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Abstract: Recently, pattern-recognition-based protein sensing has received considerable attention
because it offers unique opportunities that complement more conventional antibody-based detection
methods. Here, we report a multichannel pattern-recognition-based sensor using a set of
fluorophore-conjugated single-stranded DNAs (ssDNAs), which can detect various proteins.
Three different fluorophore-conjugated ssDNAs were placed into a single microplate well together
with a target protein, and the generated optical response pattern that corresponds to each
environment-sensitive fluorophore was read via multiple detection channels. Multivariate analysis
of the resulting optical response patterns allowed an accurate detection of eight different proteases,
indicating that fluorescence signal acquisition from a single compartment containing a mixture of
ssDNAs is an effective strategy for the characterization of the target proteins. Additionally, the sensor
could identify proteins, which are potential targets for disease diagnosis, in a protease and inhibitor
mixture of different composition ratios. As our sensor benefits from simple construction and
measurement procedures, and uses accessible materials, it offers a rapid and simple platform for the
detection of proteins.
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1. Introduction

The detection and identification of proteins plays an important role in the diagnosis of various
diseases [1]. The “lock-and-key” approach, which uses protein-specific molecular probes, such as
antibodies [2], aptamers [3], and small organic molecules [4], has been developed to serve this purpose.
However, such molecular probes often interact with non-target proteins whose structure is similar
to that of the target protein in a cross-reactive manner [5–7], which complicates the preparation
or synthesis of probes that are completely specific to a target protein. Pattern-recognition-based
protein sensing techniques have recently received increasingly attention as alternatives to the
lock-and-key approach [8–10]; target proteins can be identified using “optical response patterns”
generated via non-specific or cross-reactive interactions between proteins and multiple molecular
probes. The molecular probes used to construct systems that generate optical response patterns
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must meet two criteria: (1) Successful interaction via different mechanisms with a variety of proteins,
and (2) signal generation, i.e., conversion of the information generated upon interacting into readable
optical signals. The requirements for pattern-recognition-based probe design are less stringent than
those for specificity-based probes, which is advantageous as it allows the construction of protein-sensing
systems via more simple routes. So far, a number of highly sensitive pattern-recognition-based protein
sensing systems has been reported that employ materials capable of multi-contact interactions with
the macromolecular structure of proteins, such as chromogenic or fluorogenic polymers [11–13] and
nanoparticles [14–16].

In typical pattern-recognition-based sensing systems, individual solutions that contain each
molecular probe are placed into multiple compartments (e.g., microplate wells), followed by addition
of the protein analyte. Then, the optical response patterns are obtained by recording the optical
signal from each compartment. These systems often suffer from the usually time-consuming and
error-prone handling of the probes and analytes solutions, as well as from analyte-associated issues
due to low sample volumes and adhesion of the biological samples (e.g., cultured cells and biofilms)
to the microplate wells. Therefore, in order to broaden the applicability of pattern-recognition-based
sensors, sensing systems that address these issues are required. An effective solution is the generation
of response patterns from a single compartment; a typical approach involves exploiting the spectral
differences, including peak shift and intensity changes, of either single or multiple fluorescent probes.
The measurement of these fluorescence changes using multiple detection channels offers an efficient
method to obtain the protein optical response patterns. Such “multichannel” sensors have been
developed for the pattern-recognition-based detection of proteins and other biological analytes using
various materials, including gold nanoparticle–fluorescent protein complexes [17,18], small molecules
with multiple fluorophores [19–22], quantum dots [23,24], and fluorescent polymers [25–27]. However,
these approaches require the laborious synthesis and preparation of carefully designed organic
compounds or recombinant proteins. Therefore, establishing a simple strategy for the construction of
multichannel sensors is significant for the practical application of pattern recognition-based sensors.

Single-stranded DNAs (ssDNAs) conjugated with environment-responsive fluorophores are one
of the most effective materials for pattern-recognition-based sensors, because sequence and fluorophore
customization is flexible and ssDNAs are commercially available at low cost. The segments of
ssDNA interact with proteins via various forces (e.g., electrostatic and hydrophobic interactions as
well as hydrogen bonding and π-π stacking [28]) in a cross-reactive manner due to the nucleobases
and the negatively charged phosphodiester bonds. The fluorophore segments then function by
transducing changes in their local environments that result from interactions with the protein. Thus,
fluorophore-conjugated ssDNAs are capable of generating differential optical signals following
interactions with different proteins. There are a number of sensing systems that employ complexes of
ssDNAs and other materials, such as gold nanoparticles [29–31], metal oxide nanoparticles [32,33],
graphene oxide nanosheets [34–38], and metal oxide nanosheets [38,39].

Recently, we have demonstrated that even in the absence of other complex-forming materials
fluorophore-conjugated ssDNAs alone can produce protein-response patterns [40]. As additional
materials are not required to form the supramolecular structure, the sensors generate reproducible
patterns following a simple preparation route. Herein, we describe a strategy for the incorporation of
fluorophore-conjugated ssDNA into a multichannel sensor (Figure 1). A solution containing different
ssDNA sequences conjugated with different fluorophores is mixed with the target protein in a single
compartment; cross-reactive interactions alter the environment around each fluorophore, which results
in a spectral change. The affinity of the protein with the fluorophore-conjugated ssDNAs depends on
the DNA sequence and the protein structure, which results in a unique optical response pattern for
each protein that is recorded via multichannel detection of the overall fluorescence response.
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Figure 1. Schematic representation of the multichannel pattern-recognition-based protein sensor with
a fluorophore-conjugated ssDNA set. (a) ssDNAs conjugated with structurally different fluorophores
interact with the protein analytes in a cross-reactive manner within a single well. Measurement of the
fluorescence response patterns generated in multiple detection channels (b), followed by multivariate
analysis to provide accurate discrimination of the protein analytes (c).

2. Materials and Methods

2.1. Materials

DNA conjugated with carboxyfluorescein (FAM) at the 3′ terminus (DNA-G),
carboxytetramethylrhodamine (TAMRA) at the 3′ terminus (DNA-Y), and indodicarbocyanine (Cy5) at
the 5′ terminus (DNA-R) were synthesized and purified by Eurofins Genomics (Ebersberg, Germany).
Pepsin from porcine stomach mucosa (Pep), thrombin from bovine plasma (ThrB), elastase from
porcine pancreas (Ela), α-chymotrypsin from bovine pancreas (Chy), proteinase K from tritirachium
album (Pro), papain from papaya latex (Pap), trypsin from bovine pancreas (TryB), trypsin from
porcine pancreas (TryP), α1-antitrypsin from human plasma (AAT), 2-morpholinoethanesulfonic acid
(MES), and 3-morpholinopropanesulfonic acid (MOPS) were purchased from Sigma-Aldrich, Co., LLC.
(St. Louis, MO, USA). Thrombin from human plasma (ThrH) was purchased from Haematologic
Technologies Inc. (Essex, VT, USA). Human serum was purchased from Cosmo Bio (Tokyo, Japan).

2.2. General Procedures

The concentration of proteins was determined from the absorbance measured at 280 nm using
a Nano Drop 1000 spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA) and
the extinction coefficients are shown in Table S1. The surface hydrophobicity (Φsurface) of the
proteins was estimated using the sum of the hydrophobicity of the amino acid residues, based on
the Miyazawa–Jernigan hydrophobicity scale, divided by the accessible surface area of the protein;
calculations were performed using the GETAREA program [41,42]. The solutions were then dispensed
into a 96-well half area NBSTM black microplate (Corning Inc., NY, USA) using a PIPETMAX system
(Gilson Inc., Middleton, WI, USA). Fluorescence spectra and intensities were recorded using a Cytation5
Imaging Reader (BioTek Instruments, Inc., Winooski, VT, USA).
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2.3. Fluorescence Spectroscopy Measurements

Solutions (100 µL) containing between 0 and 50 µg/mL protein, 20 nM DNA-G, 20 nM DNA-Y,
and 20 nM DNA-R in 20 mM MES buffer (pH = 5.4) were prepared in each well of a 96-well half area
plate. After incubation at 30 ◦C for 10 min, the fluorescence spectra were recorded at 30 ◦C using three
different excitation and emission wavelengths (λex (nm)/λem (nm): 480/510–540 (DNA-G), 530/575–625
(DNA-Y), and 630/655–700 (DNA-R)).

2.4. Pattern-Recognition-Based Sensing and Statistical Analysis

Solutions (90 µL) containing 22.2 nM DNA-G, 22.2 nM DNA-Y, and 22.2 nM DNA-R in 22.2 mM
MES buffer (pH = 5.4) were prepared in each well of a 96-well half area plate. After incubation
at 30 ◦C for 10 min, the fluorescence intensities were recorded at different excitation and emission
wavelengths in six different channels (λex (nm)/λem (nm): 480/520 (Ch1), 515/555 (Ch2), 535/580 (Ch3),
570/610 (Ch4), 630/670 (Ch5), and 665/700 (Ch6)). Next, aliquots (10 µL) of protein in distilled water
were added to each well to a final concentration of between 0 and 50 µg/mL protein, 20 nM DNA-G,
20 nM DNA-Y, 20 nM DNA-R, and 20 mM MES buffer (pH = 5.4). After incubation at 30 ◦C for
10 min, the fluorescence intensities were recorded. The fluorescence responses are presented as F/F0,
where F and F0 refer to the fluorescence intensities after and before the addition of protein, respectively.
This measurement process was repeated nine times to generate a dataset. The dataset was analyzed
using linear discriminant analysis (LDA) and hierarchical clustering analysis (HCA) in SYSTAT 13
(Systat Software Inc., San Jose, CA, USA).

3. Results and Discussion

3.1. Design and Characterization of the Fluorophore-Conjugated ssDNA Set

To develop a pattern-recognition-based protein-sensing system that can accurately identify
analytes, it is necessary to design molecular probes capable of producing multivariate differential
pattern data that are specific to individual protein analytes. Differences in DNA structure lead to
differences in cross-reactivity with proteins [36,40], and are therefore suitable for addressing this
issue. Based on the previous report using ssDNAs [40], three sequences with large differences
in sequence and conformation, i.e., a simple repeated sequence, a guanine quadruplex-forming
sequence, and a hairpin-forming sequence were selected as the structurally diverse ssDNA set (Table 1).
Herein, we used a set of molecular probes without inter-probe interactions to simplify the sensor
design. In order to generate differential optical patterns from a single compartment, we employed
these ssDNAs that were conjugated with three different fluorophores (DNA-G, DNA-Y, and DNA-R).
The three fluorophores (FAM, TAMRA, and Cy5) were chosen based on the following characteristics:
1) Their proximity to specific amino acids alters the fluorescence (e.g., tyrosine, tryptophan, histidine,
or methionine for FAM and TAMRA [43,44]; tryptophan for Cy5 [45]), and 2) their fluorescence spectra
have minimal overlap (λex max (nm)/λem max (nm): 495/518 (FAM), 555/575 (TAMRA), and 645/660
(Cy5)), which allows selective fluorescence detection. Proteases were chosen as the target protein
throughout this study because protease detection is fundamental in the diagnosis and treatment of
medical conditions, e.g., cardiovascular and inflammatory diseases as well as cancer [46].

Table 1. The fluorophore-conjugated ssDNA sequences used in this study.

Name Sequence (5′ to 3′) Structure

DNA-G GGTTGGTGTGGTTGG-FAM G-quadruplex
DNA-Y TTTTTTTTTTTTTTTTTT-TAMRA Simple repeated
DNA-R Cy5-ACGGCATGGTGGGCGTCGT Stem-loop
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First, we investigated whether the interactions between the protein analytes and the three
fluorophore-conjugated ssDNAs could be converted to individual fluorescence signals. The fluorescence
intensity from each fluorophore was recorded after adding different concentrations of the four proteases
(Chy, TryB, Pro, and Pep; Table 2) to a solution containing a mixture of the three fluorophore-conjugated
ssDNAs. The solution conditions, i.e., 20 mM MES (pH = 5.4), were selected considering that this pH
value is effective for transducing the uniqueness of individual proteases into fluorescent signals in
fluorophore-conjugated ssDNA systems [40]. The thus obtained titration isotherms showed a marked
variation in the fluorescence response from each protease depending on which fluorophore-conjugated
ssDNA was detected (Figure 2; for the fluorescence spectra, see Figure S1). For example, the fluorescence
intensity corresponding to DNA-G increased with increasing concentrations of Chy and Pro, whereas
the DNA-Y fluorescence intensity only increased with increasing concentration of Pro. The fluorescence
intensities of all three fluorophore-conjugated ssDNAs decreased in the presence of TryB; in the presence
of Pep a noticeable change in fluorescence intensity was not observed. This result likely arises from the
electrostatic repulsion between negatively charged Pep and the ssDNAs. Thus, we have successfully
converted the unique cross-reactivity of each ssDNA sequence into an individual fluorescence signal.
The complex response observed following protease addition may be due to differing affinities with the
ssDNAs, or to differences in the local environment surrounding the fluorophore binding site.

Table 2. Properties of the proteases and protease inhibitor used in this study.

Analyte Abbreviation Source Molecular
Weight (×103)

Isoelectric
Point Φsurface

Protease
Pepsin Pep Porcine stomach mucosa 35 3.2 0.308
Thrombin ThrB Bovine plasma 38 7.1 0.293
Elastase Ela Porcine pancreas 26 8.5 0.325
α-Chymotrypsin Chy Bovine pancreas 25 8.8 0.285
Proteinase K Pro Tritirachium album 29 8.9 0.287
Papain Pap Papaya latex 23 9.6 0.307
Trypsin TryB Bovine pancreas 24 10.1 0.290
Trypsin TryP Porcine pancreas 23 10.2 0.312

Protease inhibitor
α1-Antitrypsin AAT Human plasma 44 5.4 0.263
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Figure 2. Binding isotherms for 20 nM ssDNAs in the presence of 0–50 µg/mL protease in 20 mM
MES (pH = 5.4). (a) DNA-G channel, λex (nm)/λem (nm): 480/519, (b) DNA-Y channel 530/580,
and (c) DNA-R channel 630/668. Values shown are mean values ± standard deviation (n = 3).



Sensors 2020, 20, 5110 6 of 12

3.2. Pattern-Recognition-Based Protease Sensing Using a Multichannel ssDNA Sensor

After confirming that individual signals from the fluorophore-conjugated ssDNAs could be
detected, we subsequently conducted pattern-recognition-based sensing of the protease analytes.
For that purpose, we selected eight proteases with a variety of isoelectric points (pI) and molecular
weights as an initial analyte set (Table 2). In a 96-well plate, a solution containing each protease was
mixed with the ssDNAs (20 nM) to a final protease concentration of 50 µg/mL in 20 mM MES (pH = 5.4).
The fluorescence responses from each protease/ssDNA combination were recorded using six different
channels including shorter and longer wavelengths of λmax for each fluorophore in order to obtain a
variety of fluorescence responses, and subsequently, a dataset of 6 channels × 8 analytes × 9 replicates
was generated. The results are summarized in Figure 3a; as expected, the fluorescence intensities
increased or decreased in response to the different protease analytes and detection channels.

To display the complex multidimensional data as two-dimensional graphics, the fluorescence
signals were converted into discriminant scores by subjecting the resulting fluorescence signals to
LDA [9], which yielded eight discriminant scores, whereby the first two account for the majority of the
variation (91.5%) (score (1): 70.2% and score (2): 21.3%), i.e., a plot of these two discriminant scores
represents a significant proportion of the fluorescence response. Figure 3b shows the two-dimensional
plot of score (1) and (2), where each point represents the optical response pattern from the sensor in
response to a single protease analyte. Eight well-separated clusters are observed, corresponding to
each protease analyte, indicating that the differences between the fluorescence response pattern of
the protease analytes were statistically significant. The seven protease analyte clusters, except the Pro
cluster, are close to each other on the score (1) axis, whereas they are isolated on the score (2) and (3)
axes (for the plots of score (3), see Figure S2). The dispersion of the clusters over the three discriminant
scores suggests the obtained fluorescence patterns contain a large amount of information relating to
the properties of the protease analytes.

To understand which factors contribute to the cluster separation for each protease analyte, we
examined the correlation between discriminant scores (1) to (3) and the protease characteristics (pI
and Φsurface) (Figure S3). Of all the combinations examined, we only observed a relatively high
correlation between score (2) and the protein pI (r = 0.719), suggesting the surface charge of the
protease analytes is primarily reflected by score (2). However, on the axis of score (2), the highly
cationic TryP cluster (pI = 10.2) is close to that of the highly anionic Pep cluster (pI = 3.2); accordingly,
other forces in addition to electrostatic interactions may contribute to score (2). Score (1) did not
correlate with either the pI or the Φsurface. The cluster locations suggest that score (1) reflects a highly
specific interaction between Pro and the ssDNAs, in particular DNA-G, for which we observed a
significant increase in fluorescence intensity compared to the other ssDNAs. Our sensor can detect a
variety of non-specific and highly specific interactions that occur between the ssDNAs and protease
analytes, such as electrostatic interactions as well as hydrophobic and hydrogen-bonding interactions,
and transform these in fluorescence response patterns.

Next, we evaluated the protease detection reliability of our sensor using two validation tests
(a jackknife cross-validation test and a holdout test); here, the entire dataset is divided into “training
data” for model creation and “test data” for model evaluation. In the jackknife cross-validation test,
one response pattern is removed from the entire dataset (n = 9) and treated as test data, while the
remaining data are used as training data. This procedure is repeated for all the data. In the holdout
test, the training data (n = 6) and the test data (n = 3) are fixed. In both methods, the test data are
individually assigned to the clusters with the closest Mahalanobis distances calculated using the
training data. The accuracy is determined based on whether the class of analyte in the test data is
assigned to the correct protease in the training data. Both tests provided an accuracy of 100% when all
channels were used (Table S2). When less than five channels were used, the accuracy dropped <100%
for some combinations; interestingly, we also discovered that even one of the combinations of three
channels achieved 100% (Table S3); thus, we have successfully demonstrated that our sensor is capable
of the highly reliable detection of eight different protease analytes.
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3.3. Detection of a Protease and Inhibitor Mixture 

Figure 3. Discrimination of the protease analytes using the multichannel sensor with a
fluorophore-conjugated ssDNA set. (a) Changes of the fluorescence response upon addition of protease
solutions (50 µg/mL) using a sensor containing 20 nM of each of the three fluorophore-conjugated
ssDNAs (λex (nm)/λem (nm): 480/520 (Ch1), 515/555 (Ch2), 535/580 (Ch3), 570/610 (Ch4), 630/670 (Ch5),
and 665/700 (Ch6)). (b) Discriminant score plot for the protease solutions, where ellipsoids represent
the confidence interval (± 1 standard deviation) for each analyte.

The detection channels were subjected to an HCA, which suggested that the high reliability of
our sensor is due to the effective design of the sensor (Figure 4). This multivariate analysis method
determines clusters based on the Euclidean distances between the individual elements of a dataset [9].
The HCA dendrogram shows that the two channels corresponding to the same fluorophore are not
clustered (e.g., a combination of Ch1 and Ch2; Figure 4), i.e., the correlation between the responses
from the same fluorophore is low. This demonstrates the importance of using different wavelengths to
detect each fluorophore signal.
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3.3. Detection of a Protease and Inhibitor Mixture 

Figure 4. Hierarchical clustering analysis (HCA) of the detection channels of the multichannel sensor
with a fluorophore-conjugated ssDNA set. The dendrogram was created based on Euclidean distances
using the Ward method and a dataset of 6 channels × 8 analytes × 9 replicates, which was standardized
prior to the analysis based on the following equation: z = (x − µ)/σ, wherein z is the standardized score,
x is the raw response (F/Fo), µ is the mean value of the population, and σ is the standard deviation of
the population. The fluorescence intensities for DNA-G, DNA-Y, and DNA-R were mainly provided
using readouts from Ch1 and Ch2, Ch3 and Ch4, and Ch5 and Ch6, respectively.
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3.3. Detection of a Protease and Inhibitor Mixture

To further evaluate the performance of the sensor, a semiquantitative detection was performed
on a solution containing a mixture of a protease and inhibitor. We targeted the potential biomarker
protein Ela and its inhibitor (AAT) (Table 2). The concentration ratio of Ela to AAT in the blood
is usually constant, whereby an imbalance causes various diseases. Clinically, this imbalance is
commonly attributed to overexpression of Ela under normal expression of AAT or to underexpression
of AAT under normal expression of Ela; the former is observed in the development and progression of
cancer [47,48], while the latter is associated with α1-antitrypsin deficiency and cystic fibrosis [47,49].
Therefore, protein detection within mixtures containing different concentrations of Ela and a constant
concentration of AAT, or vice versa, is critical in the diagnosis of various diseases [47].

Using our sensor, we acquired a dataset of the fluorescence responses in solution mixtures
containing Ela at four different concentrations and a constant concentration of AAT (6 channels ×
4 analytes × 9 replicates; Table S4). An LDA of the resulting dataset provided a two-dimensional
discriminant score plot, in which the clusters corresponding to the four different ratios of Ela to AAT did
not overlap (Figure 5a). In addition, 100% accuracy was achieved for both the jackknife cross-validation
and holdout tests (Table S4). Similar results, i.e., cluster separation on the discriminant score plot and
high validation accuracy (100% for both tests), were observed when the concentration of AAT was
varied and that of Ela was fixed (Figure 5b; Table S5). In both discriminant score plots, the cluster
positions shifted monotonically with the score (1) axis with increasing Ela or AAT concentration.
High linearity was observed between the changes in score (1) versus concentration ratio (score (1) versus
AAT concentration: r = −0.981, score (1) versus Ela concentration: r = 0.995, Figure S4). When using
these as calibration curves, limits of detection (LOD) of 2.7 µg/mL and 2.6 µg/mL were estimated for
Ela and AAT, respectively. Therefore, it may be possible to quantitatively analyze Ela and AAT using
our multichannel sensor by carrying out a regression analysis based on machine-learning techniques
such as support-vector regression [50] and neural-network regression [51].
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Using our multichannel sensor, we simultaneously detected the individual fluorescence responses
from a mixture of the three ssDNAs, which provided sufficient information to allow discrimination of
the protease analytes within a single compartment. In comparison with a non-multichannel sensor,
wherein each probe is placed in a single compartment, the multichannel design (n probes are placed in
a single compartment) allows more rapid measurements (≤ 1/n time) using smaller amounts of analyte
solution (≤ 1/n volume), while maintaining a high discrimination accuracy. In our non-integrated
sensor array, the n value was 1 [40], whereas that value is 3 in the present case due to the use of three
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fluorophore-conjugated ssDNAs. Further efficiency improvements can be expected by using more and
different fluorophores, whose emission wavelengths do not overlap with those of the fluorophores
used in this study.

A pattern-recognition-based sensing approach has already been applied to the detection of
disease-associated compositional changes in clinical samples, such as serum from patients [16,52].
Alternatively, the function of the aptamer sequence can be utilized to selectively detect a specific
protease contained in the serum, such as human thrombin (Figure S5). Therefore, we believe that
further improvements, including the use of ssDNA sets of aptamer sequences labeled with different
fluorophores, will allow our multichannel sensing approach to be applied to complex clinical samples.
From a practical point of view, the fluorescence responses obtained by non-specific interactions are
influenced by a variety of factors. Therefore, as in many other biochemical assays, the concentration
of recognition elements, buffer, temperature, and measurement time should be constant during
measurements. The use of regression analysis based on machine-learning techniques enables the
quantitative identification of the compositions of analytes based on training data [53] and can therefore
be applied to analytes of unknown concentration(s).

4. Conclusions

In summary, we have reported the fabrication of a pattern-recognition-based multichannel sensor
using a set of fluorophore-conjugated ssDNAs. This multichannel sensor was used to discriminate
between eight different protease analytes and to identify the composition of protease/inhibitor mixtures.
We have also demonstrated that fluorophore-conjugated ssDNAs are one of the most advantageous
molecular probes for producing optical patterns unique to specific proteins because: (1) A diverse range
of moieties allows cross-reactive binding to proteins; (2) flexible design of their sequence and structure
is possible, owing to commercial availability; (3) an absence of other materials allows the generation
of reproducible optical response patterns. In addition, the multichannel sensor facilitates rapid and
simple analyte detection via: Smaller analyte solution volumes, less analyte/probe solution dispensing,
and shorter measurement times; the efficiency of this multichannel sensor is three times higher than
that of previously reported non-multichannel sensors [40]. Therefore, our pattern-recognition-based
multichannel protein sensor not only offers a platform for the high-throughput analysis of proteins
or protein mixtures, but also offers scope for application to various analytes, such as those of limited
volume or adhesive samples that are difficult to dispense; research focusing on these points is currently
in progress in our laboratory.
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Correlations between the discriminant scores and the protease characteristics; Figure S4: Linear correlations
between the discriminant scores and the protein concentration; Figure S5: Binding isotherms for mixed
fluorophore-conjugated ssDNAs upon addition of proteases in the presence of human serum.
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