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Abstract: This work presents the development and implementation of a distributed navigation system
based on object recognition algorithms. The main goal is to introduce advanced algorithms for image
processing and artificial intelligence techniques for teaching control of mobile robots. The autonomous
system consists of a wheeled mobile robot with an integrated color camera. The robot navigates
through a laboratory scenario where the track and several traffic signals must be detected and
recognized by using the images acquired with its on-board camera. The images are sent to a computer
server that performs a computer vision algorithm to recognize the objects. The computer calculates
the corresponding speeds of the robot according to the object detected. The speeds are sent back to
the robot, which acts to carry out the corresponding manoeuvre. Three different algorithms have
been tested in simulation and a practical mobile robot laboratory. The results show an average of 84%
success rate for object recognition in experiments with the real mobile robot platform.

Keywords: mobile robot; vision-based navigation; object recognition algorithm

1. Introduction

The current development of robotics has been influenced by the growth of NICT (New Information
and Communication Technologies), which has provided the perfect scenario for the confronting of
new challenges. In this context, the autonomous navigation of robots based on vision has grown
considerably, showing increased interest for some years now.

This interest began some years ago, when researchers presented different approaches for
vision-based navigation. For example, in [1], the authors described the development of a system
that is capable to calculate the robot position from memorized and currently taken images. While in [2],
the authors presented a study on the navigational vision of mobile robots. In this comprehensive
and in-depth survey, interesting breakthroughs can be found in approaches that make a distinction
between indoor and outdoor environments [3–5].

In recent years, navigation based on vision has shown renewed interest in the scientific and
educational communities [6–9] because it has many practical applications in daily life.

Robots that can navigate autonomously are complex systems involving several components that
have a common denominator: communication capabilities and the speed of processing and operation.
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These capabilities are very important because an autonomous robot must have all the necessary
information available to make the right decisions at every sampling time [10,11].

Currently, it is common to find robots in the market that integrate cameras, high processing
performance and communication capabilities such as Bluetooth or WI-FI, which were not available
until recently; examples include the e-puck robot [12], Khepera IV [13], Pioneer 3-DX [14],
and TurtleBot3 [15].

These capabilities are important in robot vision-based navigation because robots need to acquire
images of their environment, process them, and make decisions to navigate through a scenario [16,17].
In the case of robots that are not capable of performing complex and realistic tasks such as image
processing, these images can be acquired with a camera and sent to a server for processing. The server
can answer with the orders for the motors of the robot to navigate, or these orders can be calculated in
the robot with the results of the image processing [18,19]. This introduces a delay of the network in
the control loop, which is an important element that must be considered in these systems. In a local
WI-FI network, this delay should not affect the operation of the system. The fact that the processing is
done in a server allows another type of hard task, such as the implementation of machine learning
algorithms, which require a training stage such as the supervised, unsupervised and reinforcement
learning algorithms [20–23].

The literature shows an effort to add vision-based systems to mobile robot applications.
The manuscript [24] presents a system for the detection of persons using cascade classifiers.
This approach uses the implementation of HOG (Histogram of Oriented Gradients) feature descriptor
and AdaBoost algorithm with a 2D laser and a camera. Similarly, in [25] the development of
a vision-based control system for the alignment of an autonomous forklift vehicle is described.
The authors implemented Haar feature-based cascade classifiers for detection and heavy spool
pick-and-place operation. On the other hand, in [26], the authors presented two systems for detection
and classification of traffic signs in real time. The first method is divided into three stages: color
segmentation using a threshold, detection using SVM (Support Vector Machine) and classification
tree-like and Random Forest. Another approach, like [27], proposes a detection and recognition
system for road warning signs with voice notification for autonomous vehicles. It implements Haar
feature-based cascade classifiers. Finally, the article [28] describes a navigation system of a robot based
on paths following. The method uses a combination of the detection of colors, textures and lines with
different classifiers.

During the last few years, a recent effort has focused in the use of Deep Learning for this kind of
tasks [29], such as CNN (Convolutional Neural Network), which has become increasingly popular
in this field. They can provide a high precision classification for images that are very useful for
vision-based navigation in real-time. For example, in [30], the authors present a system capable of
navigating and building a map of the environment using an RGB-D camera. Another interesting
approach for object detection is Fast R-CNN (Fast Region-based Convolutional Network). This method
can efficiently classify the objects using deep convolutional networks. Compared with CNN, it takes
an additional sub-network to generate region proposals and it employs several innovations to improve
training and testing speed while also increasing detection accuracy [31]. On the other hand, YOLO
(You Only Look Once) [32] also has been used for object detection in vision-based navigation in the
last years. This algorithm accomplishes object detection via a fixed-grid regression.

As can be seen, there is a wide range of approaches to this topic. After an exhaustive analysis of
all mentioned works, we realized that none of them is available for laboratory practices with students,
which is one of our main purposes with this research.

This article presents a vision-based autonomous navigation system with machine learning in a
laboratory environment. The system has a distributed architecture, which is based on client-server
application and it consists of a Khepera IV robot that acquires the images and sends them to a server.
On the server, a trained cascade of classifiers processes the images and calculates the linear and angular
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velocities of the robot to navigate through the indoor experimental environment built in the laboratory.
These velocities are sent back to the robot to perform the navigation.

The main motivation for this work is that our Engineering School has implemented a platform
for educational and research purposes in the field of mobile robotics [33,34]. In which students can
experiment with their own controllers in order to incorporate these concepts in the teaching of robot
control. In this sense, experiments on position control, obstacle avoidance, among others, have been
implemented with very good results, for example [35–38].

Now, the purpose is to use the robot’s on-board camera to develop even more challenging
experiments that attract the students in an interactive environment. These artificial vision experiments
can improve the quality of the laboratory practices, which can mean a step up in the teaching-learning
process of mobile robot labs.

The main contribution of this work is to propose the use of advanced computer vision algorithms
to perform much more sophisticated and engaging experiments with practical mobile robot laboratories
for pedagogical purposes. The motivation of this is to provide much more challenging experiments for
the students to improve the quality of the teaching-learning process in this field. A summarized list of
contributions of this work is the following: (1) the incorporation of new computer vision capabilities
to the practical mobile robot laboratories; (2) to provide much more challenging experiments in an
interactive and engaging environment; (3) introduce advanced algorithms for image processing and
artificial intelligence techniques for teaching control of mobile robots; and (4) the experiments can
be tested in simulation firstly, and after that, they can be implemented in a real and easy-to-use
environment in a relatively fast and straightforward way.

The remainder of the paper is organized as follows: Section 2 presents the fundamental concepts
related to this article; Section 3 describes the implementation of the experiments in the laboratory;
Section 4 shows the results of some test experiments developed in simulation and with the platform;
and finally, Section 5 presents the main conclusions and future work.

2. Background

The vision-based system consists of the processing of images acquired by the on-board camera.
Today, you can find some software libraries to carry out this process, such as Torch3vision, VXL (Vision
something Libraries), Library JavaVIS (An Integrated Computer Vision Library for Teaching Computer
Vision) [39], LIT-Lib (C++ Computer Vision Library) [40], and OpenCV (Open source Computer Vision
library) [41]. After some studies and tests, OpenCV was selected to carry out the image processing.
It presents the most complete solutions for the problems that we face processing the images acquired
by the robot.

OpenCV is a library of functions for real-time computer vision that was developed by Intel. It is
free for use under an open-source license. It has interfaces for C++, Python, and Java. It is very
versatile because it can be compiled for Windows, Linux, Mac OS, IOS and Android. It has more than
2500 optimized algorithms that include machine learning, face detection, motion detection, object
tracking, 3D object model extraction, finding similar images in a database, augmented reality [42], etc.
In our case, its main drawback is that it cannot be executed on the robot. That is why we need to send
the images from the robot to a server to process them and calculate the orders for the robot.

2.1. Image Segmentation

Different techniques are used to obtain the features of an image. One of the most commonly used
techniques is segmentation, which consists of dividing the image into multiple segments (set of pixels)
to obtain the information from these segments (also known as super-pixels). The idea is to simplify the
image into something that is easier to analyze [43]. This process is commonly used to detect objects
and boundaries such as lines, curves, edges, corners, etc. As a result, a set of segments is obtained that
is determined by regions with similar characteristics such as intensity, color or texture. The simplest
method in segmentation is thresholding, which can create a binary image (black/white) from a color
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image. If the original image is (x, y), the segmented image is (x′, y′), which is determined by the
threshold U(0 < U < 255), where 255 is the maximum threshold value for the colors. This operation
is defined as follows:

(x′, y′) = 255, i f (x, y) > Threshold (1)

(x′, y′) = 0, i f (x, y) <= Threshold (2)

The value of the threshold is selected depending on the colors that must be grouped to establish,
for example, a difference from the background of the image. Figure 1 shows the traffic signals that will
be used for navigation.

Figure 1. Traffic signals that must be detected.

2.2. Cascade of Classifiers

Cascade classifiers are a concatenation of ensemble learning based on several classifiers [44].
Each basic classifier implements the AdaBoost algorithm in a decision-tree classifier with at least 2
leaves [45]. The information from the output of a given classifier is used as an additional input of the
next classifier in the sequence [46]. All the classifiers of the cascade are trained with a set of images
of the same size called “positive”, which are sample views of the object to be detected and arbitrary
“negative” images of the same size.

After the classifier is trained, it can be applied to a search window (of the same size as used during
the training) to detect the object in question in the entire frame [47]. This process is repeated until
at some stage the analyzed segment of the image is rejected or all the stages are passed. The search
window can be moved across the image to check every location for the classifier. The classifier outputs
a “T” if the region is likely to show the object and “F” otherwise. In an image, the extraction of
features can be obtained from several methods, including Haar, LBP and HOG. Figure 2 shows this
process [48].

Fr
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Figure 1: Kalman filter system model

1

Figure 2. Applying cascade classifiers to the search window on an image.

The magenta circles represent the classifiers (C1, C2 and C3). The red square represents the frame
of the image that is being analysed. If the object is detected, the output of all classifiers is T, and
the (green square) frame represents this situation. However, if some of the classifier outputs are F,
the frame is rejected (grey squares), and the object is not detected in this frame.
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3. Implementation in the Laboratory

3.1. Platform Used

The implementation of the system is based on the platform developed by the authors in a previous
work [33–35] with some modifications. The platform has been developed to perform different control
strategies in mobile robotics such as path following, tracking control, obstacle avoidance, and formation
control. The original platform is based on the IPS (Indoor Positioning System), which provides the
absolute position of the robot. For this approach, the position of the robot is not used. Figure 3 shows
a diagram of the platform in the laboratory.

Figure 3. Diagram of the platform used for the experiments.

The new distributed and vision-based system consists of a client-server application that grants
communication and operation of the Khepera IV robot. The server processes the images acquired
by the robot and calculates the velocities to control it. The software to perform the video processing
has been developed in Python and uses the OpenCV library to work with the images. The wireless
communication between the robot and the server is carried out with a WI-FI router. Furthermore,
a Play Station 3 USB camera is connected to the server to obtain and overhead view of the experiments.
This video signal is used to watch the development of the experiments by the user.

The setup of the platform for the experiments is the following: The dimensions of the arena are
2.0 m × 1.5 m. The dimensions of the robot Khepera IV are 140 mm (diameter) and 58 mm (height).
The Dimensions of traffic signals are 26 mm × 26 mm. The Number of traffic signals is 8.

3.2. Objects Detection System

Figure 4 shows the block diagram of the system. On the left side, the robot is represented by the
blue dashed line block.
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Figure 4. Block diagram of the system.
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On the right side, the server is represented by the green dashed line. The server is a PC with the
following configuration, Model Nitro AN515-52 a CPU Intel Core i5-8300H, 2.3 GHz, 12 GB of RAM
and Ubuntu 19.04.1 64-bits operating system.

The system works as follows, where the numbers represent the order in which the task is executed:

• Block 1: Robot acquires the image. The size of the image is 192 × 116 pixels.
• Block 2: The image is sent to the server using the WI-FI connection. To this end, it has

been implemented a standard TCP/IP client-server application in the Khepera and the server.
The robot has implemented the application in the programming language C, while the server has
implemented the application in Java.

• Block 3: The image is received by the server.
• Block 4: The image is processed in the server.
• Block 5: The linear and angular velocities of the robot are updated using the results of block 4.
• Block 6: The velocities are sent to the robot through the WI-FI connection.
• Block 7: The robot receives the velocities and sends them to the motors.

The software that runs the robot is very simple. It consists of two main functions: (1) to acquire
the image from the on-board camera and send it to the server, and (2) to receive the velocities from the
server and update them in the motors. Note that the image acquisition process does not require extra
lights conditions in the lab. On the other hand, the software that runs at the server is more complex
because it carries out more difficult tasks, including image processing. Figure 5 shows a simplified
flow chart of this application. The tasks are divided into the four blocks of the server side of Figure 4.
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Masking

Mid point 
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Left arrow Right arrow Stop Yield

Select the biggest detected signal

Vr, Vl
turn left

no

yes Read 
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Figure 5. Flow chart of the server side application.

The first task is to check if an image has been received. If an image is received, it is processed in
the second task (Image Processing) as follows: (1) the image is read, (2) it is converted to grey-scale,
(3) its resolution is obtained, (4) traffic signals are detected with the trained cascade of classifiers,
and (5) if a signal is detected, its size is obtained. After that, the third task calculates the velocities of
the robot from the object detected. At the beginning of this task, the process forks into two main paths:
(1) if a traffic signal is detected and (2) if the track is detected.
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If a signal has been detected, depending on its type (left arrow, right arrow, stop, yield or speed
limit), the velocities are calculated to make the corresponding action. For example: a left arrow VL is
equal to 0 and Vr is equal to 0.025 m/s, which makes the robot turns to the left. If the detected signal
is a stop, both velocities are set to 0. If the signal detected is a speed limit, the signal is processed to
determine the corresponding speed. On the other hand, if the object detected is a track, the image is
processed by thresholding to determine if the track indicates that it is a straight path or a turn to the
left or to the right. In both cases, when the velocities are calculated, they are sent to the robot and the
application reverts back to the beginning to wait for other new images.

3.3. Implementing Cascade Classifiers

To train the classifiers, existing databases of “positive” and “negative” images can be used,
or customized databases can be created. These image training sets can be created using OpenCV.
In our case, the “negative” image set was created using the on-board camera of the robot.

Figure 6 shows on the left side, 4 examples of “negative” images obtained by the robot. To provide
correct training, these images must not contain the object that wants to be classified as positive. The set
of negative images for this experiment was composed of approximately 1400 images. Figure 6 shows
on the right side, 4 examples of the positive images acquired by the robot. In this case, the object that
wants to be detected is the signal of the airport, which is included in all positive images. In this case,
the number of positive images was approximately 1000. With these two sets of images, the OpenCV
function “training cascade” was used to carry out the training stage.

(a) Examples of “negative” images. (b) Examples of “positive” images.

Figure 6. Examples of images acquired by the robot.

The selected classifiers were Haar-like with 5 stages in the cascade. A high number of classifiers
in the cascade improves the classification, but the training time can increase exponentially. We selected
Haar feature-based algorithm because this classifier showed encouraging performance with high
success recognition rates for this experiment.

3.4. Application of the Robot

As mentioned before, the programming code of the robot has been developed in Ansi C, which is
the programming language that the robot uses. The following code segment shows the pseudo-code of
this application. Note that some lines have been omitted for space reasons. Note that, the source code
of both applications is available online on GitHub.

1 Import of the l i b r a r i e s
2 main funct ion
3 // Define v a r i a b l e s and Server Socket
4 // Server Socket i s l i s t e n i n g ( 1 9 2 . 1 6 8 . 0 . 1 1 1 : 8 0 8 0 )
5 // Accept connect ion from an incoming c l i e n t
6 // I n i t i a t e l ibkhepera and robot a c c e s s
7 // Open robot socket , s t o r e the handle in i t s ptr
8 // I n i t i a l i z e the motors with tuned parameters
9 // Receive a msg from c l i e n t

https://github.com/EnriqueTorresAbarca/KHEPERA-IV-ARTIFICIAL-VISION.git
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10 // C l i e n t Socket r e c e i v e s message ?
11 // Execute rece ived v e l o c i t i e s
12 // Close socket
13 // I f an erroneous msg rece ived r i s e an e r r o r msg
14 // I f some button i s pressed program stops

The first lines define variables and some configurations. Then, the communication socket is
created and connected to the server. Through this connection, the robot sends the images acquired by
the camera of the robot with the MJPG-streamer application [49]. Then, the parameters of the motors
of the robots are initialized. After that, the received message from the computer is processed. Finally,
the velocities of the robot received in the messages are sent to the motors.

3.5. Application of the Server

The following pseudo-code shows the implementation at the server side. This code has been
developed with Python. An important detail is that the server reads the images acquired by the robot
using the TCP connection created and the application MJPG-streamer that is running at the robot.
Note that some lines have been omitted for space reasons.

1 Import the needed l i b r a r i e s
2 While loop u n t i l a key i s pressed :
3 # Read the image from the robot
4 # Execute cascade c l a s s i f i e r s with the image
5 s tops ? # I s the STOP s i g n a l ?
6 a i r p o r t ? # I s the a i r p o r t s i g n a l ?
7 rArrow? # I s the r i g h t arrow s i g n a l ?
8 lArrow ? # I s the l e f t arrow s i g n a l ?
9 # Depending on the detec ted s i g n a l

10 # i t s area i s c a l c u l a t e d
11 # Speed l i m i t s are c a l c u l a t e d using Flann technique
12 # Time of a c t i o n of the s i g n a l
13 i f time−stop_time i s l e s s than 5 , then s t a t e i s equal to STOP
14 e l s e i f time − time to turn to L e f t i s l e s s than 5 , then s t a t e i s equal to TURN LEFT
15 e l s e i f time − time to turn to Right i s l e s s than 5 , then s t a t e i s equal to TURN RIGHT
16 e l s e s t a t e i s equal to GO
17 i f s t a t e i s equal to GO, then
18 # Ca l c u l a te the c e n t e r of the t r a c k
19 # Creat ing the Mask
20 # Ca l c u l a te the v e l o c i t i e s f o r each s i g n a l
21 # V e l o c i t i e s converted and send them to the robot
22 # Sending the v e l o c i t i e s to the robot
23 i f a key pressed , e x i t

The first lines carried out the variables definition and libraries invocation. Then, the socket is
created and connected; and the trained cascade classifiers are loaded. After that, the main loop starts
and the image from the robot is obtained and conditioned. Then, the cascade of classifiers is applied to
the obtained image. The result of this operation is that only one classifier must be true. If not, the traffic
signal is detected with the classifiers, which means that the track must be followed. With the result of
the classifiers, the velocities are calculated. Finally, the velocities are sent to the robot and the program
waits for a key to finish.

4. Experimental Results

In this Section, all the tests that were carried out for the detection of objects and navigation of the
robot are shown. The results are represented from the detection of basic signals (arrows of the same
color) to more complex signals, which are involved in the tests of the designed classifiers (presented in
Section 3), as well as traffic signals and new scenarios. These results reflect the efficiency of this new
algorithm, both simulated and with the real robot. The Section describes three experiments. The first
experiment shows the difficulties of detecting multiple objects by using traditional image processing.
The second experiment describes the advantage of the cascade classifier for recognition of several
traffic signals, and finally, the third experience provides the results of the implemented vision-based
navigation system to perform an advanced experiment in the real environment.
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4.1. Experiment 1: Object Detection by Image Processing

To initiate the proposed algorithm, a simulation of a simple scenario was performed using
the V-REP simulator and the Khepera IV robot model previously developed by the authors [36,37].
The experimental concept is that the robot can navigate through the arena, detecting the arrows.

This work is based on a previous work of the authors presented in [38]. The robot control
algorithm must be able to calculate the corresponding speeds that allow the robot to turn in the correct
direction depending on the arrow detected. For the first experiment, the arrows are of the same color
to simplify the identification because, using the threshold technique, the arrows can be easily detected.
Figure 7 shows the configuration of this experiment on the left side. In the upper right corner of the
scenario, the images acquired by the on-board camera of the robot are shown in running time.

(a) Configuration of this experiment in the lab. (b) Image acquired by the robot and mask applied.

Figure 7. Detection of arrows of the same color in a simulated environment.

Once the image is detected by the robot in the program, red masking is performed, which only
displays the characteristics of the red arrow, as shown on the right side of Figure 7. The image on the
left is the image acquired by the robot camera, and the image on the right side is the result from the
red masking. The image is segmented in such a way that there is a margin where only the color red
appears. In that image, there may be several arrows, so the robot determines the largest arrow, since it
is assumed that this arrow will be the closest to the robot and thus will have more relevance.

OpenCV provides multiple tools to discern the orientation of an object, including cv.minAreaRect,
cv.fitEllipse and cv.fitLine. In our case, cv.fitLine was used, which fits a line based on a given set of points,
such as a contour. This function provides four variables that can be used to obtain two other variables
called lefty and righty. In the case of arrow detection, if it is oriented to the left, the value of the lefty
variable is positive, and righty is negative. However, if the arrow is oriented to the right, these values
change their sign.

Figure 8 shows the path of the robot on the left side, which indicates that the robot is performing
autonomous behaviour. It detects the arrow direction and makes the correct decisions to turn to the
right and to the left depending on each arrow.

The right side of this figure shows the speed behaviour of each motor during the experiment.
In the first stage, the speed of the right motor is greater than that of the left, so the robot makes a
leftward turn. Then, the speeds are equal again. In the second stage, the speed of the left motor is
greater, so the robot turns to the right. In the third stage, the robot turns to the right, and in the last
stage, the robot turns to the left. In conclusion, the robot detects four arrows and affirmatively avoids
them by producing an algorithm to detect and avoid arrows.
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Figure 8. Experiment carried out in simulation environment.

As in the simulated experiment, a test involving the detection of arrows was also carried out with
the platform. Figure 9 shows the configuration of this experiment on the left side. The robot is near
three red arrows, which are positioned at 80 cm and have an orientation of 90 degrees with respect to
each other. As in the previous case, the goal of the robot is to detect these arrows and make decisions
to navigate through the scenario.

(a) Configuration of this experiment in the lab. (b) Image acquired by the robot and mask applied.

Figure 9. Detection of arrows of the same color in a real environment.

On the right side of Figure 9, the image acquired by the robot and its corresponding masking of
the red color are shown. In the virtual experience, the cv.fitLine function worked correctly, but for the
real environment the results were not suitable to perform a clearly detection of the orientation of the
arrows. The main reason is due that cv.fitLine requires a sharp outline or contour (i.e., bounding the
shape) of the arrow, which could be however noisy by the changes of illumination in the case of the
real environment. This issue makes difficult the detection of the orientation by the cv.fitLine function.

Therefore, another technique was used according to the following criterion: An arrow has seven
vertices, but two of them are located at the top and bottom of the image; therefore, depending on the
location of those points on the x-axis, the robot can determine the orientation of the arrow.

Note that this is a previous stage of the algorithm that we want to implement. This method
needs a lot of knowledge (features) about the object to be identified, that the designer of the algorithm
has to identify discriminant features (such as borders, colors, etc.) in order to recognize the objects.
That is why we have used OpenCV functions and the robot Khepera IV, to show this drawback. On the
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contrary, we want to implement a system that is capable of detecting known objects from the training
stage, and at the same time, a new object can be added to the experiment just re-training the system.

4.2. Experiment 2: Traffic Signals Detection by Cascade Classifier in Simulation

After testing the system with these simple examples, the detection of more complex objects,
such as traffic signals, is implemented both in simulation and with the platform. The simulation test
consists of a classic example of a vehicle on a public road. The robot faces different traffic signals
during its displacement. In this case, the robot must detect 6 traffic signals to reach its objective,
which in this case is the airport signal. Figure 10 shows the configuration of this experiment in the
V-REP simulator. On the right side of the figure, the image acquired by the robot shows this signal.

Figure 10. Experimentation detection of traffic signals in simulation.

At the beginning of the experiment, the robot starts to advance linearly with both velocities at
0.0418 m/s. When it detects the first signal (60), it decreases both velocities by approximately 0.025 m/s
over 4.5 s, which means that it continues advancing but with less speed. Then, it detects the 120 speed
limit signal, and it increases both velocities to double the previous value to 0.05 m/s over 9.7 s and
continues with a straight trajectory. After that, the next signal detected is a stop, which makes the
robot decrease its speeds until reaching 0 m/s over 2.15 s.

The next detected signal is an arrow that indicates that the robot must turn to the left. This makes
the left wheel velocity 0 m/s and the right 0.025 m/s over 5.85 s. Then, the next signal is detected
by another arrow but indicates turning to the right. This makes the right velocity decrease to 0 m/s
and the left velocity increase to 0.025 m/s. At this point, the last signal (airport) is detected, and the
robot stops. Figure 11 shows the position of the robot during this experiment with its corresponding
traffic signals in the trajectory on the left side. On the right side, the corresponding velocities of this
experiment are shown.

The cascade classifier was trained by following the methodology described in Section 3.3.
The training time to build the classifier for the eight traffic signals was about 5 h.
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(a) Trajectory followed by the robot. (b) Velocities of the left and right motors.

Figure 11. Results of the experiment in simulation environment.

4.3. Experiment 3: Vision-Based Navigation in the Real Laboratory with Cascade Classifier

In this experiment, the vision-based navigation system is implemented in the real environment
to detect and classify several traffic signals. Based on the previous results, a white track was added
to the real laboratory in order to aid navigation of the robot. To this end, the images of the track
acquired by the on-board camera are also sent to the server and processed by the threshold technique as
in [50]. Finally, the robot must move over the track by using the traffic signals. Figure 12 shows the
track added to the arena.

Figure 12. Track added to the platform to help the navigation.

Figure 13 shows three subfigures; in each, the left side shows the image acquired by the on-board
camera of the robot, and the right side shows the result of the threshold technique applied to this
image. The result of the first image is that the robot must turn to the left. The result of the second
image is that the robot must turn to the right. The result of the last image is that the robot must go
straight. In this way, the robot will take actions based on both the traffic signals and the track.
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Figure 13. Experimental detection of tracks in a real environment.

After these modifications and tests, a more complex circuit was implemented with 13 traffic
signals, including the logo of our university, a McDonald’s symbol and the airport symbol. Figure 14
shows the configuration of this experiment in the laboratory with the platform.

Figure 14. Experimental detection of traffic signals in a real environment.

The experiment begins with the robot located above the white track to guide its path. The first
manoeuvre of the robot is to turn to the right. After that, the next signal detected is a stop, which is
applied to reduce the speed of the robot. The next step is a straight advance based on the track until a
turn to the right is executed, also based on track information. After that, the robot advances straight
along the track until a right turn arrow appears, and it continues to the target (McDonald symbol),
by following the track and traffic signals.

The main metric for object detection corresponds to a fraction of the frames with a successful
recognition of the traffic signals. In the experiment shown in Figure 14, the detection rates for each
signal are the following: 100% for right and left arrows, 72% for the stop signal and 88% for the airport
signal, 62% for the 60-speed limit and 85% for the 100-speed limit signals. Figure 15 shows the results
of this experiment.

On the left side, the trajectory followed by the robot in the circuit is shown; the right side shows
the corresponding velocities during the experiment. In the first 195 seconds, the speeds of the motors
range between 0 and 0.02 m/s since their maximum speed is equivalent to 100 km/h. Depending
on the speed limit signal, the speeds of the motors increase or decrease. Thus, when the speed limit
signal is 60, the maximum motor speed decreases to 0.014 m/s, and when the speed limit signal is 120,
the maximum velocity increases to 0.027 m/s. The total duration of the trajectory is 300 s.

Finally, note that there are three main processing times in the real environment: (1) Acquisition
and sent of the image captured by the robot’s camera to the server (approximately between 100 ms
and 150 ms); (2) the classification time of the cascade algorithm (in average about 30 ms); and (3) the
time required to send the command signals to the Khepera robot from the server (around 10 ms). Thus,
the total processing time for the vision-based navigation system is about 200 ms, which is equivalent
to 4 mm at the maximum speed of the robot (27 mm/s).
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Figure 15. Results of the experiment developed in the real environment.

4.4. Experiment 4: Comparative Analysis of the Vision-Based Navigation Using Cascade Classifiers and Yolo

This subsection shows the results of the comparison of the cascade classifiers and YOLO
algorithm [32], which is a family of CNN (Convolutional Neural Networks) that can perform object
detection in real-time. This algorithm learns a general representation of objects and outperforms
several detection methods, including DPM (Deformable Parts Model) [51] and R-CNN (Region-Based
Convolutional Neural Networks). In this work, the version 2 of this algorithm, also called
YOLO9000 [52], has been selected. This version improves the training and performance of the original
algorithm, and it can recognize up to 9000 object categories. Figure 16 shows the configuration of the
implemented experiment for both algorithms (Cascade classifiers and YOLO).

Figure 16. Experimental setup for the real environment.

The experiment begins with the robot on the upper right side of the figure and moving straight
along the track according to the traffic signals it detects on its way. The sequence of the traffic signals
detected by the robot are the following: Stop, Left arrow, Right arrow, Right arrow, Stop, Left arrow,
and Airport, which is the target point. Figure 17 shows the trajectory followed by the robot for both
algorithms (cascade classifiers and YOLO). The green line represents the track. The red line represents
the results of the cascade algorithm and the blue line represents the results of the YOLO algorithm.
As can be seen, the results are very similar.

Table 1 shows the results of the classification process for the cascade classifiers. These results show
that the left and right arrows are detected and classified with a 100% success rate. The STOP signal is
classified with a 72% success and the Airport signal with 88% success rate. In general, the success rate
of the algorithm is 84%, which means that in 209 of 249 frames the objects are correctly recognized.
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Figure 17. Trajectory followed by the robot for the Cascade and You Only Look Once (YOLO) algorithms.

Table 1. Results of object detection with cascade classifier.

Signal Total Frames Detected Frames Missed Frames Success Rate

Left arrow 32 32 0 100%
Right arrow 31 31 0 100%
Stop 111 80 31 72%
Airport 75 66 9 88%
Total 249 209 40 84%

Table 2 shows the results of the same experiment, but using the YOLO algorithm. The specific
success rates for each signal are the following: 99% for the left arrow, 84% for the right arrow, 97% for
the STOP signal and, 52% for the Airport signal. As can be seen, the number of missed frames is 67 of
414 in total, which represents a 84% success rate. The results for both algorithms are very similar.

Finally, note that the column total frames for both algorithms represents the number of frames
from the the first until the last detection of an object. This means that YOLO detects earlier the objects
in the track in comparison than Cascade classifier.

Table 2. Results of object detection with YOLO algorithm.

Signal Total Frames Detected Frames Missed Frames Success Rate

Left arrow 78 77 1 99%
Right arrow 129 108 21 84%
Stop 121 117 4 97%
Airport 86 45 41 52%
Total 414 347 67 84%

5. Conclusions

This work presents a vision-based system in a laboratory environment. The robot used for
the implementation is a Khepera IV, which presents high performance for this kind of application.
However, the robot cannot carry out image processing on-board to navigate through the scenario by
analysing complex information and performing object recognition, such as traffic signals on the track.

To this end, a server-side processing is added to the mobile robot platform in order to implement
image processing. In this way, the system was transformed into a distributed architecture, where the
image acquired by the robot is sent to the server using a WI-FI network configured for the experiments.
In the server, the image is processed using different image algorithms. To perform a more complex
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analysis of the scenario, a cascade of classifiers has been developed to interpret several traffic signals
(speed limits, yield signal, stop signal, airport, etc.). The analysis of the traffic signals allows the robot
to compute the corresponding motor speeds. The calculated velocities are then sent to the robot to
make the corresponding manoeuvre at each sample time. To complement the scenario, multiple tracks
are added where the robot can move. The image of a track is also processed by the server.

The proposed navigation system allows to use advanced computer vision algorithms to perform
sophisticated and engaging experiments with practical mobile robot laboratories for pedagogical
purposes. These experiments can be tested by the students in simulation firstly, and after that they can
be implemented in a real and easy-to-use environment in a relatively fast and straightforward way.

The performance of the system is highly encouraging. The communication process is fast enough
to acquire the image, send it to the server and move the robot according to the velocities received.
The hardest task is training the object recognition algorithms. The time can increase exponentially
depending on the number of images used in the training stage. This aspect must be considered
when building a similar system that includes many more objects or traffic signals. Regarding the
comparison of the implemented algorithms, the results have shown that the deep learning algorithm
provides an earlier detection and recognition of the object, but the success rate is very similar to the
Cascade classifier.

Future work will include the implementation of different classifiers with other image processing
algorithms in the server to provide the students a wide range of vision-based approaches. In addition,
more robots will be included to perform exploring and collaboration navigation. A study of the
relation between the speed of the robot and the image processing time will be included. Finally, as was
mentioned before, the experimental platform has been developed to perform different control strategies
in mobile robotics such as path following, tracking control, obstacle avoidance, and formation control.
Thus, the vision-based navigation system could be combined with the others already implemented
solutions to perform much more complex and realistic tasks.
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