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Abstract: Time synchronization is a key technique in large-scale wireless sensor network applications.
In order to tackle the problems of multi-hop synchronization error accumulation, clock frequency skew
swinging, and network topology changes, a time synchronization protocol based on dynamic routing
and forwarding certification (DRFC-TSP) is proposed in this paper. During the time synchronization
process, a reference node with fewer synchronization hops and a more stable clock frequency is selected
for every single hop, in order to obtain the best synchronization route. In this way, synchronization
error accumulation can be restrained and the impact of clock frequency skew swinging on the time
synchronization precision can be reduced. Furthermore, changes of the network topology can be well
adapted by dynamic routing, in which the reference node is updated in every synchronization round.
In the forwarding certification process, the status of nodes forwarding synchronous information
outwards is authored by information exchange between neighboring nodes. Only synchronous
information of the certificated nodes with a better performance can be forwarded. The network traffic
can be decreased and the time synchronization precision can also be ensured, even with less energy
consumption. Feasibility testing in large-scale wireless sensor networks is verified on NS2 simulation
and more performances are evaluated on an embedded Linux platform.

Keywords: wireless sensor networks; time synchronization protocol; dynamic routing;
forwarding certification

1. Introduction

Time synchronization is a fundamental technology in wireless sensor networks (WSN) [1,2]. Due to
the collaboration features [3] of WSN nodes, it is important for each node to synchronize accurately [4].
Considering the particular demands [5–7] compared with the internet in terms of energy consumption
limits and synchronization precision, traditional time synchronization protocols are not suitable for WSN. A
variety of typical protocols have been proposed since the time synchronization subject of WSN was defined,
such as the timing-sync protocol for sensor networks (TPSN) [8], delay measurement time synchronization
(DMTS) [9], flooding time synchronization protocol (FTSP) [10], reference broadcast synchronization
(RBS) [11], and pairwise broadcast synchronization (PBS) [12]. These protocols directly synchronize nodes’
clocks or trigger the process according to reference clock time information.

These typical protocols can be perfectly applied in a one-hop situation, but they cannot satisfy
the synchronization needs in large-scale WSN. Meanwhile, the clock frequency skew swinging [13]
that occurs in the long-running is another problem that is currently ignored. Accumulation error
will increase severely if repeating one hop synchronization process between neighboring nodes in
the network.

Therefore, based on typical protocols, several time synchronization protocols for large-scale WSN
were put forward. For example, the dynamic route list based timing-sync protocol (DRL-TSP) [14] is
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a strategy that chooses a parent node in the last hop as the synchronization reference for each node,
which provides the minimal hops from the root node by dividing the network into a hierarchical
structure. Efficient and simple algorithm for time synchronization (E-SATS) [15] is proposed for
reducing computations and energy consumption. However, for the WSN with a limited energy, a fixed
hierarchical structure or a settled clustered structure results in a strong dependency on topology, which
will consume extra energy in the process of building and fixing the established structure. Furthermore,
it cannot react rapidly if the topology changes [16–18].

On the basis of the current time synchronization research, in order to tackle the problem of
multi-hop error accumulation, the clock frequency skew influence, and the network topology changing,
a time synchronization protocol named the time synchronization protocol based on dynamic routing
and forwarding certification (DRFC-TSP) for large-scale WSN is proposed. In this protocol, by acquiring
optimal reference time information in each hop instead of employing a fixed pre-established structure,
every node can obtain an optimum route from the root node, which will ensure that the synchronization
precision is good and allow adaptations to topology changes. The certification of time information
forwarding is evaluated by a forwarding certification strategy. Therefore, the bad performance nodes
do not forward their packets, and network traffic and energy consumption can be decreased.

The rest of the paper is organized as follows: Section 2 gives an introduction to the typical time
synchronization models in large-scale WSN; Section 3 describes details on the algorithm of DRFC-TSP;
Section 4 provides the design principles of realization on an embedded Linux platform; Section 5 illustrates
the results of the simulation and field experiment; and the final section presents the conclusion.

2. Analysis of Time Synchronization Models in Large-Scale WSN

According to the time synchronization information exchanging methods, there is a hierarchical
model and clustered model [19–21] in large-scale WSN. The hierarchical model is appropriate for
protocols such as TPSN, in which information exchange occurs in pairs. In this model, the network is
divided into a one-hop level structure, and nodes in one level synchronize with nodes in the next level.
The clustered model is suitable for protocols such as FTSP, in which nodes obtain the synchronization
information broadcasted by the reference nodes. In this model, a cluster structure is established at first
and a head node is selected as the time reference in each cluster. Then, the head node broadcasts the
time synchronization information to each node by multi-hop forwarding.

A hierarchical model is shown in Figure 1. The first phase involves creating a hierarchy structure,
and time synchronization is then carried out between levels. The root node launches a synchronization
process and the information is delivered level by level. In this way, every node synchronizes with
its parent node from the upper level by a one-hop process. In the level established phase, the level
number should be the minimum, in order to reduce multi-hop error accumulation. This strategy will
result in much redundant information exchange and aggravate the network traffic. Meanwhile, it
strongly depends on the topology.
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Figure 1. Hierarchical model. Figure 1. Hierarchical model.

A clustered model is shown in Figure 2. The synchronization is accomplished by cluster head and
intracluster synchronization. After cluster heads synchronize, each head becomes a local root node and
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sends time information in its own clusters, where the synchronized nodes forward synchronization
information to every node hop by hop. In the forwarding process, synchronization information is
received by all of the neighbors. However, most of the information is redundant. This strategy is more
adaptable to topology changes, but causes severe energy waste.
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3. Design of a Time Synchronization Protocol Based on Dynamic Routing and
Forwarding Certification

The proposed time synchronization protocol DRFC-TSP is composed of two processes: the
time synchronization process during which the node modifies its clock according to the reference
information, and the forwarding certification process during which certain nodes are authorized to
conduct forward certification. Two process phases are initiated by the root node, and the other nodes
accomplish the corresponding process. The realization of DRFC-TSP is shown in Figure 3.
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3.1. Time Synchronization Based on Dynamic Routing

In the time synchronization process, the root node initiates a new round of synchronization as the
reference time. The others will accomplish information receiving; synchronization round recording;
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and reference synchronization information selecting, time synchronizing, and performance information
caching. After accomplishing these processes, the node with forwarding certification should continue
to forward time synchronization messages.

A time variable Tre f is set for choosing the reference node. During the time of Tre f , a node without
synchronization continually receives information from reference candidates. When Tre f is increased,
the candidate node with the best performance will be selected as the reference. By choosing the best
reference in each hop, an optimum synchronization route will be ensured. The parameter called Std is
defined as a measurement of the node performance, which is related to the hops to root node, clock
frequency performance, and value of Std in the last synchronization round. According to Std, the best
candidate will be selected as the reference. Std is defined as follows:

Stdi = λ(H) · µ(F) · η
(
Stdi−1

)
(1)

where Stdi is the performance parameter in round i, λ(H) is a variable determined by the hop number
H, µ(F) is a variable determined by the frequency skew F in the current synchronization round, and
η
(
Stdi−1

)
is the performance parameter in round i−1. A node with a good performance should have a

smaller number of hops and a more stable clock frequency. Therefore, the node with a better node clock
performance has a smaller Std parameter. Additionally, in order to achieve proper synchronization
performances in different practical applications, Std should be adjusted according to the influence of
hops and frequency skew in the specific network environment.

3.2. Authorization of Node Forwarding Certification

In the process of dynamic routing for time synchronization, nodes to be synchronized always
select the best performance nodes as their synchronization references. Therefore, nodes with a poor
performance have no chance of being selected as the references, even though the neighbors receive
information from these poor nodes. In such a condition, network traffic will be heavily burdened due
to large amounts of redundant information and energy is wasted. In order to improve the performance,
the authorization of node forwarding certification is put forward.

A threshold marked Rcer is set as the evaluation index, which represents the percentage of qualified
nodes in the neighbor domain that are eligible to be put forward. Rcer can be set according to the status
of energy consumption. Each node compares its Std with the others’ and ranks itself in the neighbor
domain. When its rank is larger than Rcer in the neighbor domain, its forwarding certification will be
terminated. Due to this strategy, useless information transmission will be effectively controlled and the
energy consumption will be reduced.

Flag_QA is defined as the mark of forwarding certification. In the first round of time
synchronization, all nodes are qualified to forward information, that is, the Flag_QA of each node is
set to 1. After several rounds, the performance parameters of each node in previous rounds have been
cached. Then, the process of forwarding certification is initiated. Each node broadcasts its Std and
receives others to rank itself in the neighbor domain. If its rank is less than Rcer, Flag_QA is set to 1,
which means that this node needs to forward its time synchronization information after completing
time synchronization; otherwise, Flag_QA is set to 0, which means that this node just ends this round
after synchronization, without forwarding time synchronization information to others.

3.3. Solution for the Reference Node Void Problem

Since the parts of nodes with a poor performance are disqualified from forwarding synchronization
information, there is probably a problem that some nodes lack synchronization references; that is,
all of the previous hop nodes within the communication range of a certain node are disqualified
from forwarding time synchronization information, so that the node cannot synchronize because time
synchronization information is not received in this round.
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To tackle the reference node void problem, Twait is defined as the maximum waiting time. During
Twait, the nodes to be synchronized passively wait for time synchronization information. If there
is no information received after Twait, the node is considered to have the status of a reference node
void. In this case, the node will initiate a synchronous request to its neighbors. Then, all nodes
that have received this request will reply. The node will be synchronized with the best performance
reference node.

4. Realization of DRFC-TSP on an Embedded Linux Platform

4.1. Development and Testing Environment

The protocol program is developed and compiled on Ubuntu 12.04, and then implemented in
the embedded system with Linux Kernel 2.6. Nodes communicate via the Wi-Fi wireless card with
the IEEE 802.11 g communication protocol, which works in a 2.4 GHz public frequency band and
reaches the maximum transfer rate of 20 Mbit/s or more. An ad-hoc network with the Smart210 Linux
embedded platform is integrated, which communicates by Wi-Fi, the ad hoc on-demand distance
vector routing (AODV) [22] WSN routing protocol, and the IP routing protocol embedded in the Linux
operating system [23]. The User Datagram Protocol (UDP) communication protocol is adopted. In
socket network programming, the time information in the synchronization process is acquired by
calling relevant time system functions. Specifically, the data structure Timeval of the Linux kernel is
used, and two functions, consisting of gettimeofday() and settimeofday(), are called to obtain and
modify the system time.

4.2. Realization Process

4.2.1. Synchronization Process of the Root Node

The clock of the root node is considered to be the reference time; that is, the time offset is always 0
and the frequency skew is always 1. The root node will provide a time reference to the network and
initiate the time synchronization process. The forwarding certification round will be carried out after
N rounds of time synchronization.

During a synchronization round, only the root node can update the round number. When a new
round of time synchronization or forwarding certification is carried out, the synchronization round
number is increased by 1.

When a new round of synchronization is initiated, the current round number should be check.
If the round number is the integral multiple of N, forwarding certification should be initiated in the
current round; otherwise, the time synchronization process is carried out.

4.2.2. Synchronization Process of the Non-Root Node

The synchronization flow chart of the non-root node is shown in Figure 4.
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(a) All of the non-root nodes keep the UDP server online to monitor the synchronization packet.
(b) When the node detects a packet, go to step (d); otherwise, go to step (c).
(c) If the timer for Twait is up, the node should send a request for synchronization to its neighbors

because a void appears. After the packets from neighbors are received, go to step (h); otherwise,
go to step (a).

(d) When the node to be synchronized detects a synchronization packet, it should determine whether
the current message is a time synchronization packet or forwarding certification. If a time
synchronization packet is received, then go to step (e); otherwise, it is a forwarding certification
packet, so go to step (k).

(e) The timer of synchronization is turned on to count down Tre f .

(f) The node to be synchronized records several parameters in the received packet, such as the current
round number, the hop count, Std, the sending time, etc. Furthermore, it needs to record the local
time when the current packet is received. These parameters are tentatively set as the reference
node information for the node. The node to be synchronized keeps on receiving other packets and
compares synchronization information with its record. If the performance of the newly received
synchronization message is better than the current record, the record about candidate reference
nodes is updated; otherwise, the record remains unchanged.

(g) If the timer for Tre f is up, go to step (h); otherwise, go to step (a).
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(h) Turn off UDP monitoring. The node is synchronized according to the records and caching
information in this round.

(i) If the node is forwarding certificated, go to step (j); otherwise, the node does nothing, so go step
(n).

(j) Generate the time synchronization packet and forward it to the next hop. The current round of
synchronization is finished, so go to step (n).

(k) The timer for certification is turned on.
(l) The number of neighbors is marked as My_Neighbor plus 1 when a node receives a certification

packet. If the Std of the neighbor node is smaller than that of the current node, it is considered that
the neighbor performs better, and the ranking parameter marked as My_Place of the current node
is increased by 1; otherwise, it is considered that the neighbor performs worse, and My_Place
remains unchanged.

(m) Determine whether the timer for certification has expired, if not, continue to step (l); otherwise,
turn off UDP monitoring, and then compare the two parameters My_Place and My_Neighbor. If
My_place ≤ Rcer ×My_neighbor, then the node’s performance is considered to be better than the
threshold, so it is authorized with forwarding certification and set as Flag_QA = 1. If not, this
node is not certificated and marked as Flag_QA with 0. Then, go to step (i).

(n) Restart the UDP monitor for packets of the next round, and then go to step (a).

5. Analysis of the Simulation and Test

Both a simulation and field experiment were carried out, in order to evaluate the performance of
the proposed time synchronization protocol. The feasibility was tested on a simulation platform of NS
2.29. In addition, the time precision and topology adaptation of the proposed protocol were evaluated
on the embedded Linux platform.

5.1. Simulation in NS2

5.1.1. Analysis of the Reference Node Optimization

Parameter settings in the simulation are shown in Table 1. In this simulation, 300 nodes with a
long enough Tre f value (5 ms) were tested, which ensured that all reference candidates’ synchronization
packets could be received. The performance of the accumulation error is shown in Figure 5. As can be
seen, DRFC-TSP costed 17 hops for synchronizing the whole network, but DMTS without reference
optimizing costed 27 hops. Moreover, the synchronization error of the edge node of DMTS was almost
three times greater than that of DRFC-TSP. After six hops, the error of DMTS grew faster than that of
DRFC-TSP. The simulation in NS2 shows that the hop number of a node achieving synchronization
was smaller; that is, less energy was consumed in the time synchronization process in DRFC-TSP
with reference node optimization. As is well known, the energy consumption of WSN was mainly
in communication. Since DRFC-TSP can obtain more precise time by less hops than DMTS, several
evaluations for the proposed protocol was performed.

Table 1. Simulation parameters in NS2.

Parameter Value

Node number 60/100/300/600/900/1500

Average distance of nodes 10 m

Wireless communication radius 20 m

Clock frequency ±50 ppm

Synchronization period 30 s

Simulation time 3000 s
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5.1.2. Influence of Tre f on the Network Convergence Time

In the simulation, networks with 60, 100, 300, 600, 900, and 1500 nodes were tested separately, and
the values of Tre f were set to 1 and 3 ms, respectively. The simulation result is shown in Figure 6. As
can be seen, the convergence time became longer when the number of nodes grew. In the simulation
with the same number of nodes, the synchronization convergence time was positively related to Tre f .
This shows that Tre f was the main factor affecting the convergence time of the whole network.
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5.1.3. Influence of Tre f on the Synchronization Precision

In the simulation, the network contained 300 nodes and the communication delay was a random
variable with a mean of 1 ms and variance of 2 ms2. Tre f was set as 0.5, 1, and 3 ms, respectively. The
result is shown in Figure 7. In the simulation when Tre f was 0.5 ms, the number of hops required to
complete the time synchronization of the network was two times greater than when Tre f was 1 or 3 ms.
Meanwhile, the accumulation error of synchronization in the simulation where Tre f was 0.5 ms was
relatively larger than in the others and the growth was more obvious. Therefore, a larger Tre f was
beneficial for selecting a reference node with a better performance. However, the cumulative errors
when Tre f was 1 or 3 ms were nearly the same; that is, Tre f was a factor of synchronization precision,
but its influence became lower when Tre f became bigger. In applications, an appropriate Tre f should
be selected to satisfy the need of the convergence time and synchronization precision.
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5.2. Field Test on an Embedded Linux Platform

The field test used nine embedded Linux platforms as nodes, and carried out the porting of
DRFC-TSP on the platform. The field tests on the multi-hop error accumulation, synchronization
accuracy, and adaptability of the protocol to different topologies were evaluated. The frequency offset
of the nine nodes relative to node 0 is shown in Table 2.

Table 2. Frequency offset of embedded Linux platforms.
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5 44:33:4C:49:50:BA 103.1

6 44:33:4C:49:42:0C 14.9

7 44:33:4C:49:41:EA 4.6

8 44:33:4C:46:D1:C9 82.8

5.2.1. Analysis of the Forwarding Certification Process

In the test, node 0 was set as the root node, and node 8 was the node to be synchronized. Nodes 1, 2,
3, and 4 were set as the second hop, being one hop from the root node, and nodes 5, 6, and 7 were set as the
third hop, being two hops from the root node. The topology described above is shown in Figure 8.Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 
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When the time synchronization test finished, the parameters of each node were recorded and
are shown in Table 3. This table shows that nodes 1, 4, and 5 were not certificated, and node 2 and 7
were selected as the reference nodes. Node 8 was synchronized with node 7. The test shows that the
principle of forwarding certification in DRFC-TSP could introduce a better reference node for every
hop. Therefore, node 8 had 3.03 ms time offset relative to node 0 in the test.

Table 3. Parameters of embedded Linux platforms after the test.

Node Num. Hops Certificated or Not Reference Offset (ms)

1 1 No 0 8.24

2 1 Yes 0 2.34

3 1 Yes 0 6.24

4 1 No 0 9.79

5 2 No 2 7.55

6 2 Yes 2 1.69

7 2 Yes 2 0.26

8 3 - 7 3.03

5.2.2. Routing Influence on the Synchronization Precision

In order to evaluate the influence of different routes on the synchronization precision, the four
routes shown in Figure 9 were tested.
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5.2.3. Adaptation of DRFC-TSP to the Different Topologies

In order to evaluate the adaptation of DRFC-TSP to the different topologies, the six topologies
shown in Figure 11 were simulated. The time offset of node 8 and its reference node is shown in
Figure 12. In the topology shown in Figure 11(2) and topology shown in Figure 11(4), node 4 was
selected as the reference node, although its offset was slightly larger compared with the cost of adding
one hop. In the topology shown in Figure 11(5), node 8 selected node 6 as the reference node to
synchronize, because the hop from root node 0 and time offset of node 6 were both the smallest. In the
topology shown in Figure 11(3), nodes 2 and 6 exhibiting a small offset were selected as intermediate
forwarding nodes, and this is the path with the least number of hops.
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6. Conclusions 

The proposed DRFC-TSP based on dynamic routing and node forwarding certification was 
designed to reduce accumulation error and the impact of clock frequency skew swinging on the time 
synchronization precision. Meanwhile, the reference node void coping mechanism can deal with 
synchronization process interruption to ensure that the synchronization process is reliable. The 
simulation and field test show that DRFC-TSP had good time synchronization performance. As 
shown, 𝑇 and 𝑅 in DRFC-TSP could be modified according to the requirement of precision and 
energy status. Moreover, the choice of functions for Std could affect the performance. How to strike 
optimal trades among these parameters in different applications, which is a direction for our future 
research. In addition, only several topologies were tested due to limited embedded Linux platforms. 
Although the proposed protocol could adapt them, further experiments in the large-scale 
environment are required in our future work. 
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6. Conclusions

The proposed DRFC-TSP based on dynamic routing and node forwarding certification was
designed to reduce accumulation error and the impact of clock frequency skew swinging on the
time synchronization precision. Meanwhile, the reference node void coping mechanism can deal
with synchronization process interruption to ensure that the synchronization process is reliable. The
simulation and field test show that DRFC-TSP had good time synchronization performance. As shown,
Tre f and Rcer in DRFC-TSP could be modified according to the requirement of precision and energy
status. Moreover, the choice of functions for Std could affect the performance. How to strike optimal
trades among these parameters in different applications, which is a direction for our future research. In
addition, only several topologies were tested due to limited embedded Linux platforms. Although the
proposed protocol could adapt them, further experiments in the large-scale environment are required
in our future work.
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