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Abstract: The closed-form robust Chinese Remainder Theorem (CRT) is a powerful approach to
achieve single-frequency estimation from noisy undersampled waveforms. However, the difficulty
of CRT-based methods’ extension into the multi-tone case lies in the fact it is complicated to
explore the mapping relationship between an individual tone and its corresponding remainders.
This work deals with this intractable issue by means of decomposing the desired multi-tone estimator
into several single-tone estimators. Firstly, high-accuracy harmonic remainders are calculated by
applying all-phase Discrete Fourier Transform (apDFT) and spectrum correction operations on the
undersampled waveforms. Secondly, the aforementioned mapping relationship is built up by a novel
frequency classifier which fully captures the amplitude and phase features of remainders. Finally,
the frequencies are estimated one by one through directly applying the closed-form robust CRT
into these remainder groups. Due to all the components (including closed-form CRT, the apDFT,
the spectrum corrector and the remainder classifier) only involving slight computation complexity,
the proposed scheme is of high efficiency and consumes low hardware cost. Moreover, numeral
results also show that the proposed method possesses high accuracy.

Keywords: all-phase discrete Fourier transform; Chinese remainder theorem; coprime undersampling;
multi-tone frequency estimation

1. Introduction

Frequency measurement is a fundamental problem in signal processing, which is widely
encountered in instrumentation, digital communication, radar, etc. Numerous frequency estimation
methods have been proposed, including the classical discrete Fourier transform (DFT) [1,2],
the subspace-based methods [3,4], maximum likelihood [5,6], linear or nonlinear least squares [7,8].
However, as some applications work in a wider band and higher frequency, e.g., the millimeter-wave
band in 5G technologies, these methods become impractical, since the realizable sampling rates of the
analog to digital converters (ADCs) are limited by the Nyquist theorem. Therefore, investigations on
the frequency estimation from undersampled sequences are interesting.

The Chinese Remainder Theorem (CRT) is an effective approach to resolve ambiguity
related problems including the undersampling frequency estimation [9–14]. The basic idea is to
reconstruct a larger number M from its residue set {rl , l = 1, ..., L} modulo multiple moduli
{Ml , l = 1, ..., L}. Concerning the frequency estimation problem, L ADCs with sub-Nyquist sampling
rates {Ml , l = 1, 2..., L} are employed to obtain the undersampled waveforms, and then the classical
DFT is performed on the acquired waveforms to detect L ambiguous frequencies {r̂l , l = 1, 2, ..., L}.
Moreover, compared to some searching based estimator for undersampled waveforms [9,11],
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the CRT-based estimator [13,15] can achieve a large reconstruction upper bound, which equals
the least common multiple (lcm) of the undersampling rates {Ml}.

Recently, some modified versions of the CRT reconstruction algorithms have been presented
for computation complexity reduction and robustness enhancement [10,11,13,14,16]. Specifically,
the reduced complexity owns to the fact that CRT can work in a closed-form way rather than in
a searching-based way. Besides, the robustness enhancement lies in the fact that CRT can also acquire
a high reconstruction accuracy when all the remainders are erroneous, as long as these remainder
errors do not exceed a quarter of the greatest common divisor (gcd) of all the moduli. Particularly,
the remainders of the existing CRT-based estimators are derived from the DFT results of undersampled
waveforms. Hence, if we can resort to another high-performance spectral analysis tool to replace DFT,
both accuracy and anti-noise robustness will be further enhanced.

As is well known, DFT spectral analysis has two drawbacks: heavy spectrum leakage arising
from data truncation and insufficient spectral resolution incurred by picket fence effect. To suppress
the spectral leakage, we proposed the all-phase DFT (apDFT) spectral analysis in [17] and pointed out
that apDFT spectrum’s sidelobe leakage is much slighter than DFT even when dealing with multi-tone
waveforms. Moreover, as [18] pointed out, if apDFT is combined with the technique of spectrum
correction, the spectral resolution can be improved significantly. This combination actually provides
us a good idea to obtain higher-accuracy remainders required by CRT reconstruction.

In recent years, many endeavors have been made to generalize CRT-based estimators to multi-tone
undersampled waveform cases [19–21]. Generally, these estimators solve this problem through the
remainder redundancy coding, which actually pays the cost of heavy computation burden and
sacrificing the dynamic estimation range. To break the dilemma, we develop a novel estimator
combining closed-form CRT, apDFT and spectrum correction. Different from the existing estimators,
our proposed estimator’s applicability in the multi-tone case is ensured by building up a mapping
relationship between an individual tone and its corresponding remainders. Specifically, this mapping
relationship is realized by a novel harmonic-parameter clustering method, which is closely related to
apDFT and spectrum correction. With the above considerations, the proposed multi-tone estimator can
be converted into multiple single-tone estimators, and thus individual tones can be retrieved one by one.
Numerical results show that, our proposed estimator concurrently possesses high accuracy and large
dynamic range. Moreover, our proposed estimator is applicable to the case of only 2 undersampling
paths, whereas the existing multi-tone estimators cannot apply to this case.

The remaining of this paper is organized as follows. Problem Formulation of CRT-based frequency
estimation is given in Section 2. In Section 3, we detail the remainder acquisition and remainder
classification based on the apDFT and harmonic-parameter clustering in the proposed method.
The numeral results and performance analysis are presented in Section 4. Finally, the conclusions are
drawn in Section 5.

2. Problem Formulation

2.1. CRT Reconstruction Model for the Single-Tone Case

In this subsection, the CRT reconstruction model for the single-tone case is formulated.
A narrow-band signal x(t) with a single tone is formulated as

x(t) = aej(2π f0t+θ0) + w(t), (1)

where a, θ0 and f0 are the amplitude, initial phase and the frequency to be determined, respectively.
w(t) is the additive white Gaussian noise with zero mean and variance σ2.
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The Nyquist sampling theorem requires that the sampling rate Fl must be at least as twice as the
signal frequency f0 to avoid the ambiguity. Definitely, the ambiguity occurs in the undersampling case,
i.e., Fl < f0. In this case, the detected frequency rl can be represented as

f0 = nl Fl + rl , l = 1, ..., L (2)

where nl is the folding integer, and rl is the ambiguous frequency which can be acquired by performing
the traditional DFT on the undersampled waveforms. Equation (2) is fully in accordance with the
model of closed-form robust CRT [13], providing a basis for the undersampling frequency estimation.
Guided by the determination procedure in [13], x(t) needs to be discretized with L undersampling
rates (also acting as the L moduli of CRT) F1, ..., FL � f0. Typically, denote N be their greatest common
divisor (i.e., the largest integer that divides each of them), namely N = gcd{F1, · · · , FL}, thus integers
Γ1, · · · , ΓL valued with

Γl = Fl/N, l = 1, ..., L, (3)

constitute a co-prime integer set. As such, the moduli Fl can be decided by the coprime integer set
{Γl} and one specified integer N.

Then, L undersampled versions of x(t) are generated as

xl(n) = ae
j
(

2π
f0
Fl

n+θ0

)
+ w(n), n = 0, ..., N − 1. (4)

Since f0 � F1, ..., FL, a simultaneous congruence equation set can be built up as
f0 = n1F1 + ε1F1

...
f0 = nLFL + εLFL

, (5)

where n1, ..., nL are unknown folding integers and ε1, ..., εL are normalized frequencies of L
undersampled sequences. As mentioned above, the ambiguous frequencies {ε l Fl} (the remainders)
can be approximated via the traditional DFT. Then, the frequency estimate f̂0 can be acquired by
feeding the remainders {ε l Fl} and moduli {Fl} into the CRT reconstruction algorithm in [13].

The analysis above gives a simple review of frequency estimation in the framework of CRT
reconstruction. However, there are some open questions associated with the above method.
Firstly, the robust CRT usually requires that the error in each remainder is less than one quarter
of the gcd of the moduli. Under this condition, the reconstruction error can be upper bounded by
the same range as that of the remainders. For another, the remainder acquisition is always achieved
by the traditional N-point DFT, in which the normalized frequency resolution is 1/N. Accordingly,
the normalized frequency ε l in (5) can be represented as

ε l = (kl + δl)/N, l = 1, ..., L, (6)

where kl ∈ {0, 1, ..., N − 1} and δl is a fractional number ranging in the interval [−0.5, 0.5). Hence,
the remainder rl can be rewritten as

rl = ε l Fl = (kl + δl)Fl/N, l = 1, ..., L. (7)

The traditional DFT allows us to obtain the integer kl , whereas the fractional number δl
(also referring to the frequency offset) tends to be erroneous due to the spectrum leakage and the
picket-fence effect in the traditional DFT analysis. Therefore, the errors arising from the DFT analysis
tool inevitably give rise to the errors in the reconstruction results. In this sense, it is meaningful to
resort to another high-performance spectral analysis tool to replace DFT.
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2.2. CRT Reconstruction Model for the Multi-Tone Case

For a multi-tone signal x(t) formulated as

x(t) =
ρ

∑
m=1

amej(2π fmt+θm) + w(t). (8)

Assuming that L undersampling rates are the same as the single-tone case, L discretized versions
of x(t) can be represented as

xl(n) =
ρ

∑
m=1

ame
j(2π

fm
Fl

n+θm)
+ w(n), l = 1, ..., L, n = 0, ..., N − 1. (9)

Accordingly, for these tones, ρ simultaneous congruence equation sets can be built up as
fm = n1,mF1 + ε1,mF1

...
fm = nL,mFL + εL,mFL

, m = 1, ..., ρ (10)

where εl,mFl refers to the required CRT remainder rm,l for the m-th tone at the l-th reconstruction path, i.e.,{
rl,m = ε l,mFl
ε l,m = (kl,m + δl,m)/N

, l = 1, ..., L, m = 1, ..., ρ. (11)

where kl,m ∈ {0, ..., N − 1} and δl,m ∈ [−0.5, 0.5). For any index l ∈ {1, ..., L}, substituting (10)
into (9) yields

xl(n) =
ρ

∑
m=1

amej(2πε l,mn+θm), n = 0, ..., N − 1. (12)

To emphasize, the above multi-tone remainder acquisition is totally distinct from that of the
single-tone case. In the single-tone case, there exists one peak bin of the DFT spectrum at any
reconstruction path, consequently, the estimates of remainders can be obtained through collecting
all the peak bins. However, in the multi-tone case, the DFT spectrum at any reconstruction path
surely contains ρ peak bins and the mapping relationship between the peak bins across different paths
is unknown.

We give a simple example to illustrate the unknown relationship in the multi-tone case. We assume
the three numbers are {5, 23, 181}, and 181 and two moduli are {7, 9}. In this case, the two remainder
sets which can be detected are {2, 5, 6} and {1, 5}, respectively. Considering the second remainder set
{1, 5}, we cannot tell which element repeats twice. As for element 5, it is unclear which remainder
in the first set corresponds to it. Hence, the difficulty of the CRT algorithm for multiple numbers lies
in building up the mapping relationship between each number and the corresponding remainders.
Specific to the frequency estimation in the multi-tone case, the difficulty lies in categorizing ρL peak
bins across L DFT spectra into ρ remainder classes. In this way, the multi-tone frequency estimators
can be decomposed into several single-tone estimators.

3. Proposed Method

3.1. All-Phase DFT Based Remainder Acquisition

In the proposed method, we combine the apDFT and spectrum correction to achieve the remainder
acquisition. The combination can restrain the spectrum leakage and mitigate the fence effect in the
traditional DFT, thereby improving the remainder accuracy.
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In the traditional DFT, N samples should be collected for the N-point DFT, as shown in (4) and (9).
Unlike the N-length sampling mechanism, a (2N − 1)-length sequence is required in the apDFT,
from which a new N-length sequence can be derived for N-point DFT.

the key idea of the apDFT is to derive a new N-length sequence from the sampled
(2N − 1)-length sequence. Without loss of generality, the multi-tone case is considered to illustrate the
windowed apDFT.

Firstly, the N-length sequence xl(n) in (9) should be expanded to the (2N − 1)-length one,

xl(n) =


xl(n), −N + 1 ≤ n ≤ N − 1

0, else
. (13)

Given a N-length window function w1(n), e.g., Hanning window function, N different sequences
xl,q(n), q = 0, ..., N − 1 with overlapped each other can be derived from the raw (2N − 1)-length
sequence xl(n). This transformation can be achieved by multiplying xl(n) with the shifted window
function w1(n + q), i.e.,

xl,q(n) = xl(n)w1(n + q), 0 ≤ q ≤ N − 1 (14)

where w1(n + q) stands for shifting w1(n) by q to the left.
It is natural to obtain a new N-length sequence xla(n) by simply averaging the corresponding

elements in the sequence set {xl,q(n), q = 0, ..., N− 1}. Alternately, it can be done by weighed averaging.
Typically, given another N-length window function w2(n), the weighted sequences {yl,q(n), q, n =

0, ..., N − 1} can be formulated as follows

yl,q(n) =
r=+∞

∑
r=−∞

xl,q(n + rN)w2(q), 0 ≤ q ≤ N − 1, (15)

where the integer r is utilized to perform the N-point cyclic shift of xl,q(n). Furthermore, then the
N-length sequence xla(n) can be derived as

xla(n) =


∑N−1

q=0 yl,q(n), 0 ≤ n ≤ N − 1

0, else
. (16)

The analysis above studies N sequences {xl,q(n), q = 0, ..., N − 1} to determine the unique
N-length sequence xla(n). Usually, the process is referred to as the all-phase preprocessing,
accordingly the signal xla(n) is called the all-phase signal. Similarly, the all-phase DFT Xla(k) can be
calculated by performing the N-point DFT on xla(n).

Furthermore, for a given sample point, such as xl(0) in (13), all sequences containing xl(0) are
derived in (14). On the contrary, the traditional DFT considers one case q = 0 only. Hence, the DFT
spectrum based on the all-phase signal xla(n) can estimate the frequency components with smaller
spectrum leakage that arises from the data truncation.

From (14), it is possible to notice that x(0) exits all the possible points in the N-length sequence,
i.e., all the possible phase, so it is referred to as the all-phase prepossessing. This also leads to the phase
invariance in all-phase DFT.

In order to illustrate the superiority clearly, consider a multi-source exponential signal
x(n) = ∑

ρ
l=0 ej(wl n+φl), where N = 64, wl = βl · 2π

N . Assume that x(n) consists of three frequency
components with β1 = 12, β2 = 22.2, β3 = 28.4 respectively. The initial phases of the three components
are set as φ1 = 100◦, φ2 = 50◦, φ3 = 80◦. The amplitude spectra and phase spectra for N-point
windowed DFT and double-windowed all-phase DFT are shown in Figures 1 and 2, respectively .
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Figure 1. (a) Traditional 64-point DFT amplitude spectrum; (b) All-phase 64-point DFT amplitude spectrum.
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Figure 2. (a) Traditional 64-point DFT phase spectrum; (b) All-phase 64-point DFT phase spectrum.

From Figure 1, we observe that the amplitude spectrum for windowed all-phase DFT has
clearer peak bins and smaller side bins, verifying that the all-phase DFT can effectively restrain
spectrum leakage.

From Figure 2, the phase estimates can be directly obtained around the corresponding peak bins
in the phase spectrum of apDFT in Figure 2b. Especially, the phase spectrum of apDFT does not change
with k, which differs from that of traditional DFT in Figure 2a.

Through the analysis above, all-phase DFT outperforms the traditional DFT since that the
preprocessing on the (2N − 1)-length sequence can significantly restrain the spectral leakage arising
from the data truncation. Moreover, to reduce the errors incurred by picket effect, it is vital to adopt
some correction methods to obtain accurate harmonic parameters from finite spectrum lines.

Ref. [22] pointed out that, if an exponential sequence is implemented with the Hanning windowed
DFT, the ratio between the peak DFT bin |Xl(kl,m)| and its sub-peak neighbor contains the information
of the frequency offset. Specifically, this amplitude ratio v can be calculated as

v =
|Xl(kl,m)|

max{|Xl(kl,m − 1)|, |Xl(kl,m + 1)|} . (17)
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In order to apply the ratio-based spectrum correction to the all-phase DFT, the amplitude ratio va

in our paper is specified as

va =

√
|Xa,l(kl,m)|

max{|Xa,l(kl,m − 1)|, |Xa,l(kl,m + 1)|} . (18)

On basis of [22], we can deduce the frequency offset estimate δ̂l,m as

δ̂l,m =


2−va
1+va

, if |Xl(kl,m + 1)| > |Xl(kl,m − 1)|

− 2−va
1+va

, else
. (19)

Accordingly, the normalized frequency estimate is derived as

ε̂ l,m = (kl,m + δ̂l,m)/N, (20)

Then, the corrected amplitude is obtained by substituting ε̂ l,m into the exponential term in (12)

âl,m = πδ̂l,m(1− δ̂2
l,m) · |Xl,m(kl,m)|/ sin(πδ̂l,m), (21)

As mentioned earlier, we can directly extract the initial phase information from the phase spectrum
of all-phase DFT, since that the all-phase DFT adopted in the proposed method has the excellent
performance of the initial phase invariance. That means only the amplitude and frequency need be
corrected via (20) and (21).

3.2. Harmonic Parameter Clustering Based Remainder Classification

As mentioned in Section 2.2, the main difficulty in multi-tone case lies in developing the mapping
relationship between {rl,m} and { fm}. Therefore, we present a harmonic parameter clustering to solve
this problem.

It can be inferred from (12) that, due to multi-path undersamplings, the resultant normalized
frequencies ε1,m, ..., εL,m of the m-th tone surely differ with each other. Nevertheless, they share
a common harmonic parameter pair {am, θm}, which provides the basis for the remainder classification.

Note that the harmonic-parameter triple {ε̂ l,m, âl,m, θ̂l,m} actually is bound together for the m-th
tone at the l-th reconstruction path. To construct patterns convenient for further remainder clustering,
the following vector quantities need to be built up as:

ẑl,m = âl,mejθ̂l,m , l = 1, ..., L, m = 1, ..., ρ. (22)

For any individual pattern of the m-th tone at the l-th path, we might as well select the pattern
ẑ1,m of the 1-st path as the reference. Then, its clustering indicators cl,m can be determined by finding
the closest distance among ρ patterns ẑl,1, ..., ẑl,ρ, i.e.,

cl,m = arg min
m′=1,...,ρ

‖ ẑ1,m − ẑl,m′ ‖ . (23)

In this way, altogether ρL indicators cl,m, m = 1, ..., ρ, l = 1, ..., L, can be collected, besides that the
reference indicators c1,m = 1, m = 1, ..., ρ.

Particularly, for the two-path case (i.e., L = 2), two indicator-involved remainders r1,m, r2,c2,m can
be determined via the above harmonic-parameter clustering operations. Following this, feeding the
moduli F1, F2 and r1,m, r2,c2,m into the procedure of the closed-form robust CRT in [13] yields the final
estimate f̂m, m = 1, ..., ρ.



Sensors 2020, 20, 5066 8 of 14

3.3. Determination Procedure of Multi-Tone Frequency Based on apDFT Analysis and CRT

The proposed method for multi-tone frequency estimation can be summarized as follows
(Algorithm 1).

Algorithm 1: The optimized discrete spectral analysis (ODSA).
Input: L coprime integers Γ1, · · · , ΓL, the constant N;
Output: Frequency estimates f̂m, m = 1, ..., ρ;

1. Acquire (2N − 1)-length sequences xl(n), n = −N + 1, ..., N − 1 by undersampling the signal
x(t) at the sampling rates Fl = Γl N, l = 1, ..., L respectively.

2. At any l-th path, preprocess the acquired sequences xl(n) according to (14)–(16), from which
the N-length all-phase sequence xla(n), n = 0, ..., N − 1 can be obtained.

3. Implement N-point DFT on sequences x1a(n), ..., xLa(n) to acquire the all-phase DFT results
Xla(k), ..., XLa(k), k = 0, ..., N − 1. For any l-th path (l=1,...,L), record the peak DFT bin indices
kl,m, m = 1, ..., , ρ.

4. For each DFT bin, implement Spectrum Correction through (18)–(21) to acquire ρL harmonic
parameter triples {âl,m, θ̂l,m, ε̂ l,m} , from which ρL vector quantities ẑl,m can be constructed
in terms of (22).

5. For any individual ẑ1,m of the m-th tone at the 1st path (m = 1, ..., ρ), find out the peak indicator
cl,m amongst {ẑl,1, ..., ẑl,ρ} at the l-th path (l = 2, ..., L) according to the principle in (23).

6. For m = 1, ..., ρ, substituting the remainder set {r̃1,m, ...r̃l,m}, the gcd N, the moduli {F1, ..., FL}
into the CRT reconstruction procedure [13] yields the final frequency estimate f̂m of the m-th tone.

4. Simulation Results and Discussion

In this section, the simulation is carried in MATLAB R2016b, with an Intel Core i5 2.60 GHz.
To emphasize, the existing CRT-based multi-tone frequency determination approaches [19–21] cannot
apply to the case that the reconstruction path number L is smaller than the component number ρ.
Therefore, this section will first verify the feasibility of the case L < ρ, meaning that there are more
frequency components to be estimated than the data acquisition paths. As Ref. [22] pointed out,
the Hanning Window is adopted to guarantee the applicability of spectrum correction.

4.1. Procedure Demonstration

For the case of L = 2 and ρ = 4, the corresponding frequencies, amplitudes and initial phases of
the four components are listed in Table 1. To validate the proposed method in high-frequency scenarios,
four tones with high frequencies (up to the GHz level) are considered. The input parameters are set
as follows: the co-prime integers Γ1 = 3301, Γ2 = 3307, the gcd N = 512. In terms of (3), two ADC
sampling rates F1 = NΓ1 = 1.690112× 106 samples/s and F2 = NΓ2 = 1.693184× 106 samples/s,
much lower than the signal frequencies f1, ..., f4 listed in Table 1. The noise w(t) in is additive white
Gaussian noise with mean zero and variance σ2

n . In this paper, the SNR is defined as

SNR = 10 lg
σ2

s
σ2

n

where σ2
s indicates the signal mean power. In this simulation, the SNR is specifies as 13 dB.

Through undersampling and all-phase preprocessing (Hanning double-window is adopted) in
Step 1, Step 2, two N-length all-phase sequences x1a(n), x2a(n) can be generated.

Following Step 3, two apDFT spectra X1a(k), X2a(k) are acquired and illustrated in Figure 3,
from which two sets of peak indices are recorded as {k1,1, ..., k1,4} = {92, 178, 261, 347}, {k2,1, ..., k2,4} =
{244, 278, 402, 432}.
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Table 1. Harmonic parameters of the multi-tone signal.

Tones fm (Hz) Am θm

s1(t) 1.3× 109 1 20◦

s2(t) 1.4× 109 1 50◦

s3(t) 0.9× 109 1 80◦

s4(t) 1.12× 109 1 110◦

k

k

1 ( )
a

X k2 ( )
a

X k

tone 1tone 2 tone 3 tone 4tone 1 tone 2tone 3tone 40 100 200 300 400 500
0

0.5

1

0 100 200 300 400 500
0

0.5

1

tone 1 tone 2 tone 3 tone 4tone 4 tone 3 tone 1 tone 2
Figure 3. The upper pane shows the windowed apDFT amplitude spectrum of the undersampled
sequence x1a(n). The bottom pane shows that of the undersampled sequence x2a(n) .

Following Step 4, through applying ratio-based spectrum correction on these peak DFT bins,
the ρL = 8 harmonic parameter triples are determined. With that, the vector quantities and
remainder information {ẑl,m, ε̂ l,m}, l = 1, 2, m = 1, ..., 4 can be generated, which are listed in Table 2.
As a comparison, the uncorrected vector quantities (generated from the DFT spectra directly) and
these corrected vector quantities ẑl,m are illustrated in Figures 4 and 5, respectively. It becomes clear
that the ρL = 8 vector quantities in Figure 5 can be intuitively divided into four sets, which correspond
to the four tones, respectively, whereas the uncorrected patterns in Figure 4 appear chaotic.

Table 2. The vector quantities and normalized frequencies of two undersampled sequences in Step 4.

m = 1 m = 2 m = 3 m = 4

l = 1 ẑ1,m 0.99ej22.5◦ 0.98ej51.2◦ 1.03ej81.9◦ 1.00ej107.1◦

ε̂1,m 0.1798 0.3475 0.5090 0.6780

l = 2 ẑ2,m 1.00ej107.7◦ 1.01ej83.5◦ 1.01ej18.2◦ 1.01ej49.2◦

ε̂2,m 0.4757 0.5429 0.7842 0.8446

Following Step 5, in terms of (23), we can acquire two sets of indicators {c1,1, ..., c1,4} =

{1, 2, 3, 4}, {c2,1, ..., c2,4} = {3, 4, 2, 1}. In other words, 8 vector quantities are clustered into ρ = 4
pairs as {ẑ1,1, ẑ2,3}, {ẑ1,2, ẑ2,4}, {ẑ1,3, ẑ2,2}, {ẑ1,4, ẑ2,1}, as Figure 5 depicts. Further, in terms of
r̃l,m = ε̂ l,cl,m

Fl , l = 1, 2, ρ = 4 remainder sets {r̃1,m, r̃2,m} are acquired and listed in Table 3.

Table 3. The classified CRT remainders and normalized frequencies in Step 5.

m = 1 m = 2 m = 3 m = 4

ε̂1,c1,m 0.1798 0.3475 0.5090 0.6780
ε̂2,c2,m 0.7842 0.8446 0.5429 0.4757
r̃1,m 0.3038× 106 0.5873× 106 0.8604× 106 1.1459× 106

r̃2,m 0.8054× 106 0.9193× 106 1.3279× 106 1.4300× 106
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Following Step 6, successively substituting these 4 remainder sets, the gcd N = 512 and the
moduli {F1, F2} into the closed-form CRT reconstruction procedure [13] yields the final frequency
estimates f̂1, ..., f̂4 listed in Table 4, which reflect that the errors are almost negligible.

In this simulation, we present the step-by-step frequency determination procedure based on
the given parameters. For the case of more frequency components than the data acquisition paths,
the effectiveness of the proposed method has been verified. In addition, the results also verify the
applicability to the high-frequency scenario.

Table 4. Final results of frequency recovery.

m = 1 m = 2 m = 3 m = 4

fm (Hz) 1.3× 109 1.4× 109 0.9× 109 1.12× 109

f̂m (Hz) 1.2999× 109 1.3999× 109 0.8999× 109 1.1200× 109
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4.2. Performance Analysis on the All-Phase DFT and Traditional DFT

By following the above steps, the multiple frequency estimates can be obtained in the two-path
case. Since that the traditional DFT is the most commonly used technique for remainder acquisition,
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we conduct the experiment to verify the superiority of the apDFT over the traditional DFT in the
remainder acquisition.

Based on the same multi-tone signal given in Section 4.1, the estimation accuracy of the proposed
approach across different tones versus SNRs ranging from 6 dB to 23 dB is studied. Herein,
the significance of SNR is identical with that in Section 4.1. The root-mean-square error (RMSE)

is defined as RMSE =

√
1/Q

Q
∑

i=1
( f̂mi − fm)

2
, where the superscript i refers to the i-th trial and Q

denotes the number of Monte Carlo tests. For each SNR case, 500 Monte Carlo trials were conducted.
The RMSE curves of four tones are shown in Figure 6. To ensure the comparability, another experiment
was conducted under the same condition except that the remainder acquisition was achieved by the
traditional DFT. Similarly, the RMSE results of four tones are shown in Figure 7.
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Figure 6. RMSE results of four tones utilizing the all-phase DFT.
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Figure 7. RMSE results of four tones utilizing the traditional DFT.
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As Figures 6 and 7 depict that, for any tone, there is a SNR threshold under which the estimation
error abruptly increases. For the region where the SNR is above the threshold, the relative errors
corresponding to any tone are below the level 100/109 × 100% = 0.00001%. The result matches
perfectly with that of the single trial in Section 4.1.

As a comparison, for any tone, the threshold value of the proposed method (utilizing the all-phase
DFT) in Figure 6 is smaller than that utilizing the traditional DFT in Figure 7. The simulation confirms
that the apDFT can result in the improvement of anti-noise robustness compared with the traditional
DFT. The improvement in anti-noise is due to the property of restraining spectral leakage of apDFT,
which can detect remainders with higher accuracy. Essentially, it can be attributed to the all phase
preprocessing mechanism.

4.3. Performance Analysis on Different Number of Data Acquisition Path

In this simulation, some simulation results are presented to investigate the estimation performance
in different data acquisition number. For simplicity and effectiveness, the overall RMSE of four tones
is used to assess the frequency estimation performance. Herein, the method utilizing the traditional
DFT (as mentioned in Section 4.2) is also considered as a reference.

Figure 8 illustrates the RMSE results under the channel number L = 2, 3, 4 based on the model
parameterization in Section 4.1. For each channel number, the apDFT-based method has a better
performance. This corresponds to the results in Figures 6 and 7. For another, as to the proposed
method, the more data acquisition paths, the smaller the value of threshold is. To some extent,
the robustness can be enhanced by increasing channel numbers, whereas the enhancement cannot
be ensured when the peak bins are contaminated by the heavy noise. In addition, it is interesting
to observe that, in the low SNR region, the error magnitude associated with more data acquisition
paths like the channel number L = 4 is significantly higher. This occurs when the clustering results are
invalid due to heavy noise contamination, and then more cumulative errors are generated with the
increasing channel number.
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Figure 8. RMSE results of frequency estimation under different number of data acquisition path.

4.4. Analysis of Computation Complexity

In the proposed method, the multi-tone frequency estimation is achieved by incorporating
the apDFT, the harmonic-parameter clustering and the closed-form CRT reconstruction algorithm.
Note that the CRT reconstruction algorithm adopted works in a closed-form way. Furthermore,
the spectrum correction and the harmonic-parameter clustering only involve in simple algebra



Sensors 2020, 20, 5066 13 of 14

calculations. Therefore, the computation complexity of the proposed estimator mainly depends
on the N-point apDFT in L data acquisition paths, i.e., O(N/2log2N). Compared with the existing
CRT-based estimators, the proposed method works well even when the data acquisition path number
equals two and no searching step is required. Obviously, no heavy computation burden is required in
the proposed method.

5. Conclusions

In this paper, we propose a multi-tone frequency estimator from undersampled waveforms,
which incorporates the closed-form CRT, the apDFT spectral analysis, the spectrum correction,
and the harmonic-parameter clustering. This organic technique combination allows that the multi-tone
estimator is decomposed into multiple single-tone estimators. Thus these tones can be recovered one
by one. Two remarkable merits should be emphasized.

On one hand, different from the existing CRT-based multi-tone estimators with remainder
redundancy coding, the proposed estimator can still work well even if the reconstruction path number
L = 2, which actually greatly reduces the hardware cost. On the other hand, due to the utilization of
apDFT, which yields excellent suppressing effect of spectral leakage and noise, our proposed estimator
can acquire a higher anti-noise robustness than the DFT case.

The above two merits give the proposed estimator with vast potentials in high-frequency
measurement related applications such as radar, future beyond 5G communications.
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