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Abstract: In this paper, we propose a dynamic displacement estimation method for large-scale civil
infrastructures based on a two-stage Kalman filter and modified heuristic drift reduction method.
When measuring displacement at large-scale infrastructures, a non-contact displacement sensor is
placed on a limited number of spots such as foundations of the structures, and the sensor must
have a very long measurement distance (typically longer than 100 m). RTK-GNSS, therefore, has
been widely used in displacement measurement on civil infrastructures. However, RTK-GNSS has
a low sampling frequency of 10–20 Hz and often suffers from its low stability due to the number
of satellites and the surrounding environment. The proposed method combines data from an
RTK-GNSS receiver and an accelerometer to estimate the dynamic displacement of the structure
with higher precision and accuracy than those of RTK-GNSS and 100 Hz sampling frequency. In the
proposed method, a heuristic drift reduction method estimates displacement with better accuracy
employing a low-pass-filtered acceleration measurement by an accelerometer and a displacement
measurement by an RTK-GNSS receiver. Then, the displacement estimated by the heuristic drift
reduction method, the velocity measured by a single GNSS receiver, and the acceleration measured
by the accelerometer are combined in a two-stage Kalman filter to estimate the dynamic displacement.
The effectiveness of the proposed dynamic displacement estimation method was validated through
three field application tests at Yeongjong Grand Bridge in Korea, San Francisco–Oakland Bay Bridge in
California, and Qingfeng Bridge in China. In the field tests, the root-mean-square error of RTK-GNSS
displacement measurement reduces by 55–78 percent after applying the proposed method.

Keywords: Kalman filter; data fusion; RTK-GNSS; dynamic displacement; bias; modified heuristic
drift reduction; accuracy; sampling frequency

1. Introduction

It is quite challenging to measure displacement for large-scale civil infrastructure, especially for
long-span bridges and high-rise buildings. Unlike acceleration and velocity, measuring displacement
requires a fixed reference point, which acts as ground zero so that the displacement of a measurement
point on an object of interest can be acquired as a change of distance from the reference point [1].
Contact type displacement sensors such as LVDT (linear variable differential transducer) connect a
measurement point and a reference point physically. This connecting work can be very cumbersome
and complex, especially for civil structures where the measurement and the reference point are too far
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to connect the two points with a sensor [2,3]. Noncontact type displacement sensors, such as laser
Doppler vibrometer (LDV) and light detection and ranging (LiDAR), remove the shortcomings of the
contact type sensors by emitting laser on a surface of a structure and measuring the time-of-flight
of the laser [4,5]. However, it is still difficult to find a sensor installation point due to their limited
measurement ranges (typically less than 200 m), because the intensity of the reflected laser beam should
not be too small compared to the emitted laser beam and the noise in photodetector measurements [1].

Due to the physical limitations of the displacement sensors, RTK-GNSS has been widely used
in the civil engineering field [6–10]. RTK-GNSS utilizes two receivers denoted as a rover and a base,
which are attached to a measurement and a reference point, respectively. The rover and the base receive
the same signals from the same group of satellites; the signals captured by the rover and the base share
almost identical error since the transmission paths of the two signals are almost identical [11]. The error,
therefore, can be highly reduced (typically from 5–50 m to 1–8 cm) by subtracting the base signal from
the rover signal. Since the base and the rover can be installed anywhere unless the antennae of the base
and the rover are closed or blocked by an obstacle, RTK-GNSS is almost free from the aforementioned
limitation of displacement sensors. However, RTK-GNSS has low sampling rate, which is typically
limited to 10 Hz. Also, the displacement measurement accuracy is poorer than other displacement
sensors. For example, when the distance between the rover and the base is 1 km, the displacement
accuracy is 2–11 mm and 9–22 mm respectively for horizontal and vertical direction [12].

Especially, RTK-GNSS has a high level of low-frequency noise in its displacement measurement.
The low-frequency noise leads to a fluctuation of about ±20 mm in the measurement [7].
The low-frequency noise typically comes from 1/f noise (i.e., flicker noise) generated in electric
circuits and parts [13], and multipath error of satellite signals [14]. A GNSS signal transmitted from a
satellite should arrive at an antenna directly, but also can be reflected on surfaces of various obstacle
structures or the ground before reaching to the antenna. The antenna receives the reflected signal right
after the direct signal arrives. If the reflected signal is strong enough, the resultant signal has an error
called ‘multipath’ [15]. Multipath noise is omnipresent since it is challenging to find a place where no
obstacle exists around a measurement point [16].

To overcome the drawbacks of the current sensors, many pieces of research have been conducted
on the fusion of measurements from multiple heterogeneous sensors. Traditionally, Kalman filtering
has been widely employed to fuse multiple sensors in the field of autonomous vehicles and
simultaneous localization and mapping (SLAM) [17–19]. Two data fusion schemes are commonly
used—loosely-coupled and tightly-coupled Kalman filters [20,21]. It is known that a tightly-coupled
Kalman filter has a better performance in vehicle position estimation than loosely-coupled one [22].
In the civil engineering field, Kalman filtering has been mainly used for the estimation of structural
displacement by multi-rate data fusion of acceleration and displacement measurements. Smyth
and Wu [23] adopted loosely-coupled Kalman filtering without considering acceleration bias,
and Kim et al. [24] also proposed a loosely-coupled Kalman filter based on error dynamics. Kim
and Sohn [1] introduced a smoothing based Kalman filtering for near-online enhancement of the
precision of estimation, and Kim et al. [25] proposed a displacement estimation system based on a
force-balanced accelerometer and an RTK-GNSS receiver. However, a high level of low-frequency
noise in a RTK-GNSS displacement measurement leads the methods to high estimation error. Since the
double integration of the acceleration measurement is corrected by the displacement measurement in
Kalman filtering, the noise error cannot be reduced properly by Kalman filter only.

This paper proposed a new dynamic displacement estimation method, which utilizes acceleration
measured by an accelerometer and displacement by an RTK-GNSS receiver. The proposed method
consists of three parts. First, the low-frequency error in an RTK-GNSS measurement is roughly estimated
by modified heuristic drift reduction (MHDR) and the RTK-GNSS measurement is corrected by the
estimated low-frequency error. Then the corrected RTK-GNSS measurement is applied to two-stage
Kalman filter (TKF) to estimate not only acceleration, velocity, and displacement but also a residual
low-frequency error in the corrected RTK-GNSS displacement measurement [26]. The proposed method
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enhances the accuracy and sampling rate of RTK-GNSS displacement measurement, and estimates the
displacement, velocity, and acceleration simultaneously and in real-time.

The remaining part of the paper is organized as follows. Section 2 presents the theoretical
description of the proposed method, and then a series of lab-scale tests and field tests and the test
results are discussed in Sections 3 and 4. Finally, concluding remarks are made in Section 5.

2. Proposed Dynamic Displacement Estimation Method

The proposed method uses an acceleration measurement from an accelerometer, and a displacement
measurement and an error standard deviation estimate from an RTK-GPS sensor at a time step. Also,
the proposed method assumes that an accelerometer measures acceleration with higher sampling
frequency and an RTK-GNSS sensor measures displacement with lower sampling frequency. Typically,
acceleration is measured with 100 Hz of sampling frequency and displacement is measured with 10 Hz
for many civil structures.

2.1. Schematics of the Proposed Dynamic Displacement Estimation Method

The proposed method is composed of TKF and MHDR as shown in Figure 1. MHDR corrects a
low-frequency error in the RTK-GNSS displacement measurement, and TKF fuses the acceleration
measurement and the displacement measurement corrected by MHDR for the displacement estimation
with better accuracy and 100 Hz sampling rate.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 18 

 

and displacement but also a residual low-frequency error in the corrected RTK-GNSS displacement 

measurement [26]. The proposed method enhances the accuracy and sampling rate of RTK-GNSS 

displacement measurement, and estimates the displacement, velocity, and acceleration 

simultaneously and in real-time. 

The remaining part of the paper is organized as follows. Section 2 presents the theoretical 

description of the proposed method, and then a series of lab-scale tests and field tests and the test 

results are discussed in Sections 3 and 4. Finally, concluding remarks are made in Section 5. 

2. Proposed Dynamic Displacement Estimation Method 

The proposed method uses an acceleration measurement from an accelerometer, and a 

displacement measurement and an error standard deviation estimate from an RTK-GPS sensor at a 

time step. Also, the proposed method assumes that an accelerometer measures acceleration with 

higher sampling frequency and an RTK-GNSS sensor measures displacement with lower sampling 

frequency. Typically, acceleration is measured with 100 Hz of sampling frequency and displacement 

is measured with 10 Hz for many civil structures. 

2.1. Schematics of the Proposed Dynamic Displacement Estimation Method 

The proposed method is composed of TKF and MHDR as shown in Figure 1. MHDR corrects a 

low-frequency error in the RTK-GNSS displacement measurement, and TKF fuses the acceleration 

measurement and the displacement measurement corrected by MHDR for the displacement 

estimation with better accuracy and 100 Hz sampling rate. 

 

Figure 1. Schematic diagram of the proposed method. 

At each time step, MHDR estimates the low-frequency error in the RTK-GNSS displacement 

measurement by determining the sign (i.e., plus or minus) and the magnitude of the error. First, a 

low-pass filtered displacement measurement of RTK-GNSS and a lowpass-filtered acceleration 

measurement are passed to MHDR. The low-pass filtered acceleration and displacement are passed 

to two conventional Kalman filters as inputs and two displacement estimates are produced as 

outputs. MHDR compares two displacement estimates and determines the sign of the low-frequency 

error in the RTK-GNSS displacement measurement, under an assumption that the low-frequency 

error is generally larger than the error contained in the displacement estimated from the low-pass 

filtered acceleration. Since a high-fidelity force-balance type accelerometer is typically applied to the 

health monitoring system of a long-span bridge for the good low-frequency measurement 

performance, the sign of the low-frequency error can be determined effectively by the assumption. 

Also, the magnitude of the error is determined based on the error standard deviation of the RTK-

GNSS measurement provided by an RTK-GNSS chipset. Then, the raw RTK-GNSS measurement is 

corrected by subtracting the estimated low-frequency error of RTK-GNSS displacement 

measurement. 

The RTK-GNSS measurement corrected by MHDR and the raw acceleration measurement is 

passed to TKF, in which the two values are fused to estimate dynamic displacement, velocity, and 

Acceleration 

measurement 

(Accelerometer)

Error standard 

deviation 

(RTK-GNSS)

Displacement 

measurement

(RTK-GNSS)

Low-pass 

filter

Low-pass 

filter

Kalman filter for 

displacement 

estimation

Kalman filter for 

time sync 

Low-freq

displace-

ment

Modified

Heuristic 

drift

reduction

Two-stage 

Kalman

filter

ACC

+

-

Acceleration

Velocity

Displacement

Low-frequency 

error in 

RTK-GNSS

displacement 

measurement

Low-freq

accele-

ration

Residual low-frequency error in RTK-

GNSS displacement measurement

Low-freq

displace-

ment

Low-freq

displace-

ment

+-

Displacement corrected by residual low-frequency error

Figure 1. Schematic diagram of the proposed method.

At each time step, MHDR estimates the low-frequency error in the RTK-GNSS displacement
measurement by determining the sign (i.e., plus or minus) and the magnitude of the error. First,
a low-pass filtered displacement measurement of RTK-GNSS and a lowpass-filtered acceleration
measurement are passed to MHDR. The low-pass filtered acceleration and displacement are passed to
two conventional Kalman filters as inputs and two displacement estimates are produced as outputs.
MHDR compares two displacement estimates and determines the sign of the low-frequency error in the
RTK-GNSS displacement measurement, under an assumption that the low-frequency error is generally
larger than the error contained in the displacement estimated from the low-pass filtered acceleration.
Since a high-fidelity force-balance type accelerometer is typically applied to the health monitoring
system of a long-span bridge for the good low-frequency measurement performance, the sign of the
low-frequency error can be determined effectively by the assumption. Also, the magnitude of the error
is determined based on the error standard deviation of the RTK-GNSS measurement provided by an
RTK-GNSS chipset. Then, the raw RTK-GNSS measurement is corrected by subtracting the estimated
low-frequency error of RTK-GNSS displacement measurement.

The RTK-GNSS measurement corrected by MHDR and the raw acceleration measurement is passed
to TKF, in which the two values are fused to estimate dynamic displacement, velocity, and acceleration
with better accuracy and sampling frequency. TKF also estimates low-frequency errors in the RTK-GNSS
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displacement measurement. At a certain time step, TKF receives the acceleration measurement captured
by an accelerometer and the corrected displacement which was measured by an RTK-GNSS receiver and
then corrected by MHDR. Here, the corrected displacement measurement still contains low-frequency
error as well as the true displacement and a high-frequency noise process. TKF assumes that the
low-frequency error is output due to an unknown input of a system, and estimates displacement,
velocity, acceleration, and the unknown input and transmits the unknown input to MHDR. MHDR
compares the input estimate and the low-frequency component of the acceleration measurement and
adjusts the displacement measurement utilizing the difference between the input estimate and the
displacement measurement.

2.2. Modified Heuristic Drift Reduction for Enhancing RTK-GNSS Displacement Measurement

All RTK-GNSS signal suffers from a high level of low-frequency noise. The low-frequency noise
typically comes from 1/f noise (i.e., flicker noise), a kind of colored noise, generated in electric circuits,
and multipath of satellite signals. A GNSS signal from a satellite can arrive at an antenna directly,
but also can be reflected on surfaces of various obstacle structures and the ground before reaching the
antenna. The antenna receives the reflected signal right after the direct signal is arrived. If the reflected
signals are strong enough, the resultant signal has an error called multipath. The multipath error is
omnipresent since it is challenging to find a place where no obstacle exists around a measurement point.

In this paper, the multipath error is mitigated with MHDR, which is a modified version of heuristic
drift reduction (HDR) [27]. HDR is a type of nonlinear signal correction method and was originally
developed for removing small low-frequency drift of low-cost gyro sensor, which is widely used
in vehicle position tracking. Since the gyro sensor measures angular velocity, it is indispensable to
integrate the angular velocity measurement to obtain angular displacement. However, in the process
of numerical integration, the low-frequency drift is accumulated and amplified, and the accumulation
of the drift leads to a large estimation error. HDR effectively and efficiently removes the low-frequency
drift to enhance final estimation accuracy.

However, HDR has a few problems in applying to the mitigation of RTK-GNSS’s low-frequency
error. First, RTK-GNSS’s low-frequency error has a relatively large (up to 20 mm) compared to the
low-frequency drift of gyros. The threshold, therefore, should be manually set to a high value to
identify the low-frequency error, but it leads to the reduction of real vibrations of a structure. Also,
the low-frequency error cannot be identified when it is mixed with the structural vibration of civil
structures. Note that the structural vibration of large-scale civil structures often has low-frequency
vibration under 0.1 Hz due to traffic load and wind load. By utilizing acceleration and displacement
measurement, MHDR removes the threshold and automatically estimates the sign and the magnitude
of the low-frequency error.

The first step of MHDR is the lowpass filtering of acceleration and displacement measurement and
Kalman filtering. Let

..
x(k),

.
x(k) and x(k) be true acceleration, velocity, and displacement at discrete time

steps respectively for k = 0, 1, 2, · · · , and the time increment between two adjacent time steps is ∆t,
which is assumed to be a constant. Also, let an acceleration measurement

..
xa

m(k) by an accelerometer at
the time step k consist of true acceleration

..
x(k), bias ba

m(k) and zero-mean Gaussian white noise wa
m(k)

..
xa

m(k) =
..
x(k) + ba

m(k) + wa
m(k) (1)

Since the signs of ba(k) and wa(k) have no significant physical meaning, Equation (1) can be
rewritten as

..
x(k) =

..
xa

m(k) + ba
m(k) + wa

m(k) (2)

Similarly, for the displacement measurement of RTK-GNSS sensor, let the displacement
measurement xr

m(k) be composed of true displacement x(k), and zero-mean white noise wr
m(k)

x(k) = xr
m(k) + wr

m(k) (3)
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Let lowpass-filtered acceleration and displacement measurements be
..
xa

l (k) and xr
l (k). Also, let the

lowpass-filtered true displacement and velocity be xl(k) and
.
xl(k), and bias in

..
xa

l (k) be ba
l (k). Then the

conventional Kalman filter applied to the low-pass filtered acceleration measurement is based on the
state-space model in Equations (4) and (5)

xa
l (k + 1) = Aalxa

l (k) + Bal
..
xa

l (k) + Galwa
l (k) (4)

yal(k) = Halxa
l (k) + va

l (k) (5)

where xa
l (k) =

(
xl(k) ba

l (k)
)T

, Aal =

[
1 ∆t
0 1

]
, Bal =

[
0.5∆t2 ∆t

]T
, Gal =

[
0.5∆t2 ∆t

]T
,

Hal =
[

1 0
]

and va
l is a zero-mean white noise measurement process. Also, the space-state models

of the conventional Kalman filter applied to the low-pass-filtered displacement measurement are

xl(k + 1) = xr
l (k) + wr

l (k) (6)

yr
l (k) = xl(k) + vr

l (k) (7)

where wrl(k) and vrl(k) are a zero-mean and measurement white noise processes. Here, ya
l (k) and

yr
l (k) are set to zero in every time step, and the error covariances of wa

l (k), va
l (k), wa

l (k), vr
l (k) are set to

the same value. Let x̂a
l (k) =

(
x̂a

l (k) b̂a
l (k)

)T
, where x̂a

l (k) and b̂a
l (k) are the displacement and bias

estimates from Equations (4) and (5) and x̂r
l (k) be the estimates from Equations (6) and (7), then this

setup gives rise to the result that the magnitudes of x̂a
l (k) and x̂r

l (k) reduces by half than the estimates
with real displacement measurements since Kalman filter is a weighted average of a prior estimate
and a measurement based on the error covariance. However, the purpose of the proposed Kalman
filter is just to compare the two estimates x̂a

l (k) and x̂r
l (k), the incorrectness caused by the setup has no

problem in this case.
The second step of MHDR is determining the sign and the magnitude of low-frequency error

in the displacement measurement. If
..
xa

m(k) and xr
m(k) have no low-frequency error, then x̂a

l (k) and
x̂r

l (k) have the only dynamic response of the structure and should be the same. However, in a real
environment,

..
xa

m(k) and xr
m(k) have some level of low-frequency errors. Let the low-frequency errors

contained in x̂a
l (k) and x̂r

l (k) be ea
l (k) and er

l (k), respectively. Then x̂a
l (k) and x̂r

l (k) can be expressed as

x̂a
l (k) = x(k) + ea

l (k) (8)

x̂r
l (k) = x(k) + er

l (k) (9)

Subtracting Equation (8) from Equation (9) leads to

x̂r
l (k) − x̂a

l (k) = er
l (k) − ea

l (k) (10)

In MHDR, it is assumed that stochastically E
[
er

l (k)
]2
≥ E

[
ea

l (k)
]2

. Based on the assumption, the sign
of er

l (k) can be determined as follows:

(a) er
l (k) − ea

l (k) ≥ 0 for er
l (k) ≥ 0 and ea

l (k) ≥ 0

(b) er
l (k) − ea

l (k) < 0 for er
l (k) < 0 and ea

l (k) < 0

(c) er
l (k) − ea

l (k) ≥ 0 for er
l (k) ≥ 0 and ea

l (k) < 0

(d) er
l (k) − ea

l (k) < 0 for er
l (k) < 0 and ea

l (k) ≥ 0

In cases (a) and (c), the sign of er
l (k) is estimated as plus and x̂r

l (k) would be adjusted to decrease,
and in cases (b) and (d), the sign of er

l (k) is estimated as minus and thus x̂r
l (k)would increase. The overall

concept of the sign determination of er
l (k) is illustrated in Figure 2. It is easily concluded from Figure 2

that MHDR decreases x̂r
l (k) when x̂r

l (k) ≥ x̂a
l (k) and increases when x̂r

l (k) < x̂a
l (k).
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Figure 2. The overall concept of how to determine the sign of er
l (k), in case of (a) er

l (k) ≥ 0 and ea
l (k) ≥ 0,

(b) er
l (k) < 0 and ea

l (k) < 0, (c) er
l (k) ≥ 0 and ea

l (k) < 0, and (d) er
l (k) < 0 and ea

l (k) ≥ 0. The thick black
arrows indicate the direction of correction.

To determine the magnitude of low-frequency error of the RTK-GNSS displacement, MHDR utilizes
error standard deviation value σr

m(k), which is provided by an RTK-GNSS sensor automatically at each
time step. Even though there are differences in technical details of the signal processing algorithm,
the RTK-GNSS sensor employs extended Kalman filter (EKF) for RTK to estimate pseudo-range, velocity,
and single-difference carrier-phase biases using double-difference phase-range and pseudo-range
measurements. EKF constructs a measurement error covariance matrix, which is calculated using
the variances of the state variables. The RTK-GNSS sensor computes σr

m(k) as a form of the standard
deviation of displacement measurement, by combining the variance of each state variable using error
propagation principle.

In MHDR, the magnitude of error produced at the time step k is estimated using σr
m(k), the cutoff

frequency fc of the lowpass filter and the sampling frequency fn of the displacement measurement of
RTK-GNSS. In this procedure, it is assumed that the low-frequency error is a narrow-band process
whose peak value is σr

m(k) and frequency is fc/2, since fc should be set to a small value. Then the
time taken for the low-frequency error to change from 0 to σr

m(k) can be calculated as 1/2 fc, and the
increased value of the low-frequency error at each time step can be estimated as

ic(k) =
2σr

m(k) fc
fn

(11)

Note that, in this paper, the values of fc and fn are 0.1 and 10 Hz, respectively, therefore
ic(k) = σr

m(k)/50. Then, the total error I(k) at time step k is determined by adding ic(k) in Equation
(11) to I(k), i.e., I(k) = I(k− 1) + ic(k), and the corrected RTK-GNSS measurement, denoted by xr

h(k),
is calculated by subtracting ic(k) from xr

h(k). The overall procedure proposed MHDR in Section 2.2 is
illustrated in Figure 3.
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2.3. State-Space Model for Displacement Estimation with Two-Stage Kalman Filter

In Equation (2), let δ
..
x(k) =

..
x(k) −

..
xa

m(k), which means the error between true acceleration and
measured acceleration. Then, δ

..
x(k) has the form of

δ
..
x(k) = ba

m(k) + wa
m(k) (12)

Integrating Equation (12) once, the error propagation model equation can be obtained as

δ
.
x(k + 1) = δ

.
x(k) + ba

m(k)∆t + wa
m(k)∆t (13)

where δ
.
x(k) =

.
x(k) −

.
xa

m(k), and
.
xa

m(k) is the velocity calculated from the acceleration measurement of
an accelerometer.

The error propagation model of displacement can be obtained by integrating Equation (13)

δx(k + 1) = δx(k) + δ
.
x(k)∆t +

1
2

ba
m(k)∆t2 +

1
2

wa
m(k)∆t2 (14)

In the case that ∆t is small enough and ba
m(k) is slowly varying along time, ba

m(k) can be treated as
a piecewise constant

ba
m(k + 1) = ba

m(k) (15)

For the corrected displacement of RTK-GNSS sensor, adding a bias term br
m(k) in Equation (3) (i.e.,

xr
h(k) = x(k) + br

m(k) + wr
m(k)) and subtracting xa

m(k) on both sides leads to the following equation

xr
h(k) − xa

m(k) = δx(k) + br
m(k) + wr

m(k) (16)

A state vector is defined as Equation (17) so that every physical quantity and bias are included as
state variables.

xa(k) =


δx(k)
δ

.
x(k)

ba
m(k)

br
m(k)

 (17)
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Combining Equations (13), (14) and (17), the transition equation of the state-space model is
constructed as

xa(k + 1) = Aaxa(k) + Gawa(k) (18)

where

Aa =


1 ∆t 0.5∆t2 0
0 1 ∆t 0
0 0 1 0
0 0 0 1

, Ga =


0.5∆t2 0 0

∆t 0 0
0 1 0
0 0 1

, wa(k) =


wa

m(k)
wa

b(k)
wr

b(k)


Here, wa

b(k) and wr
b(k) are the process noise of biases ba

m(k) and br
m(k), respectively. Also,

the observation equation of the Kalman filter model is obtained from Equation (16)

y(k) = Haxa(k) + wr
m(k) (19)

where
y(k) = xr

h(k) − xa
m(k), Ha =

[
1 0 0 1

]
Equation (18) can be divided into two equations as shown in Equatons (20) and (21): one equation

whose state vector is composed of physical quantities, and the other equation whose state vector is
composed of bias.

x(k + 1) = Ax(k) + Bb(k) + Gwa
m(k) (20)

b(k + 1) = b(k) + wb(k) (21)

where

x(k) =
(
δx(k)
δ

.
x(k)

)
, b(k) =

(
ba

m(k)
br

m(k)

)
,

A =

[
1 ∆t
0 1

]
, B =

[
0.5∆t2 0

∆t 0

]
, G =

[
0.5∆t2

∆t

]
, wb(k) =

(
wa

b(k)
wr

b(k)

)
Similarly, Equation (19) can be modified with the state vector used in Equation (20).

y = Hx(k) + Cb(k) + wr
m(k) (22)

where
H =

[
1 0

]
, C =

[
0 1

]
2.4. Two-Stage Kalman Filter

In TKF [28], acceleration and a corrected displacement measurement by MHDR are fused to
produce a displacement estimate with a high sampling rate and no integration error. As mentioned
in Section 2, the acceleration measurement has a high sampling rate and precision, but the bias
is accumulated through double integration for conversion to displacement. On the other hand,
the displacement measurement has a low sampling rate and precision, and its bias can be neglected
since no integration is required and bias does not accumulate.

Using the state-space model shown in Equations (20) and (22), x(k) is estimated in TKF. In Stage 1,
x(k) is estimated ignoring b(k), and the equations are reduced to the following forms

x(k + 1) = Ax(k) + Gwa
m(k) (23)

y(k) = Hx(k) + wr
m(k) (24)
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where x(k) is estimated in two steps—prior prediction and posterior correction steps. Define
~
x
−

(k) and
~
x(k) are the prior and the posterior estimate of x(k) at time step k, respectively. Then

~
x(k) is determined

through the Kalman filter algorithm described in Equations (25)–(29).

~
x
−

(k) = A
~
x(k− 1) (25)

P−x (k) = APx(k− 1)AT + q(k)BBT (26)

Kx(k) = P−x (k)H
T
[
HP−x (k)H

T + r(k)
]−1

(27)

~
x(k) = [I−Kx(k)H]

~
x
−

(k) + Kx(k)y(k) (28)

Px(k) = P−x (k) −Kx(k)HP−x (k) (29)

where q(k) = E[wa
m(k)

2] and r(k) = E[wr
m(k)

2]. Note that q(k) is identical to the variance of wa
m(k)

because wa
m(k) is a zero-mean process. Therefore, q(k) is treated as a constant under the assumption of

wide-sense stationarity.
In Stage 2, x̂(k) and

~
x(k) are assumed to be related to each other as

x̂−(k) =
~
x
−

(k) + U(k)b(k) (30)

x̂(k) =
~
x(k) + V(k)b(k) (31)

where U(k) and V(k) are prior and posterior sensitivity matrices. Note that the values of the matrices
are unknown, and they need to be estimated at time step k. U(k) and V(k) can be estimated through a
recursion process utilizing Kx(k) calculated in Stage 1 [26]

U(k) = AV(k− 1) −AV(k− 1)Qb(k− 1)P−b (k− 1)−1 (32)

V(k) = U(k) −Kx(k)S(k) (33)

where S(k) = HU(k) + C and Qb(k) is an error covariance of b(k).
After U(k) and V(k) are calculated, b(k) can be estimated by following recursion process

b̂
−
(k) = b̂(k− 1) (34)

P−b (k) = Pb(k− 1) + Qb(k− 1) (35)

Kb(k) = P−b (k)S
T(k)

[
HP−x (k)H

T + HU(k)P−b (k)U(k)HT + R(k)
]−1

(36)

b̂(k) = (1−Kb(k)S(k))b̂
−
(k) + Kb(k)r(k) (37)

Pb(k) = P−b (k) − P−b (k)Kb(k)HU(k) (38)

where b̂
−
(k) and b̂(k) are the prior and posterior estimates of b(k), and P−b (k) and Pb(k) are the error

covariance matrices of the prior and posterior estimation, respectively. Also, Kb(k) is the Kalman gain
of the bias estimation.

Finally, x̂(k) is obtained by replacing b(k) in Equation with b̂(k) obtained from Equation (31)

x̂(k) =
~
x(k) + V(k)b̂(k) (39)

and the unknown input u(k) to the system is expressed as

u(k) = (U(k) −AV(k− 1))b̂(k) (40)
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Note that the state-space models proposed in the previous studies do not have an observation
equation when the displacement is not measured, and a two-stage Kalman estimator can be applied
only when intermittent displacement data are measured. However, using the proposed state-space
model in this study, V(k) and b̂(k) in Equation (39) can be updated continuously, and this is a major
advantage of the proposed method in terms of accuracy enhancement.

3. Lab-Scale Experiment

A lab-scale experiment was performed to validate the performance of the proposed method.
An overview of the test configuration is shown in Figure 4. In this experiment, a set of sensor systems
developed by authors and Poongsan FNS Co. [29] was adopted. The sensor system consists of a sensor
module, a combination of a triaxial accelerometer, an RTK-GNSS rover chipset and an antenna, and a
base module which has an RTK-GNSS base chipset and an antenna. Swift Navigation’s Piksi Multi
GNSS chipsets were adopted for the sensor and the base module. The GNSS chipset is low-cost as
much as $2300, including two survey grade antennae, but the chipset supports GPS L1/L2, GLONASS
G1/G2, BeiDou B1/B2, Galileo E1/E5b, and SBAS constellation. Its elevation mask was set to 10◦ and
sampling frequency was 10 Hz.
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Figure 4. Overview of the lab-scale experiment: (a) schematic diagram of experiment configuration
and (b) a photo taken after the sensor module installation.

The overall setup for the vibration tests is shown in Figure 4. The sensor module is placed and
fixed on an APS ElectroSeis vibration exciter for vertical vibration. The base module is installed
5 m away from the sensor module. The reference displacement is measured using a KL-W400 laser
displacement sensor, which has 10 µm resolution and ±0.08% linearity. The sensor module measured
acceleration and displacement and transmitted the measurements to a computer through a switching
hub. A range of 12 to 14 satellites were continuously observed during the experiment.

In the experiment, the sensor module was excited vertically with a vibration frequency of 0.5 Hz for
520 s to reproduce the vibration of a bridge span, and only vertical acceleration and displacement were
measured. The measurement from the accelerometer and RTK-GNSS built in the sensor module and
the reference displacement are shown in Figure 5. The maximum peak of the vibration in the reference
shown in Figure 5d is approximately ±25 mm, but the peaks of the displacement measurement of
RTK-GNSS are distributed within ±50 mm, as shown in Figure 5b. Also, the error standard deviation
of the displacement measurement is distributed from 18 to 26 mm. It can be easily observed that
low-frequency noise is relatively large when high error standard deviation is calculated (0–200 s),
but the magnitude of the low-frequency noise decreased at 300–450 s, in which the error standard
deviation has relatively low values. The characteristics of the low-frequency noise can be identified
when the measurement signals are lowpass filtered with fc = 0.1 Hz cutoff frequency, as shown in
Figure 6.
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Figure 6. Measurements filtered out with a lowpass filter with 0.1 Hz cutoff frequency: (a)
..
xa

l (k),
(b) xr

l (k), (c) σr
m(k), and (d) xl(k) Figure 7 compares x̂a

l (k) and x̂r
l (k), displacements estimated through

two conventional Kalman filters described in Equations (4) and (5) and Equations (6) and (7), respectively.
Note that the magnitude of x̂r

l (k) shown in Figure 7a is exactly half of the magnitude of xr
l (k) (see

Figure 6b) due to the zero-measurement applied to the conventional Kalman filter. As mentioned in
Section 2.2, the proposed MHDR compares x̂a

l (k) and x̂r
l (k) to determine the sign of er

l (k). In Figure 7a,
it is clearly shown that the absolute of x̂r

l (k) is larger than that of x̂a
l (k) at most time steps. Comparing

the sign of x̂r
l (k)− x̂a

l (k) and the er
l (k) calculated by the sign of x̂r

l (k)− xl(k), the two values are identical
in 93.03% of time steps (Figure 7b).
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Figure 7. (a) Comparison of x̂r
l (k) and x̂a

l (k) and (b) a plot indicating whether the signs of x̂r
l (k) − x̂a

l (k)
and x̂r

l (k) − xl(k) match or not match. The two signs match in 96.63% of the time steps.

The measurement displacements before and after MHDR are compared in Figure 8. Figure 8a,b
shows xr

m(k) and xr
l (k). The low-frequency components in xr

m(k) is highly reduced after executing
MHDR, and Figure 8c,d are the low-frequency components of xr

m(k) and xr
l (k) respectively, produced by

a lowpass filter with the cutoff frequency of 0.1 Hz. The low-frequency error observed in Figure 8a,c are
highly reduced after applying MHDR as in Figure 8b,d. The RMSEs of the low-frequency components
in Figure 8b,d with respect to xl(k) is 6.48 mm and 3.19 mm. As for the total error in xr

m(k) and xr
h(k)

with respect to x(k) are calculated as 8.56 mm and 6.47 mm, respectively. Note that the error in the
high-frequency band over 0.1 Hz is calculated as 5.62 mm by the propagation of uncertainty, assuming
that the low and the high-frequency band error do not correlate.
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Figure 9 shows the improvement of accuracy after applying the proposed method, by comparing
to the methods proposed by Smyth and Wu [23], and loosely and tightly-coupled Kalman filter [22].
Considering the RMSE of RTK-GNSS displacement measurement is 8.56 mm, the RMSE of the proposed
method including MHDR is 5.64 mm, representing a 33.6% reduction. However, as shown in Figure 9a–c,
other methods do not reduce the error of RTK-GNSS displacement considerably. The tightly-coupled
and loosely-coupled Kalman filters uses the RTK-GNSS displacement measurement and prior estimate
of the Kalman filters as inputs of a weighted average as shown in Equation (28), hence the error in the
RTK-GNSS displacement measurement cannot be reduced properly and remains in the final estimate.
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It implies that the accuracy of RTK-GNSS displacement measurement should be enhanced before
applied to a Kalman filter. Note that the parameters of the Kalman filters, q(k) and r(k) in Equations
(26) and (27) were set to 1 and 24.47, respectively. The values were determined by a preliminary
lab-scale test, in which the acceleromenter and RTK-GNSS module were placed on a fixed ground and
variances of noises from the two measurements were calculated.
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Figure 9. Displacement estimation results and RMSE errors for the method of (a) Smyth and Wu [23],
(b) tightly-coupled and (c) loosely-coupled Kalman filter [22], and (d) the proposed method.

4. Field Tests

The accuracy of the proposed method was explored through field tests at three long-span
bridges—Yeongjong Grand bridge in Korea, Qingfeng bridge in China, and the San Francisco–Oakland
bay bridge in California, as shown in Figure 10. In the field tests, the vertical motion of the main
span of the bridges was measured by RTK-GNSS and an accelerometer. Yeongjong Grand bridge,
a three-dimensional self-anchored suspension bridge, is a part of Incheon International Airport
Expressway. The bridge has a main span of 300 m, and the length of the side spans is 120 m. The deck
of the bridge consists of two steel truss decks. The upper deck is for vehicles only, but there are two
railroads in the middle of the bottom deck for high-speed trains. Qingfeng bridge, located in the city of
Ningbo in China, is a suspension bridge with steel box girders, and its longest span length is 280 m.
San Francisco–Oakland Bay bridge connects the city of San Francisco and Oakland, and is divided into
the east and the west span. The field test was conducted on the east span, which is a three-dimensional
self-anchored suspension bridge, and whose main span length is 430 m. The main girder of the bridge
is a double-deck type and made of steel box structures.
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Figure 10. Field tests performed for the validation of the performance of the proposed method at
(a) Yeongjong Grand bridge, (b) Qingfeng bridge, and (c) San Francisco–Oakland Bay bridge. The white,
black, grey arrows in the bottom pictures represent the locations of sensor modules and base modules,
and target points of reference measurements, respectively.

In the field test at Yeongjong Grand bridge, a Leica GS18T base module was installed on the top of
an office building, about 7.7 km away from Leica GS18T rover modules. The rovers are installed on
the top of rigid steel columns to minimize multipath error. An accelerometer, Kinemetrics Episensor
ES-T, was mounted on the main girder of a truss structure. In the field tests at Qingfeng and San
Francisco–Oakland Bay bridge, a sensor system developed by authors and Poongsan FNS Co. were
installed. The sensor module was installed on a measurement point, 150 m away from a pylon,
and the base module was placed on a nearby pedestrian trail in the Qingfeng bridge test. In the San
Francisco–Oakland Bay bridge test, the sensor module was mounted a measurement point 60 m away
from the pylon of the bridge, and the base module was installed on the nearest pier, 320 m away from
the sensor module.

To measure a reference displacement of the three bridges, a Polytec RSV-150 laser Doppler
vibrometer (LDV) was placed near the foundation of a pylon, as shown in Figure 11a,b. The LDV emits
a class 2 laser to secure a long-range out-of-plane movement measurement up to 300 m. However,
the measurement quality of the LDV is highly dependent on the light intensity of the returned laser
beam. When the surface of a target point is rough and causes a diffuse reflection, or the incidence angle
between the surface and the beam is too small, the measurement accuracy of the LDV can be highly
degraded and unreliable. The incident angle should be 90◦ for the best measurement accuracy, but the
incident angles of the LDV’s laser beam were limited to 9◦ at Yeongjong Grand bridge (Figure 11c), 14◦

for Qingfeng bridge, and 26◦ for San Francisco–Oakland Bay bridge. To arrange for a surface that the
LDV can emit the laser beam with the incident angle of 90◦, a reflective panel was installed on the
bottom of the girder as shown in Figure 11c. A retroreflective sheet was pasted on the panel to enhance
the reflectivity and make sure of regular reflection. The angle of the panel was adjusted so that the
incident angle was close to 90◦. The measured out-of-plane movement of the panel can be converted to
the vertical displacement of the measurement point using simple trigonometry [29].
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Figure 11. Test setup for the measurement of reference displacement at Yeongjong Grand bridge:
(a) overall setup diagram of LDV and reflective panel, (b) LDV, and (c) reflective panel.

The estimation results, reference displacement measurements at Yeongjong Grand bridge,
and RMSE of between the estimates and the references are shown in Figure 12. Note that the
values of Kalman filter parameters are set to the same to the lab-scale test in Section 3. The estimation
accuracy of the proposed method is compared to the ones of the methods proposed by Smyth and
Wu [23], and loosely and tightly-coupled Kalman filter [22]. Whereas the three previous methods cannot
reduce the low-frequency error, inherited from the one of RTK-GNSS displacement measurement.
The results clearly show that the previous Kalman filtering based displacement estimation methods have
a limitation on the estimation accuracy in the presence of low-frequency error. However, the proposed
method effectively mitigates the low-frequency error by MHDR and the two-stage Kalman filter.
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Figure 12. Displacement estimation results and RMSE errors for the Yeongjong Grand bridge: (a) the
method proposed by Smyth and Wu [23], (b) tightly-coupled and (c) loosely-coupled Kalman filter [22],
and (d) the proposed method.

The estimation results and their RMSEs with respect to the reference measurement in the three
field tests are summarized in Table 1. The RMSEs of RTK-GNSS displacement measurements are
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highly enhanced by MHDR, which corrects low-frequency errors in the RTK-GNSS displacement
measurement. Then, two-stage Kalman filter produces the final displacement estimates by correcting
high-frequency error and residual low-frequency error. Table 2 compares the performance of the
proposed method to the previous Kalman filter based displacement estimation method proposed by
Smyth and Wu [23] and loosely and tightly-coupled Kalman filter [22], and the proposed method.
Since the proposed method, unlike other previous methods, mitigates the errors with both MHDR and
Kalman filtering, the accuracy of the estimates is highly enhanced up to 2.69 mm.

Table 1. RMSEs of estimates from the measurements of each field test.

(mm) Yeongjong Grand Bridge Qingfeng Bridge San Francisco–Oakland
Bay Bridge

RTK-GNSS displacement
measurement, xr

m(k)
5.97 20.16 13.39

RTK-GNSS displacement after
MHDR applied, xr

h(k)
3.27 5.49 5.76

Displacement estimate of
two-stage Kalman filter, x̂(k) 2.69 5.08 5.44

Table 2. Estimation accuracy comparison of the proposed method to the displacement estimation
method proposed by Smyth and Wu and loosely and tightly-coupled Kalman filter.

(mm) Yeongjong Grand Bridge Qingfeng Bridge San Francisco–Oakland
Bay Bridge

Proposed 2.69 5.08 5.44
Smyth and Wu 14.66 22.13 14.96

Loosely-coupled Kalman filter 11.87 19.90 12.75
Tightly-coupled Kalman filter 5.19 22.89 13.68

5. Conclusions

The study explores a dynamic displacement estimation method based on MHDR and the
two-stage Kalman filter, especially for large-scale civil infrastructures. The proposed method fuses
the displacement measurement from an RTK-GNSS and the acceleration measurement from an
accelerometer. MHDR mitigates low-frequency multipath error, which contaminates RTK-GNSS
displacement measurement, up to 74%. Two-stage Kalman filter utilizes the displacement from MHDR
and an acceleration measurement for estimating displacement with high accuracy and a high sampling
rate. A field test at Yeongjong Grand Bridge shows that the proposed method enhances the RMSE of
RTK-GNSS from 5.97 mm to 2.69 mm. However, since both RTK-GNSS and the accelerometer do not
have good accuracy when measuring low-frequency vibration under 0.1 Hz, the proposed method
also has a limitation in applying to a structure that vibrates at ultra low-frequency or pseudo-statically.
To resolve the problems, the authors are planning to introduce vision-based sensing technology
in the proposed method. It is well known that vision-based sensors show strong performance in
low-frequency vibration measurement, the authors expect that an accelerometer and a vision-based
sensor may compensate the drawback effectively.
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