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Abstract: Scattering hyperspectral technology is a nondestructive testing method with many
advantages. Here, we propose a method to improve the accuracy of egg freshness, research
the influence of incident angles of light source on the accuracy, and explain its mechanism. A variety
of weak classifiers classify eggs based on the spectra after preprocessing and feature wavelength
extraction to obtain three classifiers with the highest accuracy. The three classifiers are used as
metamodels of stacking ensemble learning to improve the highest accuracy from 96.25% to 100%.
Moreover, the highest accuracy of scattering, reflection, transmission, and mixed hyperspectral of eggs
are 100.00%, 88.75%, 95.00%, and 96.25%, respectively, indicating that the scattering hyperspectral
for egg freshness detection is better than that of the others. In addition, the accuracy is inversely
proportional to the angle of incidence, i.e., the smaller the incident angle, the camera collects a larger
proportion of scattering light, which contains more biochemical parameters of an egg than that
of reflection and transmission. These results are very important for improving the accuracy of
non-destructive testing and for selecting the incident angle of a light source, and they have potential
applications for online non-destructive testing.

Keywords: egg freshness; hyperspectral detection; hyperspectral scattering imaging;
ensemble learning

1. Introduction

The freshness of eggs is related to their nutritional value. It is the most concerned index of
processing companies and consumers, and an important index in transportation and processing [1].
It can be detected using traditional biochemical methods, but they are destructive, time-consuming,
and inefficient. Therefore, non-destructive testing technology has significant advantages in the
detection of egg freshness and has attracted wide attention. Currently, egg freshness is tested using
non-destructive techniques of spectral analysis [2,3], dielectric property [4,5], electronic nose [6,7],
machine vision [8,9], and hyperspectral testing [10–12]. Especially, machine vision method was
established for egg freshness with an R (correlation coefficient) value of 0.8653 [8]. The prediction
model was established using near-infrared spectroscopy with an R value of 0.879 [13]. The freshness
model was established by testing the volatile concentration of eggs by electronic nose with a low
efficiency, thus, it is not suitable for the dynamic testing of production line [7]. The egg freshness was
tested using reflectance near-infrared hyperspectral with an R value of 0.879 [10], which could achieve
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rapid and non-destructive classification of egg freshness. However, the model precision could not be
further improved due to the great influence of eggshell colors.

Hyperspectral imaging technology is an emerging non-destructive testing technology that can
obtain a large number of spatial image information samples of the frequency band and the spectral
information of each pixel [14]. Currently, hyperspectral technology can be applied to non-destructive
testing of the phenotype of grains, fruits, and vegetables [15–17]. However, there are only a few papers
using it to study the freshness of eggs. Among them, using reflectance hyperspectrum to detect egg
freshness can achieve fast and non-destructive grading of egg freshness with a correlation coefficient
of 0.93 [18]. In addition, by using the optimal classification model (IRIV GA-SVM), the classification
accuracy on the training set and test set achieved 99.25% and 97.87% respectively [19]. However,
there are few studies on the non-destructive freshness detection of scattering and transmission
hyperspectral. Meanwhile, the optical fiber scattering spectra have been used to study the surface
and internal defects of apples and tomatoes with high accuracy [20], which indicated that it would be
feasible to detect the freshness of eggs.

Herein, we proposed a method to improve the accuracy of egg freshness based on hyperspectral
scattering imaging, and we researched the influence of incident angles on the accuracy and explained its
mechanism. We found that stacking ensemble learning could be used to improve the highest accuracy
of egg freshness, and the accuracy is inversely proportional to the incident angle. These results are
useful for improving the accuracy of a classifier, important for selecting the incident angle of a light
source with high accuracy, and they have potential applications in online non-destructive testing.

2. Materials and Methods

2.1. Experimental Materials

A total of 350 eggs (pink shell, mass 31.5–46.6 g, equatorial diameter 32.8–41.9 mm) were purchased
from Panchu Mechanized Chicken Farm, Nanjing, Jiangsu Province, China. They were all produced on
the day of purchase and stored at room temperature after cleaning. These eggs were divided into two
groups, i.e., the data group and the calibration group, with 200 and 150 eggs, respectively. The data
group was used to collect hyperspectral images, and the calibration group was used to measure the
Haugh unit.

2.2. Hyperspectral Imaging System

The hyperspectral instrument was a GaiaSorter-Dual “Gaia” dual-camera all-band hyperspectral
sorter. Its main components include a uniform light source, a dual spectrum camera, an electronic control
transfer module, a computer with a control software, etc. The dual spectrum camera included two
hyperspectral cameras, Camera 1 (Image-λ-V10E, wavelength range 391.6–1044.1 nm, and resolution
2.5 nm) and Camera 2 (Image-λ-N25E, wavelength range 1044.1–2528.1 nm, and resolution 5.6 nm).

The reflection images of eggs were collected using the reflection hyperspectral imaging system
(Figure 1). The light source of this system is a dome uniform light source with a wavelength range of
50–2500 nm. The light source uniformly irradiates the egg on the electronically controlled moving
platform. The reflected light of the egg is captured by the hyperspectral camera through the lens to
obtain one-dimensional images and spectra. When the platform drives the egg to run continuously,
continuous one-dimensional images and real-time spectra can be obtained. Note that the spectra are
automatically recorded by the computer software. Finally, we obtained a three-dimensional data cube
containing reflection image and spectral information.
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Figure 1. Reflection hyperspectral imaging system. (1) Pink-shell egg; (2) Computer; (3) Black box; (4) 
Calibration whiteboard; (5) Sample table; (6) Dome uniform light source; (Camera 1) Visible near-
infrared camera; (Camera 2) Short wave near-infrared camera. 

The scattering, transmission, and mixed hyperspectral images of eggs were collected using an 
optical fiber hyperspectral imaging system (Figure 2). The light source of the system was an optical 
fiber halogen lamp (LG-150B, wavelength range 400–2500 nm). The incident angle of the fiber could 
be adjusted to collect the corresponding types of hyperspectral images. The scattering hyperspectral 
images were collected as the incident angle was 0°. The mixed hyperspectral images were collected 
as the incident angles were 10°, 20°, 30°, 40°, 50°, and 60°, respectively. The transmission 
hyperspectral images were collected as the light of fiber was shot directly under the egg. As the angle 
was selected, the platform drove the sample to move continuously to obtain continuous one-
dimensional images and real-time spectral information. Finally, we obtained a three-dimensional 
data cube including scattering, transmission, and mixed images and spectral information. 

 
Figure 2. Optical fiber hyperspectral imaging system. (1) Pink-shell egg; (2) Computer; (3) Calibration 
whiteboard; (4) Optical fiber fixed metal frame; (5) Sample table; (6) Black box; (Camera 1) Visible 
near-infrared camera; (Camera 2) Short wave near-infrared camera. 

  

Figure 1. Reflection hyperspectral imaging system. (1) Pink-shell egg; (2) Computer; (3) Black box;
(4) Calibration whiteboard; (5) Sample table; (6) Dome uniform light source; (Camera 1) Visible
near-infrared camera; (Camera 2) Short wave near-infrared camera.

The scattering, transmission, and mixed hyperspectral images of eggs were collected using
an optical fiber hyperspectral imaging system (Figure 2). The light source of the system was an optical
fiber halogen lamp (LG-150B, wavelength range 400–2500 nm). The incident angle of the fiber could
be adjusted to collect the corresponding types of hyperspectral images. The scattering hyperspectral
images were collected as the incident angle was 0◦. The mixed hyperspectral images were collected as
the incident angles were 10◦, 20◦, 30◦, 40◦, 50◦, and 60◦, respectively. The transmission hyperspectral
images were collected as the light of fiber was shot directly under the egg. As the angle was selected,
the platform drove the sample to move continuously to obtain continuous one-dimensional images
and real-time spectral information. Finally, we obtained a three-dimensional data cube including
scattering, transmission, and mixed images and spectral information.
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Figure 2. Optical fiber hyperspectral imaging system. (1) Pink-shell egg; (2) Computer; (3) Calibration
whiteboard; (4) Optical fiber fixed metal frame; (5) Sample table; (6) Black box; (Camera 1) Visible
near-infrared camera; (Camera 2) Short wave near-infrared camera.
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2.3. Data Acquisition and Correction

The equipment was prepared before testing. The detection system was warmed up for 30 min.
The height of “Camera 1” was set to 10 cm, the exposure time was 7 ms by adjustment and comparison.
The height of “Camera 2” was set to 25 cm, and the exposure time was 9 ms. The conveyor belt
speed was 0.36 cm/sec. The hyperspectral images were collected as follows: Ten eggs were randomly
selected from the data group every day, and the larger end of the eggs (with air chamber) was placed
upward under the dome uniform light source to obtain the reflection hyperspectral images. Then,
they were placed in the transmission light and the optical fiber light sources with incident angles of
0◦, 10◦, 20◦, 30◦, 40◦, 50◦, and 60◦ to obtain the scattering, transmission, and mixed hyperspectral
of the eggs. The tests were repeated and lasted for 28 days. The collected hyperspectral images
were corrected in black and white because of the influence of dark current or uneven illumination
on the experiment [21]. It was corrected by using SpecVIEW software established in the system and
Equation (1) as follows:

R =
I0 − Ib
Iw − Ib

(1)

where R is the corrected spectral image, I0 is the original spectral image, Iw is the total reflection image
of polyfluortetraethylene plate, Ib is the all-black image by coving the lens.

2.4. Automatic ROI Extraction

Step 1 ROI mask
The images (R, 650; G, 550; B, 450) were exported by the software ENVI 4.8. The images were

extracted by using MATLAB. They were binarized, and then operated by threshold segmentation,
expansion, and erosion. Subsequently, their centroids were extracted and marked. We used threshold
segmentation to extract regions with the color similar to eggshells. The regions contained only a small
amount of glare. According to the selected area, the maximum horizontal and vertical lengths were
calculated as the long axis and short axis of the ellipse. Finally, the center of the ellipse was used as the
center of the original image, and the parameters of the long axis and the short axis were combined
to fit and expand the ellipse image. Then, we extracted the ROI (region-of-interest) mask by the
selected ellipse.

Step 2 Automatically extract the ROI of spectra
The positions of eggs in the mask image were extracted using the cell counting algorithm.

The corresponding ROIs of eggs were determined and numbered by the settings of their mask images.
These images were imported into ENVI. The average spectrum of a single ROI was used as the spectrum
of an egg. The detailed processes are shown in Figure 3.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 19 

 

2.3. Data Acquisition and Correction 

The equipment was prepared before testing. The detection system was warmed up for 30 min. 
The height of “Camera 1” was set to 10 cm, the exposure time was 7 ms by adjustment and 
comparison. The height of “Camera 2” was set to 25 cm, and the exposure time was 9 ms. The 
conveyor belt speed was 0.36 cm/sec. The hyperspectral images were collected as follows: Ten eggs 
were randomly selected from the data group every day, and the larger end of the eggs (with air 
chamber) was placed upward under the dome uniform light source to obtain the reflection 
hyperspectral images. Then, they were placed in the transmission light and the optical fiber light 
sources with incident angles of 0°, 10°, 20°, 30°, 40°, 50°, and 60° to obtain the scattering, transmission, 
and mixed hyperspectral of the eggs. The tests were repeated and lasted for 28 days. The collected 
hyperspectral images were corrected in black and white because of the influence of dark current or 
uneven illumination on the experiment [21]. It was corrected by using SpecVIEW software 
established in the system and Equation (1) as follows: 

R = I0-IIw-I (1)

where R is the corrected spectral image, I0 is the original spectral image, Iw is the total reflection 
image of polyfluortetraethylene plate, I is the all-black image by coving the lens. 

2.4. Automatic ROI Extraction 

Step 1 ROI mask 
The images (R, 650; G, 550; B, 450) were exported by the software ENVI 4.8. The images were 

extracted by using MATLAB. They were binarized, and then operated by threshold segmentation, 
expansion, and erosion. Subsequently, their centroids were extracted and marked. We used threshold 
segmentation to extract regions with the color similar to eggshells. The regions contained only a small 
amount of glare. According to the selected area, the maximum horizontal and vertical lengths were 
calculated as the long axis and short axis of the ellipse. Finally, the center of the ellipse was used as 
the center of the original image, and the parameters of the long axis and the short axis were combined 
to fit and expand the ellipse image. Then, we extracted the ROI (region-of-interest) mask by the 
selected ellipse. 

Step 2 Automatically extract the ROI of spectra 
The positions of eggs in the mask image were extracted using the cell counting algorithm. The 

corresponding ROIs of eggs were determined and numbered by the settings of their mask images. 
These images were imported into ENVI. The average spectrum of a single ROI was used as the 
spectrum of an egg. The detailed processes are shown in Figure 3. 

(a) 

→ → Egg 1 Egg 6
Egg 2  Egg 7
Egg 3  Egg 8
Egg 4  Egg 9
Egg 5  Egg 10

500 750 1000

0.4

0.6

A
bs

or
ba

nc
e

Wavelength/nm

(iii)

 

Figure 3. Cont.



Sensors 2020, 20, 5484 5 of 19Sensors 2020, 20, x FOR PEER REVIEW 5 of 19 

 

(b) 

→  →  

500 750 1000
0

5k

10k
 Egg 1
 Egg 2

A
bs

or
ba

nc
e

Wavelength/nm

(iii)

 

(c) 

→  →  

500 750 1000
0

4k

8k

12k  Egg 1
 Egg 2

A
bs

or
ba

nc
e

Wavelength/nm

(iii)

 

Figure 3. Region-of-interest (ROI) extraction processes. (a) Reflection; (b) Transmission; (c) Mixed 
hyperspectra; (i) Centroid mark; (ii) ROI; (iii) Original hyperspectral. 
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2.5. Determination of Haugh Unit

Five eggs were randomly selected from the calibration group every day, and they were numbered
and weighed. For each egg, the shell were broken gently, and the height of protein was measured at
3 different points of 1 cm from the edge of their yolks. Three points were selected as far as possible,
and the average height was used as the protein height of an egg. The Haugh units of the 5 eggs were
calculated by Equation (2), and their average value was used as the egg freshness of the day [22]
as follows:

HU = 100× lg(h + 7.57− 1.7 ∗w0.37) (2)

where HU is Haugh unit of an egg, h (mm) is the average protein height of the three points; w (g) is the
weight of an egg.

2.6. Spectrum Processing Method

It was necessary to preprocess the original spectra due to the uneven intensity of light sources
at different wavelengths and the influence of instrument noise. In this paper, the spectra were
processed using ten preprocessing methods, including multiplicative scatter correction (MSC) [23],
standardized normal variate (SNV) [24], normalization [25], autoscales [26], mean centering (MC) [27],
moving average method (MA) [28], detrend fluctuation analysis (Detrend) [29], Savitsky–Golay
smoothing (SG) [30], Savitsky–Golay first derivative (SG-FD) [31], and Savitsky–Golay second derivative
(SG-SD) [32]. To reduce calculation and increase calculation speed, competitive adaptive reweighted
sampling (CARS) [33], principal components analysis (PCA) [34], and successive projections algorithm
(SPA) [35] are preferable to extract feature wavelengths to reduce the dimensionality. The preprocessed
dataset was used to extract feature wavelengths and used as the final sample. Then, 71.43% of the
samples were randomly selected as the training set, and the remaining 28.57% 0% as the test set.
We compared the prediction of egg freshness using the following six models: support vector machine
(SVM) [36], k-nearest neighbor (KNN) [37], random forest (RF) [38], Naive Bayes (NB) [39], discriminant
analysis classifier (DAC) [40], and latent Dirichlet allocation (LDA) [41]. In order to further improve
the accuracy and the generalization ability of the egg freshness classification model, multiple weak
classifiers were merged into a strong classifier by stacking ensemble learning [42].
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3. Guided Filtering

3.1. Determination of Egg Haugh Unit

Five eggs were selected randomly every day to measure their Haugh units, and the units of
140 eggs were measured within 28 days. The units decrease linearly with time (Figure 4), and they fit
well with Equation (3). Their detailed distribution is shown in Table 1.

y = 85.70− 1.75x (3)
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Figure 4. Haugh units of eggs versus time.

It shows that the Haugh units range from 33.4 to 84.5, thus these eggs are edible. Their units
are 84.5–72, 70.5–61.5, 59.8–49.0, and 47.2–33.4 in the first, second, third, and fourth weeks, and their
freshness are classified as Grade AA, A, B1, and B2, respectively. After the fourth week, their units are
below 30 and classified as Grade C, because their Haugh units gradually decrease. These eggs are easy
to distinguish due to their obvious spoilage and unpleasant smell deterioration, therefore, they will
not be discussed in this article.

Table 1. Distribution of egg Hastelloy.

Freshness Weeks Max Min Average Standard Deviation

AA 1 84.463 72.731 78.316 4.198
A 2 70.527 61.546 66.893 3.602
B1 3 59.824 49.019 54.493 3.962
B2 4 47.202 33.408 40.991 5.492

3.2. Spectral Preprocessing

The original spectra contain a lot of information about the freshness of an egg, however, it is
impossible to find the law directly (Figure 5a,d,g,j). The spectra have obvious noise, which interferes
with the later extraction of feature wavelength and modeling, and therefore reduces the accuracy
of the prediction model. Therefore, the original spectra should be preprocessed separately. SG is
an algorithm of polynomial smoothing and weighted average of moving windows based on the
principle of least squares, whereas the main idea of FD is to obtain the first derivative of the spectrum,
thereby amplifying the differences among different spectra. Herein, the original spectra are treated
using SG-FD (Figure 5b,e,h,k). We obtain the average of the four Grade AA, A, B1, and B2, after the
SG-FD treatment (Figure 5c,f,I,l). The obvious difference in spectra are mainly distributed in the 400–600,
550–800, 550–800, and 400–1000 nm in uniform reflection, transmission, 0◦ scattering, and 40◦ mixed
spectra, respectively. This indicates that the difference in light source result in the egg information
differences detected by hyperspectral images.
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Figure 5. Savitsky–Golay first derivative (SG-FD) pretreatment. (a,d,g,j) The average hyperspectral of 
eggs per day from 1 to 28 days as incident light are reflection, transmission, 0° scattering, and 40° 
mixed spectra, respectively; (b,e,h,k) Corresponding spectra after SG-FD treatment; (c,f,i,l) The 
average spectra of Grade AA, A, B1, and B2 after SG-FD treatment, respectively.  
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In our experiment, we use PCA, CARS, and SPA to extract the feature wavelengths and reduce 
the redundancy of the full-band original spectra, which eliminates irrelevant information, optimizes 
effective information, and establishes low-dimensional data models. Finally, different classification 
models are established according to the feature wavelength, and the best model is obtained by 
comparative analysis. 
  

Figure 5. Savitsky–Golay first derivative (SG-FD) pretreatment. (a,d,g,j) The average hyperspectral
of eggs per day from 1 to 28 days as incident light are reflection, transmission, 0◦ scattering, and 40◦

mixed spectra, respectively; (b,e,h,k) Corresponding spectra after SG-FD treatment; (c,f,i,l) The average
spectra of Grade AA, A, B1, and B2 after SG-FD treatment, respectively.

3.3. Feature Wavelength Extraction and Model Establishment

In our experiment, we use PCA, CARS, and SPA to extract the feature wavelengths and reduce
the redundancy of the full-band original spectra, which eliminates irrelevant information, optimizes
effective information, and establishes low-dimensional data models. Finally, different classification
models are established according to the feature wavelength, and the best model is obtained by
comparative analysis.

3.3.1. Model Based on PCA

The PCA analysis was based on preprocessed data. We performed a certain standardization
and MC preprocess on the data before PCA. Figure 6a–d shows the PCA analysis results (PC1-PC2,
PC1-PC3) in the case of 0◦ fiber light source based on SG preprocessing.
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of PC1-PC2; (d) Loading plot of PC1-PC3. 
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Figure 6. Principal components analysis (PCA) of 0◦ fiber light source based on Savitsky–Golay
smoothing (SG) preprocessing. (a) Score plot of PC1-PC2; (b) Score plot of PC1-PC3; (c) Loading plot of
PC1-PC2; (d) Loading plot of PC1-PC3.

The contribution rate of the first, second, and third principal component are 97.8%, 1.6%,
and 0.4%, respectively. The total contribution of these three components contains 99.79% of the
spectral information, indicating that the feature wavelength can be reliably decomposed from the three
components. Figure 6a,b shows the score plot of the AA, A, B1, and B2 levels of eggs, indicating that
the A and AA levels of eggs are easily separated from the B1 and B2 levels in the principal component
space. However, there are large overlaps between A and AA levels, B1 and B2 levels, and therefore it is
difficult to distinguish them, i.e., we can easily distinguish the freshness and staleness of eggs based on
PCA, but it is difficult to distinguish the more detailed level of freshness. Therefore, the accuracy of
PCA may not be suitable for subsequent modeling. Figure 6c,d is the loading plot of the PCA model,
which explains the contribution of each spectral value to the model establishment. The greater the
coefficient of the spectral value, the greater the contribution rate to the model. The feature wavelength
can be decomposed by searching the values with large coefficients to reduce the data dimension.

We take the various preprocessing methods of scattering hyperspectral at the 0◦ incident light
as an example, calculate the cumulative contribution of the first 20 principal components (Figure 7).
It shows that the first three principal components have the highest contribution. They were selected as
feature component to extract the feature wavelengths.

Meanwhile, the cumulative contribution rates of different pretreatments are shown in Table 2.
It can be seen that the cumulative contribution of the first three components for normalization, MC,
MA, detrend, and SG are above 90%, which indicates that the feature wavelength can be reliably
decomposed from the three components. Therefore, the first three components of these pretreatments
are selected as the new coordinate system to reduce the dimension of the original spectra and extract
the feature wavelengths.



Sensors 2020, 20, 5484 9 of 19
Sensors 2020, 20, x FOR PEER REVIEW 9 of 19 

 

0 5 10 15 20
40

60

80

100

C
um

ul
at

iv
e 

co
nt

ri
bu

tio
n/

%

Number of principal components

 MC                      Detrend
 Naf                      Auto
 SG                        SG-FD
 MSC                      SNV
 Normalization   SG-SD

 

Figure 7. Cumulative contribution rates of the top 20 principal components in 0° incident light. 

Meanwhile, the cumulative contribution rates of different pretreatments are shown in Table 2. 
It can be seen that the cumulative contribution of the first three components for normalization, MC, 
MA, detrend, and SG are above 90%, which indicates that the feature wavelength can be reliably 
decomposed from the three components. Therefore, the first three components of these pretreatments 
are selected as the new coordinate system to reduce the dimension of the original spectra and extract 
the feature wavelengths. 

Table 2. Cumulative contribution rates of the first three principal components. 

Pretreatment 
Method 

Cumulative Contribution Rate/% (the First Three 
Principal Components) 

Reflection Transmission 0° 40° 
MSC 89.16 94.97 96.31 95.64 
SNV 89.01 96.84 92.50 88.63 

Normalization 95.58 95.11 95.98 95.05 
Auto 89.01 96.84 92.50 88.63 
MC 99.31 90.70 99.51 99.15 
MA 99.30 91.49 99.54 99.25 

Detrend 91.63 98.99 94.38 90.89 
SG 99.33 90.87 99.48 99.06 

SG-FD 79.72 76.44 86.79 80.21 
SG-SD 80.26 88.15 71.14 86.73 

Then, we establish LIBSVM, DCA, LDA, KNN, RF, and NB models to calculate the accuracy of 
training set and test set, respectively (Table 3). The results show that the overall accuracy is not high 
by using the weak classifier based on PCA. Among them, the classification accuracy of KNN and NB 
modeling is only 83.75%. The pretreatment of SG and MC have the best accuracy. 

Table 3. The accuracy of the modeling based on PCA (the table shows the highest accuracy). 

M. P. 
Training Set Prediction Accuracy/% Prediction Set Training Accuracy/% 
R. T. 0° 40° R. T. 0° 40° 

Libsvm SG 60 89 51.5 51 47.5 81.25 47.5 52.5 
DAC MC 57.5 91.5 54.5 49 43.75 82.5 48.75 46.25 
LDA SG 72 67 91.25 83.5 63.75 65 81.25 60 
KNN SG 91.25 86.25 85 91.25 83.75 71.25 72.5 58.75 

RF MA 95 81.25 85 85 62.5 81.25 52.5 48.75 
NB SG 62.5 73.5 95 49.5 60 65 83.75 47.5 

M., model; P., pretreatment; R., reflection; T., transmission; 0°, 0° incident light; 40°, 40° incident light. 

  

Figure 7. Cumulative contribution rates of the top 20 principal components in 0◦ incident light.

Table 2. Cumulative contribution rates of the first three principal components.

Pretreatment Method
Cumulative Contribution Rate/% (the First Three Principal Components)

Reflection Transmission 0◦ 40◦

MSC 89.16 94.97 96.31 95.64
SNV 89.01 96.84 92.50 88.63

Normalization 95.58 95.11 95.98 95.05
Auto 89.01 96.84 92.50 88.63
MC 99.31 90.70 99.51 99.15
MA 99.30 91.49 99.54 99.25

Detrend 91.63 98.99 94.38 90.89
SG 99.33 90.87 99.48 99.06

SG-FD 79.72 76.44 86.79 80.21
SG-SD 80.26 88.15 71.14 86.73

Then, we establish LIBSVM, DCA, LDA, KNN, RF, and NB models to calculate the accuracy of
training set and test set, respectively (Table 3). The results show that the overall accuracy is not high
by using the weak classifier based on PCA. Among them, the classification accuracy of KNN and NB
modeling is only 83.75%. The pretreatment of SG and MC have the best accuracy.

Table 3. The accuracy of the modeling based on PCA (the table shows the highest accuracy).

M. P.
Training Set Prediction Accuracy/% Prediction Set Training Accuracy/%

R. T. 0◦ 40◦ R. T. 0◦ 40◦

Libsvm SG 60 89 51.5 51 47.5 81.25 47.5 52.5
DAC MC 57.5 91.5 54.5 49 43.75 82.5 48.75 46.25
LDA SG 72 67 91.25 83.5 63.75 65 81.25 60
KNN SG 91.25 86.25 85 91.25 83.75 71.25 72.5 58.75

RF MA 95 81.25 85 85 62.5 81.25 52.5 48.75
NB SG 62.5 73.5 95 49.5 60 65 83.75 47.5

M., model; P., pretreatment; R., reflection; T., transmission; 0◦, 0◦ incident light; 40◦, 40◦ incident light.

3.3.2. Model Based on Successive Projections Algorithm (SPA)

The successive projections algorithm (SPA) can eliminate collinear redundancy to find the
wavelength segment with the minimum collinear information and represent the maximum information
of the sample. In this experiment, the number of wavelengths selected by SPA was set to range
from 5 to 30, and the step length was 1. Then, we iterated the data and selected the wavelength
with the largest projection phasor as the feature wavelength combination. Meanwhile, the RMSE of
different combinations was calculated by linear regression until the feature wavelength combination
corresponding to the minimum RMSE was obtained. The SPA feature wavelength was extracted from
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the preprocessed data of SG-FD as the incident angle of 0◦. The results show that the best RMSE = 0.58
as the feature wavelength is 22 (Figure 8).
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The number of feature wavelength was extracted differently using different preprocessing methods
(Table 4). Subsequently, LIBSVM, DCA, LDA, KNN, RF, and NB models were established to obtain the
accuracy of the training set and the test set (Table 5).

Table 4. Number of feature wavelengths extracted after successive projections algorithm
(SPA) processing.

P. MSC SNV Norm. Auto MC MA Detrend SG SG-FD SG-SD

R. 17 10 16 10 11 19 12 18 16 12
T. 20 18 17 18 12 15 21 20 12 6
0◦ 22 22 16 22 11 18 19 19 22 15

40◦ 35 48 47 26 24 16 26 35 35 44

N, number of feature wavelengths; P., pretreatment; R., reflection; T., transmission.

By comparing Tables 3 and 5, it can be concluded that the accuracy of feature wavelength extraction
based on SPA is generally higher than that of PCA. In addition, the pretreatment of MSC, SNV, auto,
and MC classified using the DAC model has higher accuracy; the 0◦ incidence angle MSC-SPA-DAC
has the highest accuracy of 96.25%, while that of reflection incidence SG-SPA-LDA is 81.25%. These
results are consistent in that the light of scattering has more internal information of an egg than that
of reflection.

Table 5. The accuracy of the modeling based on SPA (the table shows the higher accuracies).

M. P.
Training Set Prediction Accuracy/% Prediction Set Training Accuracy/%

R. T. 0◦ 40◦ R. T. 0◦ 40◦

Libsvm SG-FD 98.00 94.50 95.50 96.50 80.00 75.00 78.75 78.75

DAC

MSC 94.50 100.00 100.00 99.00 71.25 91.25 96.25 85.00
SNV 90.00 100.00 100.00 100.00 68.75 90.00 93.75 92.50

Norm. 87.00 99.50 99.00 99.50 62.50 90.00 91.25 91.25
Auto 90.00 100.00 100.00 100.00 68.75 90.00 93.75 92.50
MA 97.50 99.00 99.50 100.00 77.50 81.25 86.25 91.25

Detrend 95.00 98.50 99.00 99.00 77.50 86.25 85.0 91.25
SG 98.00 97.50 99.00 99.00 77.50 81.25 85.00 90.00

SG-FD 97.00 97.50 98.00 98.50 77.50 77.50 92.50 90.00
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Table 5. Cont.

M. P.
Training Set Prediction Accuracy/% Prediction Set Training Accuracy/%

R. T. 0◦ 40◦ R. T. 0◦ 40◦

LDA SG 97.00 75.00 71.50 94.00 81.25 60.00 66.25 78.75

KNN
MSC 100 100 98.75 98.75 78.75 91.25 76.25 77.5
Auto 100 100 100 98.75 86.25 91.25 91.25 87.5
MC 98.75 98.75 100 100 76.25 87.5 76.25 91.25

RF

Detrend 94.50 100.00 100.00 99.00 71.25 91.25 96.25 85.00
SG 90.00 100.00 100.00 100.00 68.75 90.00 93.75 92.5

SG-FD 87.00 99.50 99.00 99.50 62.50 90.00 91.25 91.25
SG-SD 90.00 100.00 100.00 100.00 68.75 90.00 93.75 92.50

NB
SNV 97.50 99.00 99.50 100.00 77.50 81.25 86.25 91.25

Norm. 95.00 98.50 99.00 99.00 77.50 86.25 85.00 91.25
MC 97.00 97.50 98.00 98.50 77.50 77.50 92.50 90.00

M., model; P., pretreatment; R., reflection; T., transmission; 0◦, 0◦ incident light; 40◦, 40◦ incident light.

3.3.3. Model Based on Competitive Adaptive Reweighted Sampling (CARS)

Competitive adaptive reweighted sampling (CARS) is based on the principle of “survival of the
fittest” in Darwin’s theory of evolution. In order to reduce the dimensionality, partial least squares
are used to select the spectral value with a larger regression coefficient, and the value with a smaller
one is eliminated to select some feature wavelengths for representing the full spectral information.
After this preprocessing, the dimensionality of the data is effectively reduced. In this study, we reduced
the dimensionality of the preprocessed spectrum by CARS and sampled the eggs by using Monte
Carlo. The sampling time of Monte Carlo was set to 100, and the PLS model was established by using
five-fold cross validation. Subsequently, the 0◦ incident light was taken as an example to extract the
process of the feature wavelengths after SG-FD preprocessing (Figure 9).
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Figure 9. The extraction process of feature wavelength based on competitive adaptive reweighted
sampling (CARS) at 0◦ incident source. (a) Number of sampling variables; (b) RMSECV; (c) Regression
coefficient path.

The number of retained wavelengths decreases slowly after starting to decrease rapidly as the
sampling frequency increases. RMSECV decreases slowly as the number of sampling runs ranges from
0 to 24, indicating that the eliminated wavelength has little influence on RMSECV. However, it increases
significantly as the number exceeds 24, indicating that the feature wavelengths have been deleted.
Therefore, the number of extracted feature wavelengths is 24. Similarly, the number preprocessed by
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other methods can be extracted (Table 6). Subsequently, the egg freshness classification models are
established by LIBSVM, DCA, LDA, KNN, RF, and NB (Table 7).

Table 6. Number of feature wavelengths extracted after CARS processing.

P. MSC SNV Norm. Auto MC MA Detrend SG SG-FD SG-SD

R 16 43 26 32 32 14 46 32 40 46
T 24 35 29 24 20 28 23 27 24 36
0◦ 28 44 26 16 16 16 20 22 24 16

40◦ 16 24 16 24 16 21 19 20 19 15

N, number of feature wavelengths; P., pretreatment; R., reflection; T., transmission.

Table 7. The accuracy of the modeling based on CARS (the table shows the higher accuracies).

M. P.
Training Set Prediction Accuracy/% Prediction Set Training Accuracy/%

R. T. 0◦ 40◦ R. T. 0◦ 40◦

Libsvm SG-SD 98.00 97.00 98.50 100.00 80.00 81.25 90.00 81.25

DAC

MSC 94.00 99.50 100.00 100.00 73.75 87.50 91.25 95.00
SNV 98.00 100.00 100.00 100.00 81.25 90.00 95.00 90.00

Norm. 97.50 100.00 100.00 100.00 80.00 92.50 93.75 88.75
Auto 98.00 100.00 100.00 100.00 76.25 91.25 95.00 88.75
MA 98.00 99.00 100.00 99.00 78.75 78.75 93.75 87.50

Detrend 98.00 99.50 99.50 99.50 80.00 88.75 93.75 93.75
SG 98.00 98.00 99.50 100.00 78.75 85.00 95.00 92.50

SG-FD 98.00 99.00 100.00 99.50 82.50 78.75 92.50 92.50
SG-SD 98.00 99.00 100.00 100.00 78.75 82.50 92.50 92.50

LDA Detrend 100.00 78.50 85.00 92.50 86.25 66.25 58.75 78.75

KNN

MSC 100.00 100.00 100.00 100.00 73.75 87.50 91.25 95.00
SNV 100.00 100.00 100.00 100.00 81.25 90.00 95.00 90.00

Norm. 100.00 100.00 100.00 100.00 80.00 92.50 93.75 88.75
Auto 100.00 100.00 100.00 100.00 76.25 91.25 95.00 88.75
MC 100.00 100.00 100.00 100.00 80.00 80.00 86.25 90.00
MA 100.00 100.00 100.00 100.00 78.75 78.75 93.75 87.50

RF

Detrend 94.00 99.50 100.00 100.00 73.75 87.50 91.25 95.00
SG 98.00 100.00 100.00 100.00 81.25 90.00 95.00 90.00

SG-FD 97.50 100.00 100.00 100.00 80.00 92.50 93.75 88.75
SG-SD 98.00 100.00 100.00 100.00 76.25 91.25 95.00 88.75

NB

SNV 98.00 99.00 100.00 99.00 78.75 78.75 93.75 87.50
Norm. 98.00 99.50 99.50 99.50 80.00 88.75 93.75 93.75
Auto 98.00 98.00 99.50 100.00 78.75 85.00 95.00 92.50
MC 98.00 99.00 100.00 99.50 82.50 78.75 92.50 92.50
MA 98.00 99.00 100.00 100.00 78.75 82.50 92.50 92.50

M., model; P., pretreatment; R., reflection; T., transmission; 0◦, 0◦ incident light; 40◦, 40◦ incident light.

It can be seen that the accuracy of weak classifier modeling based on CARS feature wavelength
extraction is generally higher than that of SPA and PCA for egg freshness. The CARS classifier has
a large number of models with high accuracies. Among them, DAC and KNN models have the
highest accuracies. The models of 0◦ incident light SNV/Auto/SG-CARS-DAC, 0◦ incident light
SNV-CARS-KNN, 40◦ incident light MSC-CARS-DAC/KNN, and 40◦ incident light detrend-CARS-RF
have the highest accuracies of 95%. These indicate that the model corresponding to the 0◦ fiber light
source has the highest accuracy and that of 40◦ fiber light source has the higher accuracy. Meanwhile,
the model with uniform reflection light source has the lowest accuracy.
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3.4. Best Prediction Model of Egg Freshness

The method presented in Section 3.3 is used for the nine different incident light modes to select
their highest accuracy of egg freshness, respectively (Table 8). It shows that the overall model accuracy
is extracted by the feature wavelength of CARS, which is higher than PCA and SPA. Among them,
the weak classifiers DAC, KNN, and PCA have the three highest accuracies. Moreover, the accuracy of
the MSC-SPA-DAC model (96.25) is the highest as the incident light angle is 0◦. The accuracies of the
30◦ incident light using MA-CARS-KNN model and the 40◦ incident light using MSC-CARS-DAC
model are 95% and 95%, respectively. These models with mean reflection light and 60◦ incident light
have low accuracy, 86.25% and 87.5%, respectively. This indicates that the accuracy of the scattering
hyperspectral model is higher than the other three models. In addition, as the angle of incidence
increases, the overall accuracy decreases.

Table 8. The highest accuracy of a model under different incident lights.

Incident Light The Best Model Accuracy/%

Mean reflection light Detrend-CARS-LDA 86.25

Optical fiber

Transmission Nomalization-CARS-DAC 92.50
0◦ MSC-SPA-DAC 96.25
10◦ MA-CARS-PCA 93.75
20◦ SNV/Auto-SPA-DAC 92.50
30◦ MA-CARS-KNN 95.00
40◦ MSC-CARS-DAC 95.00
50◦ Detrend/SG-CARS-DAC, Detrend-SPA-DAC 91.25
60◦ SG-FD-SPA-KNN 87.50

3.5. Egg Freshness Classification Based on Stacking Ensemble Learning

To further improve the accuracy of the model, several weak classifiers are combined into a strong
classifier, and stacking ensemble learning (SEL) [32] is performed to improve the generalization ability
of the classification model. A two-layer training structure of SEL is used to improve the accuracy and
speed of model. The overall flow chart of stacking ensemble learning is shown in Figure 10. The first
layer uses different classifiers to establish different meta-classifiers and integrates the prediction results
of all meta-classifiers. Then, the integrated data set of the classifiers with high accuracy in the first
layer is used as the input of the second layer. Finally, the second layer is trained with the best classifier.
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Therefore, in this experiment, three classifiers with the best model accuracy are selected to establish
three meta-classifiers as the input of the second layer. The training and test set are predicted based on
the idea of five-fold cross validation in each meta-classifier, in order to prevent data leakage (Figure 11).
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Finally, the new training and test set are used to establish the egg freshness classification model based
on SEL.
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The three classifiers, DAC, KNN, and RF, with the best accuracy are selected as the first layer.
Meanwhile, the DAC model with the highest accuracy is selected as the second layer. Table 9 shows
the results of the uniform reflection light source and transmission, 0◦ and 40◦ incident light sources.

Table 9. The accuracies of the stacking ensemble learning model (the table shows the highest accuracy).

M. P.
Training Set Prediction Accuracy/% Prediction Set Training Accuracy/%

R. T. 0◦ 40◦ R. T. 0◦ 40◦

PCA SG-SD 100.00 97.50 100.00 97.50 81.25 86.25 82.50 82.50

SPA

MSC 94.00 99.50 100.00 100.00 75.00 93.75 100.00 90.00
SNV 98.00 100.00 100.00 100.00 71.25 91.25 97.50 95.00

Norm. 97.50 100.00 100.00 100.00 77.50 93.75 97.50 93.75
Auto 98.00 100.00 100.00 100.00 72.50 93.75 95.00 95.00
MA 98.00 99.00 100.00 99.00 78.75 83.75 88.75 95.00

Detrend 100.00 99.50 99.50 99.50 82.50 92.50 88.75 96.25
SG 98.00 98.00 99.50 100.00 85.00 83.75 91.25 92.50

SG-FD 98.50 99.00 100.00 99.50 82.50 78.75 98.75 92.50

CARS

MSC 94.50 100.00 100.00 99.00 80.00 90.00 95.00 96.25
SNV 90.00 100.00 100.00 100.00 87.50 92.50 97.50 92.50

Norm. 94.50 99.50 99.00 99.50 85.00 95.00 95.00 92.50
Auto 90.00 100.00 100.00 100.00 85.00 95.00 98.75 93.75
MA 97.50 99.00 99.50 100.00 82.50 81.25 95.00 90.00

Detrend 95.00 98.50 99.00 99.00 88.75 90.00 97.50 95.00
SG 98.00 97.50 99.00 99.00 86.25 87.50 98.75 96.25

SG-FD 98.00 97.50 98.00 98.50 86.25 83.75 98.75 95.00
SG-SD 94.00 87.00 96.50 96.50 81.25 86.25 97.50 93.75

M., model; P., pretreatment; R., reflection; T., transmission; 0◦, 0◦ incident light; 40◦, 40◦ incident light.

It can be seen that the model based on SPA and CARS for extracting feature wavelength
can finally achieve a higher accuracy than that of PCA. We compare the accuracies of different
incident light corresponding models and find that the model of 0◦ fiber incident light source has the
highest accuracy. Specifically, the 0◦ incident light source based on MSC-SPA can be increased from
96.25% to 100% (Table 10). That of the 40◦ fiber incident light source is higher. The accuracy of its
SG/MSC-CARS-stacking and detrend-SPA-stacking models can reach 96.25%. While, that of uniformly
reflected light source has the lowest accuracy, which is only 88.75% of its detrend-CARS-stacking model.
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Table 10. The highest accuracy of the best model under different incident modes.

Incident Light The Best Model Accuracy/%

Mean reflection light Detrend-CARS 88.75

Optical fiber

transmission Normalization/auto-CARS 95.00
0◦ MSC-SPA 100.00

10◦ SG-CARS 96.25
20◦ SNV-SPA, MSC-CARS 95.00
30◦ MA-CARS 96.25
40◦ SG/MSC-CARS, detrend-SPA 96.25
50◦ SG-CARS, MA/detrend-CARS 93.75
60◦ SG-FD-SPA 90.00

The highest accuracy of the best model is different under different incident angles (Figure 12).
The accuracy at the 0◦ incident light (100%) is the highest. Its accuracy is almost linearly reduced
from 100% to 90% as the incident angle increases from 0◦ to 60◦. The accuracy of the transmission and
reflection incident model are 92.5% and 87.5%, respectively. These indicate that the incident angle has
an important influence on the accuracy of a model.
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4. Discussion

The accuracy of the non-destructive detection model for egg freshness based on hyperspectral
can be improved by using stacking ensemble learning. The learning is to use the output results of
a series of models (base model) as the input features of the other models. This method realizes the
stacking of models, that is, the outputs of the first layer model are used as the inputs of the second
layer model. In operation, we need to pay attention to no leakage when combining the output of the
first layer model. In addition, the data used for the output results of the basic model in the training
samples cannot be used for training, in order to prevent overfitting of the final prediction. Note that
validation on the training set is better than that on the test set. In order to prevent data leakage, it is
necessary to output the results of each part of the sample separately by the k-fold method. In our
experiment, we use the five-fold method (Figure 10) as follows: (1) We divide the data into five parts.
One part at a time is used as the validation set, and the remaining four parts are used as the training
set. In this way, a total of five models can be trained. (2) For the training set, one model is trained at
a time to predict the validation set, and the prediction results are used as the second layer input of the
corresponding samples in the validation set. The process is repeated five times, and obtain the outputs
of each training sample that could be used as the input of the second layer model. (3) For the test set,
one model is trained at a time to predict a result. Therefore, the sample in the final test set has five
output results, and the average of these results is used as the input for the second layer. Therefore,
in our experiment, the following six machine learning algorithms, LIBSVM, DCA, LDA, KNN, RF,
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and NB, are used to find the best combination of base-classifiers in the first stage and meta-classifier
in the second stage. The three highest accurate classifiers, i.e., DAC, KNN, and RF, are used as the first
layer. The training and test set are predicted based on the idea of five-fold cross validation in each
metamodel to prevent data leakage (Figure 10). Finally, we obtain the first layer of data input into the
second layer of the DAC model, and this method has the highest accuracy.

Different incident angles cause different information to be contained in the light collected by the
camera, resulting in different accuracy of egg freshness. The freshness is closely related to the internal
composition of an egg, yolk index [43], the pH of protein [1], and air chamber index [44]. The spectra
collected about the more internal information of an egg is the precondition for establishing a model
with higher accuracy. The analysis of the light propagation paths inside an egg helps us to understand
the information contained in the image at different incident angles. For different incident modes,
the propagation paths of light through an egg are different, and therefore the information collected is
also different (Figure 13).
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The camera mainly captures the reflected light of an egg as the incident light is a dome uniform
light source, captures the scattered light through an egg as the incident angle is 0◦, captures the
reflection and the scattered light as the incident angle ranging from 0◦ and 60◦, and captures the
transmission light as the transmission fiber light. The scattered light through an egg carries out a lot of
the biochemical information of the egg yolk, egg white, and air chamber. The reflected light by an egg
only contains the information of the eggshell. The transmission light through an egg also carries out
a lot of information, and the camera collects a higher proportion of the original light from the incident
light source, resulting in a low accuracy. In our experiment, a camera captures a larger proportion of
scattered light and a smaller proportion of reflection light as the incident angle is 0◦, the accuracy of this
angle is the highest. Meanwhile, the proportion of scattered light decreases and that of the reflection
light increases as the incident angle increases gradually from 0◦ to 60◦, causing the accuracy to decease
gradually with an increase of the incident angle. The proportion of the reflection light should be the
highest as the angle increases to 90◦, thus its corresponding accuracy should be the lowest. In this
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mode, most of the light is reflected by the eggshell and captured by a camera. A small part of the light
passes through the eggshell to enter the inside of the egg, but a larger proportion of the light shoots out
from the bottom of the egg, which cannot be detected by the camera on the top of the egg. Therefore,
only a very small part of the light is scattered on the upper of the egg and captured by the camera,
resulting in its low accuracy. However, the 90◦ incident angle could not be tested due to the location
conflict of the camera and the incident light source. However, the dome uniform light source is the
light source with a weak intensity, which cannot nearly penetrate the eggshell, and only reflection light
is captured by the camera. Thus, it is very similar to the 90◦ incident angle of the fiber light source.
This is the reason why the accuracy of the model decreases linearly as the angle increases from 0◦ to
60◦ and R. (Table 10). For the transmitted light source, most of the light is reflected from the bottom of
the egg, the scattered light from the lower layer of the egg is absorbed by the yolk, and only a small
part of the scattered light from the upper layer is captured by the camera, and a large amount of the
original light also interferes with the test accuracy. Hence, its detection accuracy is not high.

5. Conclusions

This paper has studied a method for improving the accuracy of egg freshness based on scattering
hyperspectral, as well as researched the influence of different incident angles on the accuracy
and explained its mechanism. The data processing process and conclusions are the following;
(a) We established the classification model of egg freshness based on the combination of different
preprocessing, feature wavelength extraction, and weak classifiers, and obtained the best classification
models. We found that the 0◦ fiber light source MSC-SPA-DAC had the highest accuracy of 96.25%.
Moreover, the detection accuracy of the 30◦ fiber light source MA-CARS-KNN and 40◦ fiber light
source MSC-CARS-DAC were 95% and 95%, respectively. (b) Stacking ensemble learning was used
to establish a fast egg freshness classification model to further improve the accuracy. In the 0◦ fiber
optic light source MSC-SPA-stacking combination mode, the accuracy increased from 96.25% to 100%.
(c) The hyperspectral classifier model of egg freshness was established under different incident light
irradiation. Their highest accuracies of scattering, reflection, transmission, and mixed modes were
100.00%, 88.75, 95.00%, and 96.25%, respectively, indicating that the scattering hyperspectral for egg
freshness detection was better than the other three. Moreover, the accuracy was inversely proportional
to the incident angle, that is, the greater the incident angle, the lower the detection accuracy. Finally,
this experiment realizes the non-destructive and high-precision detection of egg freshness based on
scattering hyperspectral, and it has potential applications in online non-destructive detection.
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