MODIS Sensor Capability to Burned Area Mapping—Assessment of Performance and Improvements Provided by the Latest Standard Products in Boreal Regions
Abstract
:1. Introduction
- To assess the spatiotemporal accuracy of each of the annual time series of the burned area products versus the reference data (AFS) for the 2000–2017 period.
- Concerning to temporal accuracy, to calculate the percentages of the annual burned area detected by each product and to analyze the temporal correlation with the reference data.
- In relation to spatial accuracy, to estimate the main metrics derived from the confusion matrix (commission and omission errors) and determine the Pareto Boundary (PB) for the native spatial resolutions of each product from the reference data to separate the errors of each product from the intrinsic errors associated with its spatial resolution.
- To intercompare the spatiotemporal performance of the latest versions of the Fire_CCI 5.1 and MCD64A1 C6 products and to analyze any possible improvements over previous versions (i.e., Fire_CCI 4.1 and MCD45A1 C5.1).
- To quantify the contribution of burned area fragmentation to the classified map errors, linking the area under the annual Pareto boundary curve with the total annual errors of each product to its spatial resolution.
2. Materials and Methods
2.1. Study Region
2.2. Reference Data
2.3. Burned Area Products
2.3.1. MCD45A1 Collection 5.1
2.3.2. MCD64A1 Collection 6
2.3.3. Fire_CCI 4.1
2.3.4. Fire_CCI 5.1
2.4. Accuracy Assessment
3. Results
3.1. Temporal Accuracy
3.2. Spatial Accuracy
3.3. Pareto Boundaries
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Kitzberger, T.; Falk, D.A.; Westerling, A.L.; Swetnam, T.W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 2017, 12, e0188486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.; Plummer, S.; Fierens, F.; Hoelzemann, J.J.; Arino, O. Burnt area detection at global scale using ATSR-2: The GLOBSCAR products and their qualification. J. Geophys. Res. D Atmos. 2004, 109, 1–16. [Google Scholar] [CrossRef]
- Tansey, K.; Grégoire, J.M.; Stroppiana, D.; Sousa, A.; Silva, J.; Pereira, J.M.C.; Boschetti, L.; Maggi, M.; Brivio, P.A.; Fraser, R.; et al. Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data. J. Geophys. Res. D Atmos. 2004, 109, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Moreno, C.; Belward, A.; Malingreau, J.P.; Hartley, A.; Garcia-Alegre, M.; Antonovskiy, M.; Buchshtaber, V.; Pivovarov, V. Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Glob. Chang. Biol. 2005, 11, 1537–1555. [Google Scholar] [CrossRef]
- Plummer, S.; Arino, O.; Simon, M.; Steffen, W. Establishing a earth observation product service for the terrestrial carbon community: The globcarbon initiative. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 97–111. [Google Scholar] [CrossRef]
- Tansey, K.; Grégoire, J.M.; Defourny, P.; Leigh, R.; Pekel, J.F.; van Bogaert, E.; Bartholomé, E. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophys. Res. Lett. 2008, 35, 01401. [Google Scholar] [CrossRef]
- Tansey, K.; Bradley, A.; Smets, B.; van Best, C.; Lacaze, R. The Geoland2 BioPar burned area product. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 22–27 April 2012; p. 4727. [Google Scholar]
- Giglio, L.; Randerson, J.T.; Van Der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 1997, 198, 504–522. [Google Scholar] [CrossRef]
- Chuvieco, E.; Lizundia-Loiola, J.; Lucrecia Pettinari, M.; Ramo, R.; Padilla, M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A.; et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Wenny, B.N.; Barnes, W.D. Overview of NASA Earth Observing Systems Terra and Aqua moderate resolution imaging spectroradiometer instrument calibration algorithms and on-orbit performance. J. Appl. Remote Sens. 2009, 3, 032501. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Moore, B.; Steffen, W.; Hood, M.; Quegan, S.; Cihlar, J.; Raupach, M.; Tschirley, J.; Inoue, G.; Doney, S.; et al. Integrated Global Carbon Observation Theme: A Strategy to Realise a Coordinated System of Integrated Global Carbon Cycle Observations. Available online: https://www.globalcarbonproject.org/global/pdf/IGOS_CarbonBrochure.pdf (accessed on 21 September 2020).
- Townshend, J.; Latham, J.; Arino, O. Integrated Global Observations of the Land: An IGOS-P Theme. Available online: http://www.fao.org/3/i0536e/i0536e00.htm (accessed on 21 September 2020).
- Ciais, P.; Dolman, H.; Dargaville, R.; Barrie, L.; Bombelli, A.; Butler, J.; Canadell, P.; Moriyama, T.; Borges, A.; Boversmann, H.; et al. GEO Carbon Strategy. Available online: https://www.globalcarbonproject.org/global/pdf/GEO_CARBONSTRATEGY_20101020.pdf (accessed on 21 September 2020).
- Justice, C.O.; Giglio, L.; Roy, D.P.; Csiszar, I.; Boschetti, L.; Korontzi, S.; Wooster, M.J. White Paper on a NASA Fire ESDR. Available online: https://cce.nasa.gov/mtg2008_ab_presentations/Fire_Justice_whitepaper.pdf (accessed on 9 September 2020).
- Smiraglia, D.; Filipponi, F.; Mandrone, S.; Tornato, A.; Taramelli, A. Agreement index for burned area mapping: Integration of multiple spectral indices using Sentinel-2 satellite images. Remote Sens. 2020, 12, 1862. [Google Scholar] [CrossRef]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003–1012. [Google Scholar] [CrossRef]
- Heil, A.; Yue, C.; Mouillot, F.; Kaiser, J.W. ESA Climate Change Initiative—Fire_cci D1.1 User Requirement Document (URD). Available online: http://esa-fire-cci.org/files/Fire_cci_D1.1_URD_v5.1.pdf (accessed on 9 September 2020).
- Plummer, S.; Chuvieco, E.; Pettinari, M.L.; Otón, G.; Storm, T.; Kloster, S.; Defourny, P.; Lamarche, C. Fire_cci User Requirements Document & Product Specification Document for AVHRR. Available online: https://www.esa-fire-cci.org/sites/default/files/Fire_cci_O2.D1_URD_PSD_AVHRR_v1.1.pdf (accessed on 9 September 2020).
- Climate Modelling User Group Deliverable 1.1 Requirements Baseline Document. Available online: http://ensembles-eu.metoffice.com/cmug/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf (accessed on 21 September 2020).
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanasse, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Hicke, J.A.; Asner, G.P.; Kasischke, E.S.; French, N.H.F.; Randerson, J.T.; Collatz, G.J.; Stocks, B.J.; Tucker, C.J.; Los, S.O.; Field, C.B. Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Glob. Chang. Biol. 2003, 9, 1145–1157. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Ruiz, J.A.; Garcia-Lazaro, J.R.; Riano, D.; Kefauver, S.C. The synergy of the 0.05° (∼5 km) AVHRR long-term data record (LTDR) and landsat TM archive to map large fires in the North American boreal region from 1984 to 1998. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1157–1166. [Google Scholar] [CrossRef]
- Wolken, J.M.; Hollingsworth, T.N.; Rupp, T.S.; Chapin, F.S.; Trainor, S.F.; Barrett, T.M.; Sullivan, P.F.; Mcguire, A.D.; Euskirchen, E.S.; Hennon, P.E.; et al. Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems. Ecosphere 2011, 2. [Google Scholar] [CrossRef]
- AK Fire History Perimeters. Available online: https://www.arcgis.com/home/item.html?id=d4b8d89f226f4c488e1e4ba054e49be9 (accessed on 23 April 2019).
- Alaska Fire Service (AFS) Alaska Wildland Fire Information Map Series. Available online: https://blm-egis.maps.arcgis.com/apps/MapSeries/index.html?appid=32ec4f34fb234ce58df6b1222a207ef1 (accessed on 9 September 2020).
- Arnone, E.; Francipane, A.; Scarbaci, A.; Puglisi, C.; Noto, L.V. Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping. Environ. Model. Softw. 2016, 84, 467–481. [Google Scholar] [CrossRef]
- Alonso-Canas, I.; Chuvieco, E. Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sens. Environ. 2015, 163, 140–152. [Google Scholar] [CrossRef]
- Roy, D.P.; Lewis, P.E.; Justice, C.O. Burned area mapping using multi-temporal moderate spatial resolution data—A bi-directional reflectance model-based expectation approach. Remote Sens. Environ. 2002, 83, 263–286. [Google Scholar] [CrossRef]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.; Hoffmann, A.A.; Humber, M. MODIS Collection 5.1 Burned Area Product—MCD45. Available online: http://modis-fire.umd.edu/files/MODIS_Burned_Area_Collection51_User_Guide_3.1.0.pdf (accessed on 9 September 2020).
- Giglio, L.; Boschetti, L.; Roy, D.; Hoffmann, A.A.; Humber, M. Collection 6 MODIS Burned Area Product User’s Guide Version 1.0. Available online: https://modis-land.gsfc.nasa.gov/pdf/MODIS_C6_BA_User_Guide_1.0.pdf (accessed on 9 September 2020).
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Boschetti, L.; Flasse, S.P.; Brivio, P.A. Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary. Remote Sens. Environ. 2004, 91, 280–292. [Google Scholar] [CrossRef]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Wu, Z.; Zhang, Y.; Yan, S.; Fu, J.; Du, L. Prediction research of the forest fire in Jiangxi province in the background of climate change. Shengtai Xuebao 2020, 40. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Quintano, C. A synergetic approach to burned area mapping using maximum entropy modeling trained with hyperspectral data and VIIRS hotspots. Remote Sens. 2020, 12, 858. [Google Scholar] [CrossRef] [Green Version]
- De Bem, P.P.; De Carvalho, O.A., Jr.; Matricardi, E.A.T.; Guimarães, R.F.; Gomes, R.A.T. Predicting wildfire vulnerability using logistic regression and artificial neural networks: A case study in Brazil’s Federal District. Int. J. Wildland Fire 2019, 28, 35–45. [Google Scholar] [CrossRef]
- Mitsopoulos, I.; Mallinis, G. A data-driven approach to assess large fire size generation in Greece. Nat. Hazards 2017, 88, 1591–1607. [Google Scholar] [CrossRef]
- Gorsevski, P.V.; Gessler, P.E.; Foltz, R.B.; Elliot, W.J. Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans. GIS 2006, 10, 395–415. [Google Scholar] [CrossRef]
- Boroughani, M.; Pourhashemi, S.; Hashemi, H.; Salehi, M.; Amirahmadi, A.; Asadi, M.A.Z.; Berndtsson, R. Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping. Ecol. Inform. 2020, 56, 101059. [Google Scholar] [CrossRef]
- Chang, Z.; Du, Z.; Zhang, F.; Huang, F.; Chen, J.; Li, W.; Guo, Z. Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models. Remote Sens. 2020, 12, 502. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, L.; Roy, D.P.; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 2019, 235, 111490. [Google Scholar] [CrossRef]
- Moreno-Ruiz, J.A.; García-Lázaro, J.R.; Arbelo, M.; Riaño, D. A comparison of burned area time series in the alaskan boreal forests from different remote sensing products. Forests 2019, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Fornacca, D.; Ren, G.; Xiao, W. Performance of Three MODIS fire products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a mountainous area of Northwest Yunnan, China, characterized by frequent small fires. Remote Sens. 2017, 9, 1131. [Google Scholar] [CrossRef] [Green Version]
- Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.; Tansey, K.; Mota, B.; et al. Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef] [Green Version]
- García-Lázaro, J.R.; Moreno-Ruiz, J.A.; Riaño, D.; Arbelo, M. Estimation of burned area in the Northeastern Siberian boreal forest from a Long-Term Data Record (LTDR) 1982-2015 time series. Remote Sens. 2018, 10, 940. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Herrera, S.; Tourigny, E.; Chuvieco, E.; Provenzale, A. A comparison of remotely-sensed and inventory datasets for burned area in Mediterranean Europe. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101887. [Google Scholar] [CrossRef] [Green Version]
- Campagnolo, M.L.; Oom, D.; Padilla, M.; Pereira, J.M.C. A patch-based algorithm for global and daily burned area mapping. Remote Sens. Environ. 2019, 232, 111288. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Libonati, R.; Pereira, A.A.; Nogueira, J.M.P.; Santos, F.L.M.; Peres, L.F.; Santa Rosa, A.; Schroeder, W.; Pereira, J.M.C.; Giglio, L.; et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 318–331. [Google Scholar] [CrossRef]
- Loboda, T.V.; Hoy, E.E.; Giglio, L.; Kasischke, E.S. Mapping burned area in Alaska using MODIS data: A data limitations-driven modification to the regional burned area algorithm. Int. J. Wildland Fire 2011, 20, 487–496. [Google Scholar] [CrossRef]
Product | Time Span | Sensor | Method | Spatial Resolution | Algorithm References |
---|---|---|---|---|---|
Fire_CCI 4.1 | 2005–2011 | MERIS + Terra MODIS | Reflectance + hotspots | 300 m | [33] |
Fire_CCI 5.1 | 2001–today | Terra MODIS | Reflectance + hotspots | 250 m | [12] |
MCD45A1 C5.1 | 2000–2016 | Terra/Aqua MODIS | Reflectance | 500 m | [34,35,36] |
MCD64A1 C6 | 2000–today | Terra/Aqua MODIS | Reflectance + hotspots | 500 m | [13] |
Reference Data | ||||
---|---|---|---|---|
Burned | Non-Burned | Total | ||
Classified Data | Burned | n11 | n12 | n1c |
Non-Burned | n21 | n22 | n2c | |
Total | n1r | n2r | n | |
Year | AFS (ha) | Fire_CCI 4.1 (%) | Fire_CCI 5.1 (%) | MCD45A1 C5.1 (%) | MCD64A1 C6 (%) |
---|---|---|---|---|---|
2000 | 304,631.50 | 6.79 | 0.00 | ||
2001 | 88,658.25 | 1.23 | 0.40 | 6.64 | |
2002 | 856,081.50 | 66.06 | 12.30 | 66.44 | |
2003 | 241,061.25 | 75.92 | 49.76 | 83.36 | |
2004 | 2,712,368.00 | 71.02 | 31.88 | 74.73 | |
2005 | 1,896,684.75 | 22.23 | 58.17 | 30.40 | 77.11 |
2006 | 108,509.00 | 52.42 | 45.83 | 28.18 | 29.60 |
2007 | 263,894.00 | 41.26 | 82.46 | 21.12 | 76.64 |
2008 | 39,164.50 | 54.20 | 79.43 | 23.74 | 67.49 |
2009 | 1,198,139.50 | 58.17 | 80.36 | 29.78 | 56.17 |
2010 | 46,494.00 | 22.22 | 61.34 | 30.19 | 38.51 |
2011 | 122,486.75 | 3.91 | 59.29 | 11.85 | 12.71 |
2012 | 111,290.25 | 58.97 | 27.14 | 88.14 | |
2013 | 532,279.00 | 63.72 | 44.37 | 47.23 | |
2014 | 117,193.00 | 69.59 | 48.26 | 51.04 | |
2015 | 2,073,041.25 | 61.02 | 24.38 | 61.69 | |
2016 | 201,944.75 | 58.92 | 30.75 | 55.52 | |
2017 | 292,026.50 | 65.17 | 52.91 | ||
All years | 11,623,847.75 | 34.53 | 65.89 | 28.11 | 63.22 |
Year | Fire_CCI 4.1 | FIRE_CCI 5.1 | MCD45A1 C5.1 | MCD64A1 C6 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CE | OE | TE | CE | OE | TE | CE | OE | TE | CE | OE | TE | |
2000 | 0.037 | 0.935 | 0.938 | 0.000 | 1.000 | 1.000 | ||||||
2001 | 0.303 | 0.991 | 0.995 | 1.000 | 1.000 | 1.004 | 1.000 | 1.000 | 1.066 | |||
2002 | 0.095 | 0.402 | 0.465 | 0.071 | 0.886 | 0.895 | 0.166 | 0.446 | 0.556 | |||
2003 | 0.093 | 0.311 | 0.382 | 0.113 | 0.558 | 0.614 | 0.386 | 0.488 | 0.810 | |||
2004 | 0.064 | 0.335 | 0.380 | 0.053 | 0.698 | 0.715 | 0.174 | 0.383 | 0.513 | |||
2005 | 0.056 | 0.790 | 0.802 | 0.089 | 0.470 | 0.522 | 0.069 | 0.717 | 0.738 | 0.151 | 0.345 | 0.461 |
2006 | 0.097 | 0.527 | 0.578 | 0.147 | 0.609 | 0.676 | 0.232 | 0.784 | 0.849 | 0.424 | 0.830 | 0.956 |
2007 | 0.188 | 0.665 | 0.743 | 0.155 | 0.303 | 0.431 | 0.107 | 0.811 | 0.834 | 0.316 | 0.476 | 0.718 |
2008 | 0.124 | 0.525 | 0.592 | 0.292 | 0.438 | 0.670 | 0.234 | 0.818 | 0.874 | 0.573 | 0.712 | 1.099 |
2009 | 0.034 | 0.438 | 0.458 | 0.062 | 0.247 | 0.297 | 0.075 | 0.725 | 0.747 | 0.094 | 0.491 | 0.544 |
2010 | 0.077 | 0.795 | 0.812 | 0.110 | 0.454 | 0.521 | 0.125 | 0.736 | 0.774 | 0.214 | 0.697 | 0.779 |
2011 | 0.079 | 0.964 | 0.967 | 0.230 | 0.543 | 0.679 | 0.116 | 0.895 | 0.909 | 0.221 | 0.901 | 0.929 |
2012 | 0.118 | 0.480 | 0.550 | 0.113 | 0.759 | 0.790 | 0.516 | 0.574 | 1.029 | |||
2013 | 0.055 | 0.398 | 0.433 | 0.049 | 0.578 | 0.600 | 0.219 | 0.631 | 0.734 | |||
2014 | 0.065 | 0.350 | 0.395 | 0.065 | 0.549 | 0.580 | 0.238 | 0.611 | 0.732 | |||
2015 | 0.041 | 0.415 | 0.440 | 0.038 | 0.766 | 0.775 | 0.155 | 0.478 | 0.574 | |||
2016 | 0.101 | 0.470 | 0.530 | 0.055 | 0.709 | 0.726 | 0.203 | 0.558 | 0.671 | |||
2017 | 0.073 | 0.396 | 0.444 | 0.111 | 0.529 | 0.588 | ||||||
All years | 0.059 | 0.675 | 0.695 | 0.075 | 0.390 | 0.439 | 0.066 | 0.737 | 0.756 | 0.178 | 0.480 | 0.593 |
Year | Spatial Resolution | ||
---|---|---|---|
250 m | 300 m | 500 m | |
2000 | 4.885 | ||
2001 | 1.670 | 4.940 | |
2002 | 0.824 | 2.527 | |
2003 | 1.341 | 4026 | |
2004 | 0.656 | 1.909 | |
2005 | 1.066 | 1.333 | 3.191 |
2006 | 2.171 | 2.810 | 6.480 |
2007 | 2.125 | 2.767 | 6.724 |
2008 | 4.818 | 6.249 | 14.610 |
2009 | 0.931 | 1.149 | 2.714 |
2010 | 2.257 | 2.891 | 7.106 |
2011 | 2.810 | 3.680 | 9.056 |
2012 | 2.715 | 8.642 | |
2013 | 1.534 | 4.723 | |
2014 | 0.778 | 2.192 | |
2015 | 1.470 | 4.356 | |
2016 | 4.120 | 12.685 | |
2017 | 2.733 | 8.253 | |
All years | 1.195 | 1.625 | 3.612 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Ruiz, J.A.; García-Lázaro, J.R.; Arbelo, M.; Cantón-Garbín, M. MODIS Sensor Capability to Burned Area Mapping—Assessment of Performance and Improvements Provided by the Latest Standard Products in Boreal Regions. Sensors 2020, 20, 5423. https://doi.org/10.3390/s20185423
Moreno-Ruiz JA, García-Lázaro JR, Arbelo M, Cantón-Garbín M. MODIS Sensor Capability to Burned Area Mapping—Assessment of Performance and Improvements Provided by the Latest Standard Products in Boreal Regions. Sensors. 2020; 20(18):5423. https://doi.org/10.3390/s20185423
Chicago/Turabian StyleMoreno-Ruiz, José A., José R. García-Lázaro, Manuel Arbelo, and Manuel Cantón-Garbín. 2020. "MODIS Sensor Capability to Burned Area Mapping—Assessment of Performance and Improvements Provided by the Latest Standard Products in Boreal Regions" Sensors 20, no. 18: 5423. https://doi.org/10.3390/s20185423
APA StyleMoreno-Ruiz, J. A., García-Lázaro, J. R., Arbelo, M., & Cantón-Garbín, M. (2020). MODIS Sensor Capability to Burned Area Mapping—Assessment of Performance and Improvements Provided by the Latest Standard Products in Boreal Regions. Sensors, 20(18), 5423. https://doi.org/10.3390/s20185423