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Abstract: Pressure sensitive adhesive (PSA) tapes are a versatile, safe and easy-to-use solution for
fastening, sealing, masking, or joining. They are widely employed in daily life, from domestic use to
industrial applications in sectors such as construction and the automotive industry. In recent years,
PSA tapes have found a place in the field of micro- and nanotechnology, particularly in contact transfer
techniques where they can be used as either sacrificial layers or flexible substrates. As a consequence,
various optical sensing configurations based on PSA tapes have been developed. In this paper, recent
achievements related to the use of PSA tapes as functional and integral parts of optical sensors are
reviewed. These include refractive index sensors, optomechanical sensors and vapor sensors.

Keywords: optical sensor; pressure sensitive adhesive tape; flexible photonics; polymer; waveguide;
refractive index sensor; optomechanical sensor; vapor sensor

1. Introduction

Pressure sensitive adhesive (PSA) tape (also known as self-adhesive, self-stick adhesive or sticky
tape) can be defined as a continuous, relatively thin, flexible material with single or double sided coating
that can adhere to a variety of substrates by applying gentle pressure without the need for solvent,
heat, UV radiation or water for activation [1–5]. PSA tapes are widely used for sealing, bonding,
attaching, communicating, identifying, insulating and protecting, and novel uses continue to be
discovered. They have numerous advantages, for example, compared to traditional fastening systems,
PSA tapes provide an easy to use and low cost solution that allows the use of thinner and lighter
materials, the bonding of dissimilar materials without incompatibility concerns, vibration dampening
and noise reduction, crack and corrosion prevention, removal of visible mechanical fasteners for
cosmetic superiority, uniform thickness and gap filling, and reduced assembly time. Since adhesion
is immediate, PSA tapes save time compared to liquid adhesives that require specific setups and/or
long curing times. Several key markets have benefited from PSA tape usage including building and
construction, the automotive, aerospace, marine, medical, appliances, electronics, and packaging
industries, and they have been applied to the temporary fixation of components, solar modules,
foam and gaskets, mounting emblems, and cable harnessing.

In recent years, the utilization of PSA tapes in the field of micro- and nanotechnology has gained
much attention. In particular, PSA tapes have found great applicability in contact transfer techniques
like transfer printing [6–9], where the flexibility and tackiness of the adhesive tapes permit the effective
detachment of nanostructures from a donor substrate by a simple “stick and peel” procedure, and their
incorporation into the sticky side of the tape. After peeling, the PSA tape can be used either as an
intermediate transfer medium when the nanostructures are to be transferred to a different substrate,
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or as an integral part of the final device, for example, as a substrate for flexible devices. Unlike other
polymeric materials that have been traditionally employed in flexible devices such as PDMS [10–12],
the use of PSA tape does not require previous activation of the contacting surfaces. Relevant examples
of nanotransfer printing using PSA tapes include the exfoliation of two-dimensional materials such as
graphene [13] and MoS2 [14] and the transfer of carbon nanotubes [15] and nanowire devices [16,17].
PSA tapes have also been employed for planarizing nanopatterned substrates in order to create
large-area nanogaps [18,19], and they are the key element in an innovative type of nanolithographic
method: adhesion or tape nanolithography [20–22]. Figure 1 illustrates the operation of adhesion
lithography based on PSA tape.
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International License (http://creativecommons.org/licenses/by/4.0/). (b) Left: Schematics of selective 
nanostructured metal stripping by a pressure sensitive adhesive (PSA) tape. M1 and M2 stand for 
metal 1 and metal 2, respectively. Right: Photograph showing the tape after peeling; removed gold 
(M2) is visible on the adhesive side of the tape. Reproduced from [20] under a Creative Commons 
Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/). 

The development of optical and photonic devices and microsystems has been greatly enhanced 
by the application of PSA tape to micro- and nanotechnology. For instance, flexible photonic devices 
have been implemented using PSA tape as an integral functional component, either as a substrate 
[21–24] or as a waveguide [25–28]. Tape-supported nanopatterned films have also been successfully 
transferred to the tip and side surfaces of optical fibers by dissolving or detaching the supporting 
tape [22]. Figure 2 shows illustrative images of these applications. In addition, laser-microstructured 
double-sided biocompatible adhesive tapes have been employed as intermediated bonding layers for 
the development of microfluidic networks in opto-fluidic microsystems [29,30]. 

Figure 1. Adhesion or tape lithography. (a) Transfer of a nanopatterned film (Au nanohole array) to
the surface of an adhesive tape. Reproduced from [22] under a Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/). (b) Left: Schematics of selective
nanostructured metal stripping by a pressure sensitive adhesive (PSA) tape. M1 and M2 stand for
metal 1 and metal 2, respectively. Right: Photograph showing the tape after peeling; removed gold
(M2) is visible on the adhesive side of the tape. Reproduced from [20] under a Creative Commons
Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/).

The development of optical and photonic devices and microsystems has been greatly enhanced by
the application of PSA tape to micro- and nanotechnology. For instance, flexible photonic devices have
been implemented using PSA tape as an integral functional component, either as a substrate [21–24] or
as a waveguide [25–28]. Tape-supported nanopatterned films have also been successfully transferred to
the tip and side surfaces of optical fibers by dissolving or detaching the supporting tape [22]. Figure 2
shows illustrative images of these applications. In addition, laser-microstructured double-sided
biocompatible adhesive tapes have been employed as intermediated bonding layers for the development
of microfluidic networks in opto-fluidic microsystems [29,30].
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during mechanical bending of the flexible devices. Reprinted from [23] by permission from Springer 
Nature. (b) Schematic of a release-and-transfer process of an Au nanohole film to an optical fiber 
surface. Reproduced from [22] under a Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/). 
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paper on state-of-the-art optical devices based on PSA tapes for sensing applications. Section 2 briefly 
describes the main configurations and constituent materials of PSA tapes, with an emphasis on their 
optical, mechanical and thermal characteristics. In Section 3, particular applications of optical sensors 
based on PSA tapes are reviewed. These comprise refractive index sensors for liquids, 
optomechanical displacement sensors, and optical vapor sensors. Finally, some concluding remarks 
are given in Section 4. 
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A PSA tape is basically composed of a backing (carrier) film and an adhesive layer. It is also 
common to find a release agent to the backing or a release liner on the adhesive in order to prevent 
the latter from sticking to the backing when the PSA tape is coiled in a roll. PSA tapes are typically 
available in four different product architectures (see Figure 3): single coated (the adhesive is applied 
to only one side of the backing), double coated (the adhesive is applied to both sides of the backing), 
reinforced (a reinforcement layer of woven or knitted cloth or glass strands is included) and 
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and adhesive layers ranges from 20 µm to 200 µm. 

Figure 2. Examples of application of PSA tape to the construction of optical devices. (a) Left:
Photograph of a flexible photonic chip built on a Kapton PSA tape substrate. Right: Photograph of
a fiber end-fire testing set-up used for in situ measurement of optical transmission characteristics
during mechanical bending of the flexible devices. Reprinted from [23] by permission from Springer
Nature. (b) Schematic of a release-and-transfer process of an Au nanohole film to an optical fiber
surface. Reproduced from [22] under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

The implementation of optical sensors based on PSA tapes is a recent trend, and there are still
few studies on these types of devices. However, the importance of the related reported works and
the development potential of this technological approach is significant, which motivated this review
paper on state-of-the-art optical devices based on PSA tapes for sensing applications. Section 2 briefly
describes the main configurations and constituent materials of PSA tapes, with an emphasis on their
optical, mechanical and thermal characteristics. In Section 3, particular applications of optical sensors
based on PSA tapes are reviewed. These comprise refractive index sensors for liquids, optomechanical
displacement sensors, and optical vapor sensors. Finally, some concluding remarks are given in
Section 4.

2. PSA Tape Constructions and Materials

A PSA tape is basically composed of a backing (carrier) film and an adhesive layer. It is also
common to find a release agent to the backing or a release liner on the adhesive in order to prevent the
latter from sticking to the backing when the PSA tape is coiled in a roll. PSA tapes are typically available
in four different product architectures (see Figure 3): single coated (the adhesive is applied to only one
side of the backing), double coated (the adhesive is applied to both sides of the backing), reinforced
(a reinforcement layer of woven or knitted cloth or glass strands is included) and unsupported
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Figure 3. Schematics of typical PSA tape constructions [1]. (a) Single coated, (b) double coated,
(c) reinforced, and (d) unsupported tape.

The main adhesive types used in PSA tapes are rubber/resin, acrylic and silicone, with or without
additives [1,2,31–33]. Rubber-based adhesives are formulated from mixtures of natural or synthetic
rubber and resin. They provide high tack (ability to form a bond in a short time) and peel (force required
to pull off the adhesive from the applied surface), and adhere well to several non-polar, low-energy
surfaces. When compared to acrylics, rubber-based adhesives are typically less expensive; however,
they are more affected when exposed to certain chemicals, UV radiation, or high temperatures.
In addition, they are more susceptible to oxidation, which can make the adhesive darken, lose their
tack, and become brittle.

Acrylic-based adhesives are formulated from cross-linked acrylic polymers (acrylates). They have
high peel, tack and shear (resistance to shear stress), and exhibit excellent resistance to chemical,
temperature and UV radiation exposure and oxidation. Acrylic adhesives are long-lasting and show
good transparency and color stability, which are important characteristics from an optical sensor
implementation point of view. They bond well to polar surfaces such as metal, glass, polyesters
and polycarbonates. The disadvantages of acrylics as compared to rubber-based adhesives include
poor adhesion to low-energy surfaces, such as polypropylene and polyethylene, and lower overall
adhesion [1,2,31–33].

Silicone adhesives are less common and more expensive than rubber- and acrylic-based adhesives.
They are formulated from silicone polymers and are usually destined for providing adhesion to silicon
and other hard-to-adhere-to materials [1,2,31–33].

In principle, any material that is reasonably flat, thin and flexible can be used as a PSA tape backing.
Typical backing materials are cloth, paper, metal, plastic (such as bi-axially oriented polypropylene
(BOPP), polyvinyl chloride (PVC), and polyimide) or foam. The backing provides robustness and
protects the adhesive from degradation due to environmental conditions such as humidity, temperature,
and UV radiation. The majority of PSA tape suppliers offer a large variety of backing options so that
the properties of the backing material can be selected according to the target use. In particular, plastic
(polymeric) backings offer excellent optical, mechanical and thermal parameters for optical sensing
applications, and are by far the most popular for implementing optical sensors based on PSA tapes.
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2.1. Optical Properties of PSA Tape

Knowledge of the optical properties of the PSA tape materials is essential when adhesive
tapes are intended to provide optical functionalities in devices and systems. For example, optical
transparency and refractive index (n) are particularly important parameters for applications based on
light transmission and waveguiding [34]. Tables 1 and 2 show indicative values for relevant optical
parameters of typical polymeric materials used for the construction of PSA tapes. The overall optical
properties of adhesive tapes depend on the intrinsic constituent material properties and also on the
manufacturing process and the structure of the tape. Three illustrative examples related to optical
applications of PSA tapes found in both the literature and the technical data from tape manufacturers
are described below:

(1) General-purpose #550 Scotch™ transparent tape, used in the fabrication of many optical sensors
that will be reviewed in the next section, is a single-coated PSA 19-mm-wide tape consisting
of a 30-µm-thick BOPP backing and a 20-µm-thick acrylic adhesive layer [35]. This sticky tape
exhibits an internal transmittance, measured with a spectrophotometer in the spectral range
500–725 nm, which is nearly constant and equal to approximately 99.4%, and its refractive index
at room temperature as measured by reflectance interferometry was found to be 1.45 [25].

(2) Luu et al. measured the optical properties of three types of general-purpose PSA tape employed
in the implementation of microfluidic systems for optical interrogation [30]: Scotch® permanent
double sided tape (19.0 mm wide and 88.9 µm thick), Scotch® gloss finish multitask tape (19.0 mm
wide and 50.8 µm thick), and Scotch® shipping packaging tape (47.7 mm wide and 78.7 µm
thick). Scotch® permanent double-sided tape is a cellulose film with an acrylate adhesive on
both sides. Measurements of the refractive index were conducted with an Abbe refractometer.
An experimental value of n = 1.51 at 630-nm-wavelength was found for all tapes. This result is in
agreement with published data regarding the refractive index of cellulose (n = 1.47 at 630 nm),
the baking material, averaged with that of styrene (n = 1.52 at 630 nm), the adhesive material.
The three tapes had an absorption coefficient close to zero and low scattering coefficients (3–4 cm−1).

(3) 3M™ (Saint Paul, MN, USA) Optically Clear Laminating Adhesive 8146-x [36] is a family of
unsupported PSA tapes consisting of an acrylic adhesive layer (thickness ranges from 25 µm
to 125 µm, depending on the specific tape) sandwiched between two 70-µm-thick release liners
made of polyester. The refractive index of these tapes is 1.474 at sodium D-line (589.3 nm) at
25 ◦C, measured with an Abbe refractometer, and exhibit light transmission >99% when corrected
for reflection losses. These adhesive tapes are specifically designed to provide crystal clear,
high reliability optical coupling and mechanical joining for various transparent materials. Typical
applications include touch screens (for bonding film and glass laminates), transparent graphic
overlays and optical management films for LCD.

A well-known optical property of many PSA tapes is birefringence [37–42]. This characteristic is
provided by polymeric baking films (the adhesive is isotropic) and results predominantly from the
manufacturing process. Stretching and molding processes involved in the production of the baking
induce stress in the polymer, which appears as birefringence in the finished materials. A typical
example is ordinary cellophane, which is birefringent and used as a common baking material in
PSA tape (cellotape). The birefringence of cellophane tapes has been used in interference multilayer
birefringent filters [38] and compensated polarized light microscopy [39].



Sensors 2020, 20, 5303 6 of 17

Table 1. Indicative values of optical, mechanical and thermal parameters of typical polymeric
backing materials used in transparent pressure sensitive adhesive tapes. BOPP = biaxially oriented
polypropylene; PVC = polyvinyl chloride; CTE = coefficient of thermal expansion.

Material Refractive Index Birefrin-Gence
Tensile

Strength at
Break (N/cm)

Elongation
at Break (%) CTE (K−1)

Thermal
Conductivity
(W m−1 K−1)

BOPP 1.50 @ 589.3 nm [41] ~0.01 a [41,42] 40 [35] 30 [35]
160 [43] 1.0–1.8 × 10−5 [44] 0.1–0.22 [44]

PVC 1.54 @ 589.3 nm [45] 0.027 b [46] 47.5 [47] 60 [47] 5 × 10−5 [48] 0.14–0.17 [48]
Polyimide 1.70 @ 589.3 nm [49] 0.0263 b [50] 57.8 [51] 62 [51] 2 × 10−5 [49] 0.120 [49]

Cellophane 1.47 @ 632.8 nm [40] 0.0041 b [40]
0.0077 b [37]

40.2 [52] 15 [52] 8 × 10−5 [53] 0.0600 [53]

a Calculated as (nx + ny)/2 − nz, where nx and ny are the refractive indices measured in the plane of the film and nz

the refractive index through the thickness of the film. b Calculated as |ne − no|, where ne and no are the refractive
indices of the material for the extraordinary and ordinary waves, respectively.

Table 2. Indicative optical and mechanical parameters of adhesive materials used in pressure sensitive
adhesive tapes. From [54]. Values can vary depending on the particular product.

Material Refractive Index Haze a (%) Transmission (%) Peel Adhesion b (N/cm)

Resin/Rubber 1.52 0.04 99.8 6.7 to Glass
Acrylate 1.47 <0.5 >99 5.8 to Steel
Silicone 1.41 1.0 99 6.7–7.8 to Glass

a Amount of light that is subjected to Wide Angle Scattering (at an angle greater than 2.5◦ from normal). b For a
25 mm wide tape.

2.2. Mechanical Properties of PSA Tape

Mechanical characteristics of adhesive tapes can also play a role in the design and fabrication of
PSA tape-based optical sensors, particularly to those subjected to non-negligible mechanical stress
and deformation. Common mechanical specifications for commercial PSA tapes are (peel) adhesion
(typically to steel or glass surfaces), tensile strength and elongation at break. Tables 1 and 2 collects
some indicative values for the relevant mechanical parameters of PSA tape materials.

The adhesive material exhibits viscoelastic properties and has a low modulus, which makes it
an effective strain-relieving agent in delamination processes [23]. The mechanical behavior of the
adhesive material can be reduced to three fundamental and interconnected physical properties: tack,
shear resistance and peel strength, which are strongly dependent on the bulk viscoelastic properties of
the adhesive material system [55]. Less cross-linking results in higher tack, but more cross-linking
provides higher shear. Peel adhesion and shear are a function of contact time, application pressure,
and temperature. In general, as shear strength increases, tack and peel typically decrease. It is therefore
difficult to maximize all three properties simultaneously. Thus, adhesives are formulated to meet peel,
tack and shear requirements for particular applications.

By definition, PSA tapes are flexible, and therefore well-suited for implementing free-standing
flexible optical structures. Typical polymeric backing materials used in general purpose PSA tapes,
such as BOPP, PVC and polyimide, have good flexibility but limited stretchability. To fabricate
stretchable photonic devices, specialized PSA tapes with elastomeric baking properties can be selected.
For example, Scotch® Stretchable Tape 8884 [56] is a 36-mm-wide and 130-µm-thick transparent
stretchable tape, consisting of a low density polyethylene backing and synthetic rubber resin adhesive,
that exhibits an adhesion to steel of 7.7 N/cm, a tensile strength equal to 35 N/cm and an elongation at
break as high as 710%.

2.3. Temperature Effect

The optical and mechanical characteristics of both the backing and adhesive can be affected by
temperature. At too-low temperatures, polymeric backings can become stiffer, and the viscoelastic
adhesive can enter its glass state, becoming brittle and reducing adhesion [57]. At too-high
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temperatures, the adhesive material becomes more fluid and starts to flow as opposed to adhere.
Both temperature extremes ultimately result in degradation of the mechanical performance the
PSA tape. Additionally, these structural changes due to temperature can affect the material optical
properties, such as transparency and the refractive index. Technical specifications usually provide
the operating temperature range for PSA tapes, which is largely dependent on the type of adhesive.
Within the operating temperature range, the combination of viscous and elastic properties of the
PSA is well balanced, and the temperature-dependent behavior of the tape’s optical properties is
mainly determined by the thermo-optic coefficient and the coefficient of thermal expansion of the
tape’s polymeric materials, which are typically on the order of −10−4 K−1 and 10−5 K−1, respectively.
A common operating temperature range for PSA tape application is between 15 ◦C and 35 ◦C [3].
Wider temperature ranges can be obtained by using Kapton® tapes [49,51], which are made of Kapton®

polyimide backing film and silicone adhesive. Kapton tapes exhibit high thermal stability and are
compatible with a wide temperature range from as low as −269 ◦C and as high as 260 ◦C.

3. Examples of PSA Tape-Based Optical Sensors

3.1. Liquid Refractive Index Sensing

Measurement of the refractive index of liquids is of great importance for many applications,
such as chemical and biochemical analysis, environmental monitoring and the food processing industry.
Both guided-wave and free-space optical schemes can be used to implement refractive index optical
sensors, and PSA tapes have been employed in both cases.

3.1.1. Guided-Wave Refractive Index Optical Sensors

Optical fibers based on glass or polymers have been used extensively for refractive index sensing.
These sensors are compact and can be designed for distributed [58,59] or tip-based [60,61] sensing.
In order to increase the interaction of the optical field with the liquid analyte, that is, the refractive index
sensitivity, optical fiber sensors can adopt different configurations, such as stripped [61] tapered [62],
D-shaped [63–66], microstructured [67,68], and U-shaped [69,70] fibers. As compared to glass fibers,
plastic optical fibers (POFs) are easy to handle and cost-effective. In addition, their multimode
characteristics make POFs more suitable for intensity modulation schemes [71,72].

Inspired by the aforementioned advantages of POFs, Barrios [27] proposed and demonstrated a
plastic free-standing waveguide made of a Scotch tape for liquid refractive index sensing. The flexible
waveguide contained an integrated aluminum grating coupler [25,26], which, when stuck on the
radiative surface of a light emitting device, allowed light to be coupled in and transmitted through
the tape waveguide, whose tip end was, in turn, directly adhered onto the photosensitive surface
of a photodetector (Figure 4a). The (de)coupling approach exhibited high alignment tolerances that
permitted the formation of a rapid, flexible optical connection between surface-normal optoelectronic
devices without the need of specialized equipment. A 24.7-mm-long 180◦ bent Scotch tape waveguide
was tested as an intrinsic, intensity-based refractive index sensor based on the dependence of the
waveguide bending losses with the refractive index of the surrounding medium. The U-shaped
waveguide was immersed in different liquids, and the sensor response showed exponential behavior
with the liquid refractive index (Figure 4d). In particular, the sensitivity for refractive index values
around 1.424 (cyclohexane) was −419 (%)/RIU, where RIU stands for refractive index unit. This meant
a refractive index resolution (limit of detection) of 7 × 10−4 RIU. This performance compares well to
other intrinsic, intensity-based optical fiber sensors [73,74].
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curve of the tape refractive index sensor. Inset shows the measured values in the refractive index 
range 1.326–1.424. Reprinted from [27]. 
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Figure 4. (a) Schematics of the assembly of a liquid refractive index optical sensor based on a Scotch
tape waveguide with an integrated aluminum one-dimensional (1D) grating coupler. (b) Bending
attenuation of a 24.7-mm-long tape waveguide at different radii of curvature (R). (c) U-shaped tape
waveguide ready to be immersed in a liquid sample to measure its refractive index. (d) Calibration
curve of the tape refractive index sensor. Inset shows the measured values in the refractive index range
1.326–1.424. Reprinted from [27].

3.1.2. Free-Space Interrogated Refractive Index Optical Sensors

Optical sensing schemes based on free-space optical interrogation avoid some of the drawbacks
related to guided-wave configurations, such as optical coupling complexity. There are multiple
free-space configurations for liquid refractive index sensing that are mainly based on nanostructured
surfaces such as plasmonic nanohole arrays (NHAs) [75–78]. A metal NHA can exhibit optical spectral
features in both reflection and transmission related to surface plasmon effects that are sensitive to the
refractive index of the medium in which the metallic nanostructure is immersed. In particular, surface
plasmon polariton (SSP) block waves in a metal grating occur at wavelengths, λSPP, given by:

λSPP ≈
a√

i2 + j2

√√
n2

dεm

n2
d + εm

, (1)

where a is the array period, i and j are the grating orders, εm is the dielectric function of the metal and
nd is the refractive index of the surrounding dielectric medium. Refractometric NHA sensors have been
primarily fabricated on rigid substrates such as glass; however, there are remarkable demonstrations
on flexible supports such as PDMS [22], polycarbonate [78], and, recently, PSA tapes.

The use of a Scotch tape as a substrate for a metal NHA operating as a refractometric sensor was
pioneered by Barrios et al. [21]. These authors fabricated a square-lattice 625-nm-period aluminum
NHA on a general-purpose Scotch tape (Figure 5a) by direct transfer from a polycarbonate CD
donor substrate. The device was tested as a refractive index sensor by immersing it into different
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aqueous solutions of citric acid. In the refractive index range from 1 to 1.36, a linear response was
measured with a sensitivity of 477 nm/RIU (Figure 5b). A subsequent demonstration of a tape-based
metal NHA refractometric sensor was achieved by Wang et al. [22]. These authors implemented a
square-lattice 600-nm-period gold NHA on a Scotch tape (Figure 5c) by transfer from a PDMS donor
substrate. Through immersion in liquids with different refractive indices (Figure 5d), the device
exhibited a linear response with a sensitivity of 590 nm/RIU in the refractive index range from 1 to 1.38.
Although both PSA tape-based Al and Au NHAs refractometric sensors presented some nanoscale
cracks that were generated during the tape transfer process, which can decrease the Q factor of the
device resonances, the experimental sensitivities are comparable to similar devices fabricated on rigid
substrates. Therefore, tape supported metal NHAs offer great potential for biosensing that relies on
refractive index changes in the vicinity of the nanoholes due to specific analyte-ligand binding events.
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Figure 5. Scanning electron microscope photographs of a 625-nm-period Al nanohole array (NHA)
(a) and a 600-nm-period Au NHA (c) transferred onto Scotch adhesive tapes. Both nanostructured
surfaces exhibit excellent uniformity over large areas. Spectral transmission (b) and reflection
(d) of the NHAs shown in (a,c), respectively, when immersed in liquid solutions having different
refractive indices. Spectral features used as the refractive index sensor response are indicated
with dotted lines in both (b,d). (a,b) are reproduced from [21] with permission from the
Royal Society of Chemistry (https://www.rsc.org/journals-books-databases/journal-authors-reviewers/
licences-copyright-permissions/). (c,d) are reproduced from [22] under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/).

3.2. Opto-Mechanical Sensing

Opto-mechanical sensors can be used for a wide variety of applications, including the detection
and/or monitoring of pressure [79], force [80,81], mass [82] biomolecules [83], temperature [84],
magnetic field [85], displacement [86], strain [87] and acceleration [88]. Many of these optical
sensors are based on a cantilever [89], whose bending or vibration frequency state changes in
response to a physical or (bio)chemical magnitude variation. The cantilever state can be monitored
optically by different means such as optical beam deflection [90], interferometry [91], interdigitated
transducer deflection [92], waveguide coupling [93], integrated Bragg grating [94] and diffraction grating
coupling [95]. Most cantilever-based sensors rely on cantilevers with micrometric or nanometric
dimensions (micro/nanocantilevers); however, opto-mechanical sensing configurations based on

https://www.rsc.org/journals-books-databases/journal-authors-reviewers/licences-copyright-permissions/
https://www.rsc.org/journals-books-databases/journal-authors-reviewers/licences-copyright-permissions/
http://creativecommons.org/licenses/by/4.0/
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several-millimeters long cantilevers have also found great applicability. These are mainly based on
glass or plastic optical fibers that act as cantilevers [87,88].

In the latter context, the guiding-wave structure described in Section 3.1.1 was employed to
demonstrate a deflection sensor [28] using the Scotch tape waveguide as a cantilever with an integrated
metal grating coupler at its deflecting end. In such a configuration (Figure 6a), light impinging
the embedded grating was coupled into the tape waveguide and guided to a fixed photodetector,
which acted as both the cantilever support and optical power-photocurrent converter. The amount of
power measured by the photodetector is dependent on the overlap of the incident light beam spot
with the grating coupler; this overlap, in turn, is a function of the cantilever deflection. Experimental
characterization of a 14.85-mm-long cantilever sensor showed a linear working range of two decades
(Figure 6b) and a deflection resolution of 1.7 µm, which was limited by the noise of the light source
(semiconductor laser). The reported noise analysis indicated that sub-nanometric resolution is feasible
by using, for example, differential compensation techniques [96] and laser beam stabilizers [97].
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the embedded GC deflects along the z-axis. (b) Experimental cantilever response as a function of the
tip-grating deflection [28] and a linear fit of the measured data (red line).

Another transduction mechanism that can be used in the described Scotch tape deflection sensor
is based on the color exhibited by the integrated diffraction grating when it is illuminated by white
light. This color will depend on the angle of incidence of the illuminating light beam, which is a
function of the cantilever tape deflection. This principle is illustrated in Figure 7, which shows an Al
diffraction grating integrated into a Scotch tape cantilever operating as an electrostatic-opto-mechanical
sensor [21]. This device uses the triboelectric effect of the adhesive tape, which can be electrically
charged by peeling it off, to optically detect the presence of permanent or induced electrical charges in
its vicinity. The readout equipment can combine a broadband light source, a high-resolution imaging
spectrometer and a low-noise CCD camera to extract spectral information [98].

Fiber Bragg grating (FBG) strain sensors are an important type of optomechanical sensor [99,100].
In these devices the effective refractive index of the fiber core and the spatial periodicity of the grating
are both affected by changes in strain due to the strain-optic effect. This produces a shift in the Bragg
wavelength, which is related to variations in the fiber strain. A relevant application of these optical
strain sensors is structural health monitoring based on the collection of ultrasonic waves [101–104].
For this purpose, adhesives are typically used for bonding the strain measuring fiber and the host
structure in order to assure permanent mechanical coupling between both elements, thus avoiding
losses due to sliding. The adhesive not only provides fixing but also plays a key role in the sensor
performance since longitudinal and transverse displacements at the surface produced by Lamb waves
in the structure are transferred to the optical fiber through the adhesive, leading to axial strain along the
FBG optical fiber axis [102,103]. In particular, the symmetric S0 or antisymmetric A0 Lamb waves are
coupled to guided L01 waves in an optical fiber at the adhesive bond location, resulting in L01 modes of
equal amplitudes propagating in both directions along the optical fiber. Wee et al. [104] demonstrated
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that when the adhesive bond is replaced with adhesive tape the S0 Lamb waves couple to the L01 modes
with a preferential direction. The directional coupling that is produced by the adhesive tape could be
applied to design multiplexed FBG sensor arrays with specified signal pathways through the optical
fiber networks.
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Figure 7. An electrostatic-opto-mechanical sensor [21]. (a) A Scotch tape cantilever with an integrated
Al diffraction grating. The tape is electrically charged by peeling it off. When a plastic pen is placed
close to the charged tape (b,c), opposite charges are induced in the pen. Electrostatic forces between
the tape and the pen result in bending of the cantilever, which is observed as an iridescent color change
of the Al diffraction grating.

3.3. Volatile Organic Compound Vapor Sensing

The detection of volatile organic compounds (VOCs) is a subject of great interest with applications
in a variety of fields ranging from environmental monitoring to chemical and food industries. VOCs can
be flammable and explosive above a certain concentration; therefore, optical sensors are particularly
well suited for VOC detection as electrical spark hazards can be largely eliminated. An optical vapor
sensor typically consists of a material, such as a polymer, that is sensitive to the vapor analyte integrated
with an optical transducer, such as a Fabry-Perot cavity. Many examples can be found in the literature
of optical vapor sensors that are a result of combining many different sensing materials with optical
transducers, for example, [105–109].

Recently, a simple optical vapor sensor based on single-coated transparent Scotch tape for the
detection of methanol and ethanol vapors was investigated [110]. The adhesive side of the tape
was exposed to ethanol and methanol vapors, and the tape was simultaneously illuminated by a
635-nm-wavelength laser beam (Figure 8a). The transmitted power was dependent on the vapor type
and exposition time, which was attributed to light scattering and polymer swelling variations occurring
in the tape that are produced by the exposure of the latter to the different vapors. Thus, the Scotch
tape played the roles of both the sensing material and the transducing element of the chemical sensor.
The adhesive tape exhibited high selectivity for ethanol vapor over methanol vapor (Figure 8b), a linear
detection range of 0–100 vol% for ethanol-methanol mixtures, and detection limits of 8.8 vol% ethanol
and 17.6 vol% methanol. For comparison, detection limits reported for enzymatic biosensors [111] were
3 vol% liquid methanol and 23 vol% liquid ethanol, and 0.5–2.1 vol% liquid ethanol for fluorescence
probes [112]. Hence, it was concluded that the studied Scotch tape could be used as a simple and
cost-effective disposable sensor for easy integration in optical platforms targeting ethanol–methanol
mixture testing, either on-the-spot or remotely. Note that, besides the reported free-space interrogation
scheme, a guiding-wave version of the sensor is also feasible using the Scotch tape as a waveguide,
similar to VOC optical fiber sensors [106].
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4. Discussions

Commercial PSA tapes are ubiquitous in many research laboratories, where they are mainly
employed as a cheap, quick, versatile and easy-to-use solution for fastening, sealing, masking and
joining. The possibility of using ready-available PSA tapes for the implementation of optical sensors,
either as a manufacturing tool or as a functional component of the device, can therefore greatly simplify
the work of researchers, especially in the demonstration of prototypes or proof-of-concept devices.

From an industrial perspective, PSA tapes can be provided at low cost in large quantities and in
different finished formats, typically in a roll form, which should facilitate its incorporation in assembly
lines for mass production of optical sensors. Additionally, the constituent materials of conventional
adhesive tapes are well known and so is the related technology to process them. Nevertheless,
for commercial use of the reviewed optical sensors based on PSA tapes, sensor performance parameters
such as repeatability and reproducibility need to be studied to a greater extent.

Future research could be directed towards further exploiting the opto-mechanical properties
of both general-use and application-oriented PSA tapes, investigating the surface functionalization
of adhesive tapes for the implementation of optical biosensors, and the exploration of new sensor
configurations and applications based on, for example, the addition of nanomaterials (nanoparticles,
nanowires and 2D materials) to the adhesive layer of the tapes, and the capability of PSA tapes to emit
terahertz and optical radiation [113].
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