How Many Days are Necessary to Represent Typical Daily Leg Movement Behavior for Infants at Risk of Developmental Disabilities?
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedure
2.2.1. Wearable Sensor Data
2.2.2. Anthropometrics, Videos, and Alberta Infant Motor Scale (AIMS)
2.3. Outcome Measures
2.4. Statistics
3. Results
3.1. Leg Movement Rate
3.2. Duration
3.3. Average Acceleration
3.4. Peak Acceleration
3.5. Weekend Days Versus Weekdays
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zablotsky, B.; Black, L.I.; Maenner, M.J.; Schieve, L.A.; Danielson, M.L.; Bitsko, R.H.; Blumberg, S.J.; Kogan, M.D.; Boyle, C.A. Prevalence and trends of developmental disabilities among children in the United States: 2009–2017. Pediatrics 2019, 144, e20190811. [Google Scholar] [CrossRef] [PubMed]
- Bear, L.M. Early identification of infants at risk for developmental disabilities. Pediatr. Clin. North Am. 2004, 51, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, B.D.; Ulrich, D.A. Spontaneous leg movements of infants with down syndrome and nondisabled infants. Child Dev. 1995, 66, 1844–1855. [Google Scholar] [CrossRef]
- Jeng, S.F.; Chen, L.C.; Yau, K.I. Kinematic analysis of kicking movements in preterm infants with very low birth weight and full-term infants. Phys. Ther. 2002, 82, 148–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bultmann, C.; Orlikowsky, T.; Häusler, M.; Trepels-kottek, S.; Disselhorst-klug, C.; Schoberer, M. Early human development spontaneous movements in the first four months of life: An accelerometric study in moderate and late preterm infants. Early Hum. Dev. 2019, 130, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kanemaru, N.; Watanabe, H.; Kihara, H.; Nakano, H.; Takaya, R.; Nakamura, T.; Nakano, J.; Taga, G.; Konishi, Y. Specific characteristics of spontaneous movements in preterm infants at term age are associated with developmental delays at age 3 years. Dev. Med. Child Neurol. 2013, 55, 713–721. [Google Scholar] [CrossRef]
- Rademacher, N.; Black, D.P.; Ulrich, B.D. Early spontaneous leg movements in infants born with and without myelomeningocele. Pediatr. Phys. Ther. 2008, 20, 137–145. [Google Scholar] [CrossRef]
- Smith, B.A.; Teulier, C.; Sansom, J.; Stergiou, N.; Ulrich, B.D. Approximate entropy values demonstrate impaired neuromotor control of spontaneous leg activity in infants with myelomeningocele. Pediatr. Phys. Ther. 2011, 23, 241–247. [Google Scholar] [CrossRef]
- Hikihara, Y.; Tanaka, C.; Oshima, Y.; Ohkawara, K.; Ishikawa-Takata, K.; Tanaka, S. Prediction models discriminating between nonlocomotive and locomotive activities in children using a triaxial accelerometer with a gravity-removal physical activity classification algorithm. PLoS ONE 2014, 9, e94940. [Google Scholar] [CrossRef] [Green Version]
- Wondra, V.C.; Pitetti, K.H.; Beets, M.W. Gait parameters in children with motor disabilities using an electronic walkway system: Assessment of reliability. Pediatr. Phys. Ther. 2007, 19, 326–331. [Google Scholar] [CrossRef]
- Smith, B.A.; Trujillo-Priego, I.A.; Lane, C.J.; Finley, J.M.; Horak, F.B. Daily quantity of infant leg movement: Wearable sensor algorithm and relationship to walking onset. Sensors 2015, 15, 19006–19020. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Priego, I.A.; Smith, B.A. Kinematic characteristics of infant leg movements produced across a full day. RATE 2017, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Priego, I.A.; Lane, C.J.; Vanderbilt, D.L.; Deng, W.; Loeb, G.E.; Shida, J.; Smith, B.A. Development of a wearable sensor algorithm to detect the quantity and kinematic characteristics of infant arm movement bouts produced across a full day in the natural environment. Technologies 2017, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Trujillo-Priego, I.A.; Smith, B.A. How many days are necessary to represent an infant’s typical daily leg movement behavior using wearable sensors? Phys. Ther. 2019, 99, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, B.H. Wearable motion sensors to continuously measure real-world physical activities. Curr. Opin. Neurol. 2013, 26, 602–608. [Google Scholar] [CrossRef] [PubMed]
- McKay, S.M.; Angulo-Barroso, R.M. Longitudinal assessment of leg motor activity and sleep patterns in infants with and without down syndrome. Infant Behav. Dev. 2006, 29, 153–168. [Google Scholar] [CrossRef]
- Whitt-Glover, M.C.; O’Neill, K.L.; Stettler, N. Physical activity patterns in children with and without down syndrome. Pediatr. Rehabil. 2006, 9, 158–164. [Google Scholar] [CrossRef]
- Mitchell, L.E.; Ziviani, J.; Boyd, R.N. Variability in measuring physical activity in children with cerebral palsy. Med. Sci. Sports Exerc. 2015, 47, 194–200. [Google Scholar] [CrossRef]
- Pirpiris, M.; Graham, H.K. Uptime in children with cerebral palsy. J. Pediatr. Orthop. 2004, 24, 521–528. [Google Scholar] [CrossRef]
- Wilson, N.C.; Mudge, S.; Stott, N.S. Variability of total step activity in children with cerebral palsy: Influence of definition of a day on participant retention within the study. BMC Res. Notes 2016, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, S.; Kang, M.; Bjornson, K.F.; Song, K. Reliably measuring ambulatory activity levels of children and adolescents with cerebral palsy. Arch. Phys. Med. Rehabil. 2013, 94, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinze, F.; Hesels, K.; Breitbach-Faller, N.; Schmitz-Rode, T.; Disselhorst-Klug, C. Movement analysis by accelerometry of newborns and infants for the early detection of movement disorders due to infantile cerebral palsy. Med. Biol. Eng. Comput. 2010, 48, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Bandini, L.G.; Gleason, J.; Curtin, C.; Lividini, K.; Anderson, S.E.; Cermak, S.A.; Maslin, M.; Must, A. Comparison of physical activity between children with autism spectrum disorders and typically developing children. Autism 2013, 17, 44–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandt, D.D.R.; Frey, G.C. Comparison of physical activity levels between children with and without autistic spectrum disorders. Adapt. Phys. Act. Q. 2005, 22, 146–159. [Google Scholar] [CrossRef]
- Eiholzer, U.; Nordmann, Y.; l’Allemand, D.; Schlumpf, M.; Schmid, S.; Kromeyer-Hauschild, K. Improving body composition and physical activity in prader-willi syndrome. J. Pediatr. 2003, 142, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Corkum, P.; Tannock, R.; Moldofsky, H.; Hogg-Johnson, S.; Humphries, T. Actigraphy and parental ratings of sleep in children with attention-deficit/hyperactivity disorder (ADHD). Sleep 2001, 24, 303–312. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Yun, J. Determining daily physical activity levels of youth with developmental disabilities: Days of monitoring required? Adapt. Phys. Activ. Q. 2009, 26, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.A.; Vanderbilt, D.L.; Applequist, B.; Kyvelidou, A. Sample entropy identifies differences in spontaneous leg movement behavior between infants with typical development and infants at risk of developmental delay. Technology 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Cliff, D.P.; Reilly, J.J.; Okely, A.D. Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0–5 years. J. Sci. Med. Sport. 2009, 12, 557–567. [Google Scholar] [CrossRef]
- Eaton, W.O.; McKeen, N.A.; Lam, C.-S. Instrumented motor activity measurement of the young infant in the home: Validity and reliability. Infant. Behav. Dev. 1988, 11, 375–378. [Google Scholar] [CrossRef]
- Pitchford, E.A.; Ketcheson, L.R.; Kwon, H.J.; Ulrich, D.A. Minimum accelerometer wear time in infants: A generalizability study. J. Phys. Act. Heal 2017, 14, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, L.I.C.; ICM, D.A.S.; Martins, R.C.; Wendt, A.; Goncalves, H.; Hallal, P.R.C.; Wehrmeister, F.C. Protocol for objective measurement of infants’ physical activity using accelerometry. Med. Sci. Sport. Exerc. 2018, 50, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Gretebeck, R.J.; Montoye, H.J. Variability of some objective measures of physical activity. Med. Sci. Sport Exerc. 1992, 24, 1167–1172. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Burkett, L.; Reis, J.P.; Ainsworth, B.E.; Macera, C.A.; Wilson, D.K. How many days of pedometer monitoring predict weekly physical activity in adults? Prev. Med. (Baltim.) 2005, 40, 293–298. [Google Scholar] [CrossRef]
- Eligibility Criteria. Available online: https://www.cpqcc.org/sites/default/files/CCS%20HRIF%20Prog%20Med%20Criteria%20%28flow%20chart%29%20FEB2018.pdf (accessed on 17 September 2020).
- Piper, M.C.; Darrah, J. Motor Assessment of the Developing Infant; WB Saunders: Philadelphia, PA, USA, 1994. [Google Scholar]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Measurement in medicine-the analysis of method comparison studies. J. R. Stat. Soc. Ser. D. Stat. 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Byun, W.; Beets, M.W.; Pate, R.R. Sedentary Behavior in preschoolers: How many days of accelerometer monitoring is needed? Int. J. Environ. Res. Public Health 2015, 12, 13148–13161. [Google Scholar] [CrossRef]
- Aadland, E.; Johannessen, K. Agreement of objectively measured physical activity and sedentary time in preschool children. Prev. Med. Rep. 2015, 2, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Barreira, T.V.; Schuna, J.M.; Tudor-Locke, C.; Chaput, J.P.; Church, T.S.; Fogelholm, M.; Hu, G.; Kuriyan, R.; Kurpad, A.; Lambert, E.V.; et al. Reliability of accelerometer-determined physical activity and sedentary behavior in school-aged children: A 12-country study. Int. J. Obes. Suppl. 2015, 5, S29–S35. [Google Scholar] [CrossRef] [Green Version]
- Penpraze, V.; Reilly, J.J.; MacLean, C.M.; Montgomery, C.; Kelly, L.A.; Paton, J.Y.; Aitchison, T.; Grant, S. Monitoring of physical activity in young children: How much is enough? Pediatr. Exerc. Sci. 2006, 18, 483–491. [Google Scholar] [CrossRef]
- Wickel, E.E.; Welk, G.J. Applying generalizability theory to estimate habitual activity levels. Med. Sci. Sports Exerc. 2010, 42, 1528–1534. [Google Scholar] [CrossRef] [PubMed]
- Wickel, E.E. Reporting the reliability of accelerometer data with and without missing values. PLoS ONE 2014, 9, e114402. [Google Scholar] [CrossRef]
- Clemes, S.A.; Griffiths, P.L. How many days of pedometer monitoring predict monthly ambulatory activity in adults? Med. Sci. Sports Exerc. 2008, 40, 1589–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigmundová, D.; Vašíčková, J.; Stelzer, J.; Repka, E. The influence of monitoring interval on data measurement: An analysis of step counts of university students. Int. J. Environ. Res. Public Health 2013, 10, 515–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, E.S.; Danquah, I.H.; Petersen, C.B.; Tolstrup, J.S. Intra-individual variability in day-to-day and month-to-month measurements of physical activity and sedentary behaviour at work and in leisure-time among Danish adults. BMC Public Health 2016, 16, 1222. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Locke, C.; Bassett, D.R.; Swartz, A.M.; Strath, S.J.; Parr, B.B.; Reis, J.P.; Dubose, K.D.; Ainsworth, B.E. A preliminary study of one year of pedometer self-monitoring. Ann. Behav. Med. 2004, 28, 158–162. [Google Scholar] [CrossRef]
- Kocherginsky, M.; Huisingh-Scheetz, M.; Dale, W.; Lauderdale, D.S.; Waite, L. Measuring physical activity with hip accelerometry among us older adults: How many days are enough? PLoS ONE 2017, 12, e0170082. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, S.; Stevens, S.L.; Kang, M.; Morgan, D.W. Reliability of daily step activity monitoring in adults with incomplete spinal cord injury. J. Rehabil. Res. Dev. 2011, 48, 1187–1194. [Google Scholar] [CrossRef]
- Bingham, D.D.; Costa, S.; Clemes, S.A.; Routen, A.C.; Moore, H.J.; Barber, S.E. Accelerometer data requirements for reliable estimation of habitual physical activity and sedentary time of children during the early years-a worked example following a stepped approach. J. Sport Sci. 2016, 34, 2005–2010. [Google Scholar] [CrossRef]
- Pereira, J.R.; Cliff, D.P.; Sousa-Sá, E.; Zhang, Z.; Santos, R. Prevalence of objectively measured sedentary behavior in early years: Systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2019, 29, 308–328. [Google Scholar] [CrossRef]
- Zhou, J.; Schaefer, S.Y.; Smith, B.A. Quantifying caregiver movement when measuring infant movement across a full day: A case report. Sensors 2019, 19, 2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worobey, J.; Vetrini, N.R.; Rozo, E.M. Mechanical measurement of infant activity: A cautionary note. Infant Behav. Dev. 2009, 32, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Infant | Health Status Summary | Gestational Age at Birth (Weeks) | Chronological Age (Days) | Adjusted Age (Days) | Gender (M = Male, F = Female) | Weight (kg) | Length (cm) | Head Circumference (cm) | AIMS (Total) | AIMS (Percentile) | Included for Final Analysis? |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | preterm, short gut syndrome | 25 | 495 | 395 | F | 8.22 | 78.0 | 42.4 | 24 | <5 | Yes |
2 | preterm | 30 | 138 | 74 | F | 4.81 | 54.0 | 37.8 | 7 | 10–25 | Yes |
3 | preterm | 26 | 234 | 137 | M | 6.07 | 59.5 | 41.8 | 14 | 10–25 | Yes |
4 | preterm | 24 | 441 | 333 | F | 6.49 | 68.5 | 42.0 | 49 | 25–50 | Yes |
5 | preterm, intraventricular hemorrhage | 30 | 182 | 112 | M | 5.88 | 55.5 | 35.8 | 8 | 5–10 | Yes |
6 | preterm | 31 | 263 | 202 | M | 8.31 | 67.0 | 43.5 | 20 | 5–10 | Yes |
7 | preterm, on oxygen | 23 | 339 | 224 | F | 7.77 | 63.0 | 41.0 | 12 | <5 | Yes |
8 | preterm | 25 | 536 | 433 | F | 9.88 | 70.0 | 46.0 | 52 | <5 | Yes |
9 | preterm | 25 | 536 | 433 | M | 8.39 | 69.0 | 46.5 | 52 | <5 | Yes |
10 | congenital heart defects | 41 | 262 | NA | M | 8.02 | 67.0 | 45.0 | 33 | 10–25 | Yes |
11 | preterm, gets breathing treatment | 35 | 273 | 239 | F | 9.22 | 68.0 | 44.0 | 40 | 50–75 | Yes |
12 | preterm, gastroparesis | 28 | 498 | 417 | F | 7.49 | 68.5 | 45.2 | 58 | 75–90 | No |
13 | preterm, on ventilator and feeding tube | 33 | 147 | 114 | M | 6.46 | 62.5 | 41.0 | 13 | 25–50 | No |
14 | preterm | 29 | 306 | 233 | M | 9.07 | 66.0 | 46.0 | 16 | <5 | No |
15 | omphalocele, Beckwith- Weidmann syndrome | 36 | 301 | - | F | 11.47 | 72.0 | 48.0 | 27 | <5 | No |
16 | DiGeorge syndrome | 40 | 85 | - | M | 5.01 | 51 | 40 | 8 | 10–25 | No |
Parameter | Median (Range) | Median of Absolute Difference (Range) Compared with Average for 5 d | Median of Difference (Range) Compared with Average for 5 d | Spearman Correlation for Each Method Compared with Average for 5 d |
---|---|---|---|---|
First day (d) | 1082 (333, 1818) | 165 (20, 277) | −20 (−277, 234) | 0.80 |
Average for first 2 d | 1064 (512, 1962) | 71 (40, 195) | −40 (−195, 137) | 0.94 |
Average for first 3 d | 1110 (534, 2105) | 63 (9, 152) | 9 (−152, 93) | 0.85 |
Average for first 4 d | 1152 (477, 2193) | 40 (14, 97) | 27 (−70, 97) | 0.92 |
Average for first 5 d | 1185 (441, 2095) | - | - | - |
Parameter | Median (Range) | Median of Absolute Difference (Range) Compared with Average for 5 d | Median of Difference (Range) Compared with Average for 5 d | Spearman Correlation for Each Method Compared with Average for 5 d |
---|---|---|---|---|
First day (d) | 0.26 (0.24, 0.3) | 0.01 (0, 0.05) | 0 (−0.02, 0.05) | 0.50 |
Average for first 2 d | 0.26 (0.24, 0.29) | <0.01 (0, 0.02) | 0 (−0.01, 0.02) | 0.77 |
Average for first 3 d | 0.26 (0.24, 0.3) | <0.01 (0, 0.01) | 0 (0, 0.01) | 0.92 |
Average for first 4 d | 0.26 (0.24, 0.29) | <0.01 (0, 0.01) | 0 (0, 0.01) | 0.96 |
Average for first 5 d | 0.25 (0.24, 0.29) | - | - | - |
Parameter | Median (Range) | Median of Absolute Difference (Range) Compared with Average for 5 d | Median of Difference (Range) Compared with Average for 5 d | Spearman Correlation for Each Method Compared with Average for 5 d |
---|---|---|---|---|
First day (d) | 2.190 (1.863, 2.496) | 0.085 (0.015, 0.202) | −0.015 (−0.202, 0.180) | 0.85 |
Average for first 2 d | 2.270 (1.846, 2.372) | 0.052 (0.019, 0.126) | −0.032 (−0.126, 0.109) | 0.77 |
Average for first 3 d | 2.301 (1.825, 2.436) | 0.050 (0.005, 0.126) | −0.031 (−0.126, 0.053) | 0.91 |
Average for first 4 d | 2.307 (1.802, 2.513) | 0.023 (0.001, 0.068) | 0.010 (−0.067, 0.068) | 0.98 |
Average for first 5 d | 2.279 (1.781, 2.490) | - | - | - |
Parameter | Median (Range) | Median of Absolute Difference (Range) Compared with Average for 5 d | Median of Difference (Range) Compared with Average for 5 d | Spearman Correlation for Each Method Compared with Average for 5 d |
---|---|---|---|---|
First day (d) | 4.371 (3.439, 5.091) | 0.197 (0.013, 0.535) | −0.013 (−0.535, 0.509) | 0.85 |
Average for first 2 d | 4.501 (3.474, 4.833) | 0.112 (0.040, 0.354) | −0.040 (−0.354, 0.232) | 0.95 |
Average for first 3 d | 4.430 (3.344, 4.948) | 0.102 (0.024, 0.323) | −0.092 (−0.323, 0.102) | 1.00 |
Average for first 4 d | 4.427(3.281, 5.103) | 0.059 (0.021, 0.154) | 0.028 (−0.152, 0.154) | 0.99 |
Average for first 5 d | 4.400 (3.242, 5.059) | - | - | - |
Parameter | Median (Minimum, Maximum) on: | Median Absolute Difference between Weekend Days and Weekdays (Range) | Median Difference between Weekend Days and Weekdays (Range) | Spearman Correlation for Leg Movement Rate, Duration, Average Acceleration, and Peak Acceleration between Weekend Days and Weekdays | |
---|---|---|---|---|---|
Weekend Days | Weekdays | ||||
Leg Movement Rate | 1159 (512, 1778) | 1157 (443, 1962) | 180 (31, 415) | −20 (−415, 257) | 0.64 |
Duration: seconds | 0.26 (0.24, 0.29) | 0.25 (0.23, 0.29) | <0.01 (0, 0.04) | <0.01(−0.04, 0.01) | 0.43 |
Average acceleration: m/s2 | 2.346 (1.890, 2.561) | 2.278 (1.714, 2.391) | 0.156 (0.027, 0.272) | −0.106 (−0.272, 0.190) | 0.52 |
Peak acceleration: m/s2 | 4.520 (3.474, 5.255) | 4.475 (3.087, 4.833) | 0.277 (0.039, 0.728) | −0.157 (−0.728, 0.427) | 0.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Nishiyori, R.; Vanderbilt, D.L.; Smith, B.A. How Many Days are Necessary to Represent Typical Daily Leg Movement Behavior for Infants at Risk of Developmental Disabilities? Sensors 2020, 20, 5344. https://doi.org/10.3390/s20185344
Deng W, Nishiyori R, Vanderbilt DL, Smith BA. How Many Days are Necessary to Represent Typical Daily Leg Movement Behavior for Infants at Risk of Developmental Disabilities? Sensors. 2020; 20(18):5344. https://doi.org/10.3390/s20185344
Chicago/Turabian StyleDeng, Weiyang, Ryota Nishiyori, Douglas L. Vanderbilt, and Beth A. Smith. 2020. "How Many Days are Necessary to Represent Typical Daily Leg Movement Behavior for Infants at Risk of Developmental Disabilities?" Sensors 20, no. 18: 5344. https://doi.org/10.3390/s20185344
APA StyleDeng, W., Nishiyori, R., Vanderbilt, D. L., & Smith, B. A. (2020). How Many Days are Necessary to Represent Typical Daily Leg Movement Behavior for Infants at Risk of Developmental Disabilities? Sensors, 20(18), 5344. https://doi.org/10.3390/s20185344