.3421
(±1.0326)

−0.1097
(±0.9633)

Label 5

Orientation Acceleration Angular Elocity Rate of Euler Angle

Yaw(α) Pitch(β) Roll(γ) ax ay az wy wz
.
α

.
β

Foot 1.0371
(±1.3766)

1.1429
(±1.1608)

0.0018
(±1.0502)

−0.0273
(±1.0757)

0.0821
(±1.2921)

0.0955
(±1.1537)

−0.2158
(±1.6274)

−0.0773
(±1.6817)

−0.0241
(±1.5070)

−0.0058
(±1.4361)

−0.3793
(±1.6018)

Shank 0.7715
(±1.1886)

1.1079
(±1.0357)

−0.0841
(±1.0382)

0.4077
(±1.2366)

−0.3574
(±1.2485)

−0.0321
(±0.6482)

−0.7134
(±1.3111)

−0.6467
(±1.6110)

−0.0981
(±0.9490)

−0.3254
(±1.3263)

−0.6997
(±1.5509)

Appendix C

Box plots of all features of every subject participated in this study after standardization process.
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Figure A1. (a) label 2, (b) label 3, (c) label 4, (d) label 5.
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Figure A2. (a) label 2, (b) label 3, (c) label 4, (d) label 5.
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Figure A3. (a) label 2, (b) label 3, (c) label 4, (d) label 5.
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Figure A4. (a) label 2, (b) label 3, (c) label 4, (d) label 5.
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Figure A5. Pitch angles of foot and shank of subject 4.

Appendix D

Algorithm A2 Pseudocode for assigning the representative label to a single window composed of the multiple
labels

1: Function SLO (Entire labeled data set M (Rn×22),
2: SLO_width=14, SLO_pitch=1, SLO_ratio=N)
3: (Rotate 90 degrees counterclockwise to create
4: 22×14 images)
5: rotate M CCW 90←M(23×n)
6: for i=1:SLO_pitch:(size(M,2)-SLO_width)
7: slo_image(:,:,i) = M([i:slo_width+(i-1)],[2:23])
8: → Save the 22×14 image in three dimensions
9: slo_label(1,:,i) = M([i:slo_width+(i-1)],1)
10: → Save the 1×14 label in three dimensions
11: end
12: for i=1:1:size(slo_image,3)
13: if (slo_label(1,14-(N-1):14,i)==5)
14: save mat2gray(slo_image(i)) to the folder "L_5"
15: else if (slo_label(1,14-(N-1):14,i)==4)
16: save mat2gray(slo_image(i)) to the folder "L_4"
17: else if (slo_label(1,14-(N-1):14,i)==3)
18: save mat2gray(slo_image(i)) to the folder "L_3"
19: else if (slo_label(1,14-(N-1):14,i)==2)
20: save mat2gray(slo_image(i)) to the folder "L_2"
21: end
22: end
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