Optimization of Mixed Energy Supply of IoT Network Based on Matching Game and Convex Optimization
Abstract
:1. Introduction
2. System Model and Problem Modeling
2.1. System Model
2.2. Problem Modeling
- 1.
- When the energy quantity purchased by all SBSs is fixed, how to allocate TEs with different QoS demands in the IoT to different SBSs is a Mixed-Integer Nonlinear Programming (MINP). This problem is a nondeterministic polynomial time hard (NP-hard) optimization problem [28]. For a fixed TE allocation scheme , calculating the total cost is easy. However, the time complexity is difficult to estimate even for a small IoT system when we want to solve the scheme with the minimum energy expense cost of the system.
- 2.
- When the TE allocation scheme in SBSs is fixed, how SBSs in the IoT purchase energy sources from different energy suppliers is also an NP-hard optimization problem. Similarly, the time complexity is difficult to estimate by solving the global optimal solution through conventional methods.
3. TE Allocation Based on Matching Game
3.1. Matching Game Model
3.2. Matching Exchange Algorithm
Algorithm 1: Matching game of TE Allocation |
|
4. Energy Decision Based on Convex Optimization
- 1.
- Since the objective function Equation (42) has a non-positive second derivative with respect to any variable , Equation (42) is a convex function;
- 2.
- Since the constraint conditions (43) and (44) are both affine functions, the constraint conditions are convex functions.
Algorithm 2: Algorithm for Minimum Cost of Energy Decision |
|
5. Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huh, H.; Kim, J.Y. LoRa-based Mesh Network for IoT Applications. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 524–527. [Google Scholar] [CrossRef]
- Song, F.; Zhou, Y.; Chang, L.; Zhang, H. Modeling Space-Terrestrial Integrated Networks with Smart Collaborative Theory. IEEE Netw. 2019, 33, 51–57. [Google Scholar] [CrossRef]
- Liu, X.; Ansari, N. Green Relay Assisted D2D Communications with Dual Batteries in Heterogeneous Cellular Networks for IoT. IEEE Internet Things J. 2017, 4, 1707–1715. [Google Scholar] [CrossRef]
- Malche, T.; Maheshwary, P. Internet of Things (IoT) for building smart home system. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 65–70. [Google Scholar] [CrossRef]
- Han, D.; Li, S.; Chen, Z. Hybrid Energy Ratio Allocation Algorithm in a Multi-Base-Station Collaboration System. IEEE Access 2019, 7, 147001–147009. [Google Scholar] [CrossRef]
- Han, C.; Harrold, T.; Armour, S.; Krikidis, I.; Videv, S.; Grant, P.M.; Haas, H.; Thompson, J.S.; Ku, I.; Wang, C.-X.; et al. Green radio: Radio techniques to enable energy-efficient wireless networks. IEEE Commun. Mag. 2011, 49, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Grant, P. Green Radio—The Case for more Efficient Cellular Base Stations; University of Edinburgh: Edinburgh, Scotland, UK, 2009. [Google Scholar]
- Song, F.; Zhu, M.; Zhou, Y.; You, I.; Zhang, H. Smart Collaborative Tracking for Ubiquitous Power IoT in Edge-Cloud Interplay Domain. IEEE Internet Things J. 2020, 7, 6046–6055. [Google Scholar] [CrossRef]
- Auer, G.; Gódor, I.; Hévizi, L.; Imran, M.A.; Malmodin, J.; Fazekas, P.; Biczók, G.; Holtkamp, H.; Zeller, D.; Blume, O.; et al. Enablers for Energy Efficient Wireless Networks. In Proceedings of the 2010 IEEE 72nd Vehicular Technology Conference—Fall, Ottawa, ON, Canada, 6–9 September 2010. [Google Scholar]
- Humar, I.; Ge, X.; Xiang, L.; Jo, M.; Chen, M.; Zhang, J. Rethinking energy efficiency models of cellular networks with embodied energy. IEEE Netw. 2011, 25, 40–49. [Google Scholar] [CrossRef]
- Han, T.; Ansari, N. Powering mobile networks with green energy. IEEE Wirel. Commun. 2014, 21, 90–96. [Google Scholar] [CrossRef]
- Sen, J. Mobility and Handoff Management in Wireless Networks. In Trends in Telecommunications Technologies; IntechOpen: London, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Dimitriou, N.; Sarakis, L.; Loukatos, D.; Kormentzas, G.; Skianis, C. Vertical handover (VHO) framework for future collaborative wireless networks. Int. J. Netw. Manag. 2011, 21, 548–564. [Google Scholar] [CrossRef]
- Lai, W.K.; Shieh, C.-S.; Chou, F.-S.; Hsu, C.-Y.; Shen, M.-H. Handover Management for D2D Communication in 5G Networks. Appl. Sci. 2020, 10, 4409. [Google Scholar] [CrossRef]
- Seo, D.Y.; Chung, Y.W. Modeling and Performance Evaluation of a Context Information-Based Optimized Handover Scheme in 5G Networks. Entropy 2017, 19, 329. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid—The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Saad, W.; Han, Z.; Poor, H.V.; Başar, T. Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Process. Mag. 2012, 29, 86–105. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, R. Cooperative Energy Trading in CoMP Systems Powered by Smart Grids. IEEE Trans. Veh. Technol. 2015, 65, 2142–2153. [Google Scholar] [CrossRef] [Green Version]
- Ghazzai, H.; Kadri, A. Joint Demand-Side Management in Smart Grid for Green Collaborative Mobile Operators Under Dynamic Pricing and Fairness Setup. IEEE Trans. Green Commun. Netw. 2017, 1, 74–88. [Google Scholar] [CrossRef]
- Han, D.; Li, S.; Peng, Y.; Chen, Z. Energy Sharing-Based Energy and User Joint Allocation Method in Heterogeneous Network. IEEE Access 2020, 8, 37077–37086. [Google Scholar] [CrossRef]
- Rached, N.B.; Ghazzai, H.; Kadri, A.; Alouini, M.S. Energy Management Optimization for Cellular Networks Under Renewable Energy Generation Uncertainty. IEEE Trans. Green Commun. Netw. 2017, 1, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, T.; Chen, X.; Zhou, X.; Giannakis, G.B. Dynamic Resource Allocation for Smart-Grid Powered MIMO Downlink Transmissions. IEEE J. Sel. Areas Commun. 2016, 34, 3354–3364. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, C.; Li, G.Y.; Liu, Y.; Xu, S. Energy-Efficient CoMP Precoding in Heterogeneous Networks. IEEE Trans. Signal Process. 2014, 62, 1005–1017. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Q. Fairness Based Macro Base Station Power Control Algorithm in Heterogeneous Cellular Networks. In Proceedings of the 8th International Conference on Computational Intelligence and Communication Networks (CICN), Tehri, India, 23–25 December 2016; pp. 82–86. [Google Scholar]
- Xu, J.; Zhang, R. CoMP Meets Smart Grid: A New Communication and Energy Cooperation Paradigm. IEEE Trans. Veh. Technol. 2015, 64, 2476–2488. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, J.-K.; Wong, K.M. Optimal Precoder Design for Correlated MIMO Communication Systems Using Zero-Forcing Decision Feedback Equalization. IEEE Trans. Signal Process. 2009, 57, 3600–3612. [Google Scholar] [CrossRef]
- Song, F.; Zhou, Y.-T.; Wang, Y.; Zhao, T.-M.; You, I.; Zhang, H.-K. Smart Collaborative Distribution for Privacy Enhancement in Moving Target Defense. Inf. Sci. 2019, 479, 593–606. [Google Scholar] [CrossRef]
- Neumann, F.; Witt, C. Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Nisan, N.; Roughgarden, T.; Tardos, E.; Vazirani, V.V. Algorithmic Game Theory; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bodine-Baron, E.; Lee, C.; Chong, A.; Hassibi, B.; Wierman, A. Peer effects and stability in matching markets. In International Symposium on Algorithmic Game Theory; Springer: Berlin/Heidelberg, Germany, 2011; pp. 117–129. [Google Scholar]
- Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Song, F.; Ai, Z.; Zhou, Y.; You, I.; Choo KK, R.; Zhang, H. Smart Collaborative Automation for Receive Buffer Control in Multipath Industrial Networks. IEEE Trans. Ind. Inform. 2020, 16, 1385–1394. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Tuan, H.D.; Duong, T.Q.; Dobre, O.A.; Poor, H.V. Downlink Beamforming for Energy-Efficient Heterogeneous Networks With Massive MIMO and Small Cells. IEEE Trans. Wirel. Commun. 2018, 17, 3386–3400. [Google Scholar] [CrossRef] [Green Version]
- Auer, G.; Giannini, V.; Desset, C.; Godor, I.; Skillermark, P.; Olsson, M.; Imran, M.A.; Sabella, D.; Gonzalez, M.J.; Blume, O.; et al. How much energy is needed to run a wireless network? IEEE Wirel. Commun. 2011, 18, 40–49. [Google Scholar] [CrossRef]
- ITU. ITU-R Final Acts WRC-15; ITU: Geneva, Switzerland, 2015. [Google Scholar]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Cao, P.; Liu, W.; Thompson, J.S.; Yang, C.; Jorswieck, E.A. Semidynamic Green Resource Management in Downlink Heterogeneous Networks by Group Sparse Power Control. IEEE J. Sel. Areas Commun. 2016, 34, 1250–1266. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values |
---|---|
Service radius of SBSs | 25 m [33] |
Gains of transmitting and receiving antennas (G) | 10 [34] |
Gaussian noise power spectral density () | −50 dBm/Hz [34] |
Channel bandwidth (B) | 100 MHz [35] |
Maximum power limit of SBSs () | 200 W [34] |
Renewable energy generation capacity of SBSs () | 30 W |
Bit rate of terminal equipment () | 200–300 Mbps [36] |
Charging price of SBSs () | 0.2–0.3 RMB |
Energy suppliers (L) | 3 |
SBSs (N) | 4 |
Number of TEs | Average Number of Gain Exchanges | Run Time (s) |
---|---|---|
100 | 3.4 | 0.816 |
200 | 4.3 | 3.081 |
300 | 5.5 | 8.781 |
400 | 7.8 | 19.586 |
Energy Suppliers | Maximum Energy Supply Amounts | Energy Price |
---|---|---|
A | 75 W | 0.34 RMB/W |
B | 100 W | 0.21 RMB/W |
C | 150 W | 0.30 RMB/W |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Liu, T.; Qi, Y. Optimization of Mixed Energy Supply of IoT Network Based on Matching Game and Convex Optimization. Sensors 2020, 20, 5458. https://doi.org/10.3390/s20195458
Han D, Liu T, Qi Y. Optimization of Mixed Energy Supply of IoT Network Based on Matching Game and Convex Optimization. Sensors. 2020; 20(19):5458. https://doi.org/10.3390/s20195458
Chicago/Turabian StyleHan, Dongsheng, Tao Liu, and Yincheng Qi. 2020. "Optimization of Mixed Energy Supply of IoT Network Based on Matching Game and Convex Optimization" Sensors 20, no. 19: 5458. https://doi.org/10.3390/s20195458
APA StyleHan, D., Liu, T., & Qi, Y. (2020). Optimization of Mixed Energy Supply of IoT Network Based on Matching Game and Convex Optimization. Sensors, 20(19), 5458. https://doi.org/10.3390/s20195458