Robust Magnetized Graphene Oxide Platform for In Situ Peptide Synthesis and FRET-Based Protease Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Graphene Oxide (MGO)
2.3. In Situ Peptide Synthesis on MGO Matrix
2.4. Evaluation of Proteolytic Activities Using the MGO FRET Platform
3. Results and Discussion
3.1. Preparation and Characterization of Magnetic GO (MGO)
3.2. Evaluation of In Situ Peptide Synthesis on MGO
3.3. Optimization of PEG Spacer Length for Protease Activity Assay
3.4. Evaluation of Thrombin Activity
3.5. Evaluation of β-Secretase Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feng, Y.; Wang, Z.W.; Zhang, R.X.; Lu, Y.Y.; Huang, Y.Q.; Shen, H.X.; Lv, X.M.; Liu, J. Anti-fouling graphene oxide based nanocomposites membrane for oil-water emulsion separation. Water Sci. Technol. 2018, 77, 1179–1185. [Google Scholar] [CrossRef]
- Georgakilas, V.; Kouloumpis, A.; Gournis, D.; Bourlinos, A.; Trapalis, C.; Zboril, R. Tuning the dispersibility of carbon nanostructures from organophilic to hydrophilic: Towards the preparation of new multipurpose carbon-based hybrids. Chem. Eur. J. 2013, 19, 12884–12891. [Google Scholar] [CrossRef] [PubMed]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarek-Kedziera, A. Influence of photodegradation and surface modification on the graphene-diclofenac physisorption process. Int. J. Quantum Chem. 2019, 119, e26030. [Google Scholar] [CrossRef]
- Konkena, B.; Vasudevan, S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pK(a) measurements. J. Phys. Chem. Lett. 2012, 3, 867–872. [Google Scholar] [CrossRef]
- Kumar, S.; Bukkitgar, S.D.; Singh, S.; Pratibha; Singh, V.; Reddy, K.R.; Shetti, N.P.; Reddy, C.V.; Sadhu, V.; Naveen, S. Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. Chemistryselect 2019, 4, 5322–5337. [Google Scholar] [CrossRef]
- Li, Q.Z.; Fan, F.; Wang, Y.; Feng, W.; Ji, P.J. Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent. Ind. Eng. Chem. Res. 2013, 52, 6343–6348. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Y.H.; Gao, Y.X.; Yu, D.S.; Durstock, M.; Dai, L.M. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. J. Adv. Mater. 2012, 24, 2228–2233. [Google Scholar] [CrossRef]
- Liu, Z.; Robinson, J.T.; Sun, X.M.; Dai, H.J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877. [Google Scholar] [CrossRef] [Green Version]
- Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Bagihalli, G.B.; Reddy, K.R.; Ravindranadh, K.; Reddy, C.V. A novel biosensor based on graphene oxide-nanoclay hybrid electrode for the detection of Theophylline for healthcare applications. Microchem. J. 2019, 149, 103985. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Kim, Y.B. 3D graphene preparation via covalent amide functionalization for efficient metal-free electrocatalysis in oxygen reduction. Sci. Rep. 2017, 7, 43279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cernat, A.; Gyorfi, S.J.; Irimes, M.B.; Tertis, M.; Bodoki, A.; Pralea, I.E.; Suciu, M.; Cristea, C. Click chemistry on azide-functionalized graphene oxide. Electrochem. Commun. 2019, 98, 23–27. [Google Scholar] [CrossRef]
- Tanhaei, M.; Mahjoub, A.R.; Safarifard, V. Sonochemical synthesis of amide-functionalized metal-organic framework/graphene oxide nanocomposite for the adsorption of methylene blue from aqueous solution. Ultrason. Sonochem. 2018, 41, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.J.; Yu, W.; Huang, Z.P.; Zhou, F.; Song, J.B.; Song, Y.L.; Long, L.L.; Cifuentes, M.P.; Humphrey, M.G.; Zhang, L.; et al. Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci. Rep. 2016, 6, 23325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajender, N.; Suresh, K.I. Surface-initiated atom transfer radical polymerization (SI-ATRP) from graphene oxide: Effect of functionalized graphene sheet (FGS) on the synthesis and material properties of PMMA nanocomposites. Macromol. Mater. Eng. 2016, 301, 81–92. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.S.; Yang, H.Y.; Luo, J. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar]
- Yeltik, A.; Kucukayan-Dogu, G.; Guzelturk, B.; Fardindoost, S.; Kelestemur, Y.; Demir, H.V. Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures. J. Phys. Chem. C 2013, 117, 25298–25304. [Google Scholar] [CrossRef] [Green Version]
- Morales-Narvaez, E.; Perez-Lopez, B.; Pires, L.B.; Merkoci, A. Simple forster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon 2012, 50, 2987–2993. [Google Scholar] [CrossRef]
- Yew, Y.T.; Loo, A.H.; Sofer, Z.; Klimova, K.; Pumera, M. Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection. Appl. Mater. Today 2017, 7, 138–143. [Google Scholar] [CrossRef]
- Morales-Narvaez, E.; Merkoci, A. Graphene oxide as an optical biosensing platform. Adv. Mater. 2012, 24, 3298–3308. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, G.H.; Song, Q.; Tang, T.; Wang, X.; Wei, F.D.; Hu, Q. Highly sensitive determination of dopamine by a turn-on fluorescent biosensor based on aptamer labeled carbon dots and nano-graphite. Sens. Actuators B Chem. 2016, 231, 506–512. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.S.; Li, Y.W.; Wu, D.; Ma, H.M.; Wei, Q.; Du, B. A turn-on fluorescent sensor for Hg2+ detection based on graphene oxide and DNA aptamers. New J. Chem. 2018, 42, 11147–11152. [Google Scholar] [CrossRef]
- Baek, Y.M.; Jeong, Y.; Kim, D.E. Fluorometric Detection of Oncogenic EML4-ALK Fusion Gene based on a Graphene Oxide System. Biochip J. 2019, 13, 370–377. [Google Scholar] [CrossRef]
- Chang, L.F.; He, X.W.; Chen, L.X.; Zhang, Y.K. A novel fluorescent turn-on biosensor based on QDs@GSH-GO fluorescence resonance energy transfer for sensitive glutathione S-transferase sensing and cellular imaging. Nanoscale 2017, 9, 3881–3888. [Google Scholar] [CrossRef]
- Ding, L.Y.; Xu, B.; Li, T.; Huang, J.; Bai, W. A “turn-on” fluorescence copper biosensor based on DNA cleavage-dependent graphene oxide-dsDNA-CdTe quantum dots complex. Sensors 2018, 18, 3605. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhou, X.J.; Guo, S.W.; Wu, N.Q. Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 2013, 43, 69–74. [Google Scholar] [CrossRef]
- Wei, W.L.; Xu, C.; Ren, J.S.; Xu, B.L.; Qu, X.G. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem. Commun. 2012, 48, 1284–1286. [Google Scholar] [CrossRef]
- Yang, J.K.; Kwak, S.Y.; Jeon, S.J.; Lee, E.; Ju, J.M.; Kim, H.I.; Lee, Y.S.; Kim, J.H. Proteolytic disassembly of peptide-mediated graphene oxide assemblies for turn-on fluorescence sensing of proteases. Nanoscale 2016, 8, 12272–12281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, H.; Lin, Z.H.; Su, X.G. A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide-DNA interaction. Anal. Bioanal. Chem. 2014, 406, 6925–6932. [Google Scholar] [CrossRef]
- Wang, F.F.; Gao, J.; Zhao, J.W.; Zhang, W.Y.; Bai, J.; Jia, H.X.; Wang, Y.C. A new two-mode fluorescence signal amplification strategy for protease activity assay based on graphene oxide. RSC Adv. 2017, 7, 47983–47989. [Google Scholar] [CrossRef] [Green Version]
- Xi, G.N.; Wang, X.P.; Chen, T.S. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2. Int. J. Nanomed. 2016, 11, 1537–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, F.Y.; Zho, J.; Jiao, B.N.; He, Y. A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A. Nanoscale 2019, 11, 9547–9555. [Google Scholar] [CrossRef] [PubMed]
- Chiu, N.F.; Kuo, C.T.; Chen, C.Y. High-affinity carboxyl-graphene oxide-based SPR aptasensor for the detection of hCG protein in clinical serum samples. Int. J. Nanomed. 2019, 14, 4833–4847. [Google Scholar] [CrossRef] [Green Version]
- Li, J.X.; Zheng, L.L.; Zeng, L.; Zhang, Y.; Jiang, L.; Song, J.L. RGD peptide-grafted graphene oxide as a new biomimetic nanointerface for impedance-monitoring cell behaviors. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Park, K.-W.; Jung, J.H. Spectroscopic and electrochemical characteristics of a carboxylated graphene–ZnO composites. J. Power Sources 2012, 199, 379–385. [Google Scholar] [CrossRef]
- Kyzas, G.; Travlou, N.; Kalogirou, O.; Deliyanni, E. Magnetic graphene oxide: Effect of preparation route on reactive black 5 adsorption. Materials 2013, 6, 1360–1376. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Liu, X.; Deng, X.; Zhang, S.; He, Q.; Chang, X. Fluorescence determination based on graphene oxide. Mater. Lett. 2012, 76, 247–249. [Google Scholar] [CrossRef]
- Guo, J.; Wang, R.; Tjiu, W.W.; Pan, J.; Liu, T. Synthesis of Fe nanoparticles@graphene composites for environmental applications. J. Hazard. Mater. 2012, 225–226, 63–73. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710–2714. [Google Scholar] [CrossRef]
- Dashkevich, N.M.; Ovanesov, M.V.; Balandina, A.N.; Karamzin, S.S.; Shestakov, P.I.; Soshitova, N.P.; Tokarev, A.A.; Panteleev, M.A.; Ataullakhanov, F.I. Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys. J. 2012, 103, 2233–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockley, J.H.; Ravid, R.; O’Neill, C. Altered beta-secretase enzyme kinetics and levels of both BACE1 and BACE2 in the Alzheimer’s disease brain. FEBS Lett. 2006, 580, 6550–6560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.B.; Green, B.D. Temporal effects of neuron-specific beta-secretase 1 (BACE1) knock-in on the mouse brain metabolome: Implications for Alzheimer’s disease. Neuroscience 2019, 397, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Ji, Y.; Youn, K.; Lim, G.; Lee, J.; Kim, D.H.; Jun, M. Baicalein as a potential inhibitor against BACE1 and AChE: Mechanistic comprehension through in vitro and computational approaches. Nutrients 2019, 11, 2694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chen, X.; Roozbahani, G.M.; Guan, X. Graphene oxide-based biosensing platform for rapid and sensitive detection of HIV-1 protease. Anal. Bioanal. Chem. 2018, 410, 6177–6185. [Google Scholar] [CrossRef]
- Li, J.; Lu, C.-H.; Yao, Q.-H.; Zhang, X.-L.; Liu, J.-J.; Yang, H.-H.; Chen, G.-N. A graphene oxide platform for energy transfer-based detection of protease activity. Biosens. Bioelectron. 2011, 26, 3894–3899. [Google Scholar] [CrossRef] [PubMed]
Specific Peptide | Target Protease | Assay Time | Limit of Detection | Reference |
---|---|---|---|---|
TTYADFIASGRTG-RRNAIHD (pre-synthesized) | Carboxypeptidase Y | 8 h | 1.0 × 10−5 U/μL | Wang et al. [30] |
PLGVR (pre-synthesized) | MMP2 b | 2 h | 0.19 ng/mL (3 pM) | Xi et al. [31] |
CALNNSQNYPIVQK (pre-synthesized) | HIV-1 a protease | 30 min | 1.18 ng/mL (109 pM) | Zhang et al. [45] |
GKGGLVPRGSGC, GPLGVRGC, GKGGLVPRGSGK (pre-synthesized) | MMP2, thrombin | 60 min | MMP2: 1.0 nM; Thrombin: 0.5 nM | Li et al. [46] |
EVNLDA (in situ synthesized) | β-secretase | 30 min | 0.125 ng/mL (2 pM) | Kim and Lee et al. (This study) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, S.-M.; Yoon, J.P.; Lee, N.; Chung, J.; Chung, W.-J.; Shin, D.-S. Robust Magnetized Graphene Oxide Platform for In Situ Peptide Synthesis and FRET-Based Protease Detection. Sensors 2020, 20, 5275. https://doi.org/10.3390/s20185275
Kim S, Lee S-M, Yoon JP, Lee N, Chung J, Chung W-J, Shin D-S. Robust Magnetized Graphene Oxide Platform for In Situ Peptide Synthesis and FRET-Based Protease Detection. Sensors. 2020; 20(18):5275. https://doi.org/10.3390/s20185275
Chicago/Turabian StyleKim, Seongsoo, Sang-Myung Lee, Je Pil Yoon, Namhun Lee, Jinhyo Chung, Woo-Jae Chung, and Dong-Sik Shin. 2020. "Robust Magnetized Graphene Oxide Platform for In Situ Peptide Synthesis and FRET-Based Protease Detection" Sensors 20, no. 18: 5275. https://doi.org/10.3390/s20185275
APA StyleKim, S., Lee, S. -M., Yoon, J. P., Lee, N., Chung, J., Chung, W. -J., & Shin, D. -S. (2020). Robust Magnetized Graphene Oxide Platform for In Situ Peptide Synthesis and FRET-Based Protease Detection. Sensors, 20(18), 5275. https://doi.org/10.3390/s20185275