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Abstract: With the rapid development of the social economy, high-voltage transmission lines as
power supply infrastructure are increasing, subsequently presenting a new challenge to the effective
monitoring of transmission lines. The dynamic sensor network integrated with robots can effectively
solve the elastic monitoring of transmission lines, but the problems of real-time performance,
energy consumption and economy of the network need to be solved. To solve this problem, a dynamic
network deployment method based on the hybrid hierarchical network (HHN) is proposed to
realize a low-cost, energy-saving and real-time dynamic sensing system for overhead high-voltage
transmission lines. Through case analysis and simulation, combined with the vague set multi-attribute
decision-making method (MADM) with scheme preference, the network deployment and optimization
results under multi-parameter constraints are obtained.

Keywords: hybrid hierarchical network; smart grid; inspection robot; real-time network;
optimized deployment; transmission line monitoring

1. Introduction

With the rapid development of social economy, high-voltage transmission lines as power supply
infrastructure are promptly increasing in number. As the transmission lines are usually set up in the field
and exposed to a harsh environment for a long time, their operation status monitoring is particularly
important. In our previous research [1–4], a multi-robot cyber physical system (MRCPS), as shown in
Figure 1, was proposed to solve the problem of sensing environmental variables of transmission lines.

This novel system combines the characteristics of an inspection robot (IR), wireless sensor
networks (WSNs), and a transmission line environment to realize remote monitoring of smart
grids [1]. In this system, we adopt the interrupt/delay tolerance technology to realize data elastic
transmission. Moreover, network coverage technology improves the delay characteristics of non-real-time
network communication. However, transmission lines have long span sections across water areas,
randomly distributed tension towers and other key areas. Non-real-time data will affect the continuous
monitoring and remote control of robots. Thus, extending MRCPS to construct a regional full-real-time
network has become a new challenge.

Nowadays, WSNs are low cost, self-organizing, and dynamic, but their invulnerability in the complex
environment needs to be improved [5]. Although 4G/5G communication can provide enough bandwidth,
its operation and deployment costs are higher, and there is no signal coverage in remote mountainous
areas [6,7]. Optical fiber composite overhead ground wire (OPGW) of smart grids can provide high-speed
and long-distance optical fiber communication, but the network expansion performance is limited [8].
Considering the above factors and existing technologies, it is a feasible scheme to construct a hybrid
hierarchical network compatible with optical fiber communication and a wireless network.
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Figure 1. Multi-robot cyber physical system. 

Nowadays, WSNs are low cost, self-organizing, and dynamic, but their invulnerability in the 
complex environment needs to be improved [5]. Although 4G/5G communication can provide 
enough bandwidth, its operation and deployment costs are higher, and there is no signal coverage in 
remote mountainous areas [6,7]. Optical fiber composite overhead ground wire (OPGW) of smart 
grids can provide high-speed and long-distance optical fiber communication, but the network 
expansion performance is limited [8]. Considering the above factors and existing technologies, it is a 
feasible scheme to construct a hybrid hierarchical network compatible with optical fiber 
communication and a wireless network. 

In this paper, the real-time and reliability of robot inspection and control information are taken 
as the optimization objectives. Therefore, we focus on the deployment strategy of a dynamic robot 
hybrid network for smart grids. The research state related to the deployment strategy of a hybrid 
layered network and its adaption for transmission lines monitoring is as follows. 

For transmission line monitoring, multiple fixed sensors are often used to form hybrid multi-layer 
sensor networks for sensing the state of transmission lines. The deployed sensors will be used to sense 
the mechanical, physical, or electrical parameters of smart grids, and transmit the data to the monitoring 
center through the Internet of Things (IoT) [9–11]. WSN provides a cost-effective way to quickly 
establish the communication infrastructure and transmit data from sensors to substations [12,13]. 
Initially, a small-scale deployment of wireless sensor networks was used to monitor the tension [14], 
sag [15], and other parameters of transmission lines. For WSN, some towers are not directly connected 
to the substation and need to send their data to nearby towers closer to the substation. In such a  
hop-by-hop transmission manner through linear network topology, the data will eventually arrive at 
the substation.  

However, the wireless network with low bandwidth or data rate limited the monitoring  
ability [10]. The hybrid hierarchical network is a feasible solution to this problem [16]. It not only 
retains the flexibility of wireless network deployment, but also improves network performance 
through a wired network. 

A hybrid hierarchical network is a multi-level network structure that integrates multiple 
communication technologies which have different functions and computing capabilities [17]. The 
author in [18] proposed to install cellular nodes on each transmission line tower, but this can be 
prohibitively expensive if there is a large number of towers. To ensure the economy of the network 
and the timeliness of data, it is very important to deploy the cellular tower and optical fiber-separated 
towers reasonably. The deployment of its network usually takes into account node energy 
consumption, cost, end-to-end delay, and network robustness, etc. [19–22]. 

Research on hybrid layered network deployment is based on the wide area network (WAN) and 
WSN. The authors in [23] have formulated a placement problem to determine the number and 
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In this paper, the real-time and reliability of robot inspection and control information are taken as
the optimization objectives. Therefore, we focus on the deployment strategy of a dynamic robot hybrid
network for smart grids. The research state related to the deployment strategy of a hybrid layered
network and its adaption for transmission lines monitoring is as follows.

For transmission line monitoring, multiple fixed sensors are often used to form hybrid multi-layer
sensor networks for sensing the state of transmission lines. The deployed sensors will be used to sense
the mechanical, physical, or electrical parameters of smart grids, and transmit the data to the monitoring
center through the Internet of Things (IoT) [9–11]. WSN provides a cost-effective way to quickly
establish the communication infrastructure and transmit data from sensors to substations [12,13].
Initially, a small-scale deployment of wireless sensor networks was used to monitor the tension [14],
sag [15], and other parameters of transmission lines. For WSN, some towers are not directly connected
to the substation and need to send their data to nearby towers closer to the substation. In such a
hop-by-hop transmission manner through linear network topology, the data will eventually arrive at
the substation.

However, the wireless network with low bandwidth or data rate limited the monitoring ability [10].
The hybrid hierarchical network is a feasible solution to this problem [16]. It not only retains the
flexibility of wireless network deployment, but also improves network performance through a
wired network.

A hybrid hierarchical network is a multi-level network structure that integrates multiple
communication technologies which have different functions and computing capabilities [17]. The author
in [18] proposed to install cellular nodes on each transmission line tower, but this can be prohibitively
expensive if there is a large number of towers. To ensure the economy of the network and the
timeliness of data, it is very important to deploy the cellular tower and optical fiber-separated
towers reasonably. The deployment of its network usually takes into account node energy consumption,
cost, end-to-end delay, and network robustness, etc. [19–22].

Research on hybrid layered network deployment is based on the wide area network (WAN)
and WSN. The authors in [23] have formulated a placement problem to determine the number and
locations of cellular-enabled towers, such that the installation and operational costs are minimized
while satisfying the end-to-end delay and bandwidth constraints of the data stream. Moreover, a linear
integer programming model with minimum cost was proposed. However, this method is not suitable
for solving nonlinear problems. On this basis, the authors in [24] proposed to use a genetic algorithm
to solve the optimal deployment location of network nodes. However, the authors in [23,24] have
not considered the fact that cellular network coverage may not be available in unpopulated areas.
In this case, other forms of WAN, such as satellite communications with universal coverage, should be
considered as an alternative to the cellular networks. In [24], considering the requirements of quality
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of service (QoS) and network robustness, cellular network and satellite network are used to realize
communication with the monitoring center. Standard genetic algorithms are used to determine
the number, location, and type of WAN connections to be deployed to minimize costs while meeting
QoS and robustness requirements.

Research on the hybrid layered deployment network combines the wire network with WSN.
The authors of [25] were the first to propose a two-level model, which is especially used to support the
application of overhead transmission line monitoring. However, considering the topology constraints
of transmission lines, wireless nodes a low bandwidth and low data rate cannot transmit large amounts
of data in multi-hop mode. The authors of [26] proposed a reconfigurable network model and studies
it from the perspective of security and delay. The goal is to minimize time delays without considering
cost and energy constraints. The authors of [27] proposed a theoretical model for the deployment of an
optical fiber splitter with the goal of cost and end-to-end delay optimization, and the model was solved
by using particle swarm optimization (PSO). This method does not consider the energy consumption
of nodes, and it also lacks adaptability in different scenarios. In [20], a network node with optical fiber
access is deployed every several towers, and a sequential control scheme is proposed to achieve the
best energy efficiency of the nodes, but no specific deployment scheme is given. The authors of [28]
introduced the concept of a network partition and proposed a data aggregation point layout algorithm
based on clustering to solve the network deployment problem. In this method, the whole network is
divided into several sub-nets, and a data aggregation point is deployed in the best location of each
sub-net. The authors of [29] proposed a hybrid detection network model based on OPGW and WSN,
which mainly studies the power allocation of wireless sensor data transmission. At the same time,
the layered network based on the Internet of Things is also widely used in the monitoring of power
grid [30–32].

To sum up, a hybrid hierarchical network contains a variety of communication modes, and its node
deployment is a multi-objective optimization problem. The common methods to determine the optimal
deployment location of nodes include linear integer programming, particle swarm optimization,
genetic algorithm, etc. At present, few studies have proposed to achieve the real-time monitoring of
transmission lines by a robot inspection system based on a hybrid hierarchical network. Furthermore,
the existing research has not fully considered the adaptability of the algorithm to the characteristics of
transmission lines, such as the number of towers of different sizes. Therefore, we propose a hybrid
hierarchical network and its optimization deployment method for MRCPS. It can not only solve the
problem of over the horizon real-time communication of inspection robot in key areas, but also realize
low-cost and high-efficiency real-time monitoring of transmission lines.

In this article, a robot hybrid hierarchical network (RHHN) and its deployment method are
proposed to monitor the state of transmission lines for cyber physical system applications. In addition,
the adaptability of the algorithm to the characteristics of transmission lines is fully considered. The main
innovations are as follows:

1. A remote real-time communication method based on a hierarchical network for transmission line
inspection is proposed.

2. The optimal deployment model of RHHN is given, and the constraints of smart grids
are considered.

3. Combining the improved PSO algorithm with the MADM, a specific communication network
layout scheme is given.

The structure of this paper is as follows: Section 2 describes the components of RHHN
and its deployment model methods. Section 3 discusses the developed methods and algorithms.
Simulation work, numerical results and discussions are presented in Section 4, and we conclude the
paper in Section 5.
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2. RHHN and Deployment Model

This section introduces the design and deployment model of RHHN. Firstly, the characteristics of
transmission lines are analyzed to establish RHHN. Secondly, the online motion law of the inspection
robot is analyzed, and the motion model of the inspection robot is proposed. Thirdly, combined with the
motion model, the calculation method of energy consumption and delay in the data forwarding process
of the inspection robot is given. Finally, under the constraints of network connectivity, robot endurance,
and bandwidth, a deployment model of RHHN is proposed.

2.1. Robot Hybrid Hierarchical Network

RHHN integrates OPGW, wireless fidelity (Wi-Fi), and general packet radio service (GPRS) to meet
the constraints of data delay, bandwidth, and robot endurance while minimizing deployment costs.
Its hybrid hierarchical network communication architecture is shown in Figure 2, which is mainly
composed of the following parts:

• Dynamic node: inspection robot (IR).
• Wireless relay node (WRN): communication base station without optical fiber

connection equipment.
• Wireless central node (WCN): communication base station with optical fiber connection equipment.
• Central monitoring center (CMC): indoor centralized monitoring platform.
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Figure 2. The hybrid hierarchical network communication architecture of the robot hybrid hierarchical
network (RHHN).

The communication node (WRNs and WCNs) structures are shown in Figure 3. Their main
components include an optical switch, a bridge, GPRS equipment, Maximum Power Point
Tracking (MPPT), and a Central Processing Unit (CPU). The CPU controls the whole
communication node. MPPT connects solar panels and batteries to realize an automatic power supply.
The optical switch provides a stable optical communication link for the network. Then, the network
bridge and directional antennas are used to provide directional wireless signals, which cover the
transmission line area linearly and provide network access services for other equipment. Moreover,
GPRS equipment is configured to obtain the public network access capability in an emergency.
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RHHN adopts an optical fiber relay network to form a backbone network. WCN and WRN provide
directional wireless signals, which are linear network coverage of transmission line corridors. Therefore,
RHHN provides network access services for robots and tower equipment; thus, the inspection data
are finally transmitted to the indoor centralized monitoring center. In addition, when the robot is in
the wireless coverage blind area and GPRS is available, the robot can use GPRS to feedback to the
running state. Furthermore, to prolong the survival period of the node in the harsh environment,
RHHN also realizes the sleep scheduling of the communication node through GPRS. The hybrid
networking model of integration of OPGW, Wi-Fi, and GPRS expands the access range of OPGW access
points and greatly enhances the reliability of the network.

RHHN is divided into three layers, and the specific structure is as follows:

• Access Layer

The access layer of the network is responsible for collecting information about the tower. This layer
network is composed of the inspection robot (IR) and its inspection payloads. When the robot patrol
along the line, the robot can directly transfer the inspection data to the next layer network, or to CMC
via GPRS in emergency situation.

• Distribution Layer

The distribution layer network is composed of multiple WRNSs, and is responsible for gathering
the patrol data sent by the access layer, and then transmitting the patrol data to the core layer in
the form of multi-hop. The hop number of data transmission will be determined by wireless link
bandwidth and delay tolerance.

• Core Layer

The core layer of the network is an optical transport layer. It is composed of CMC and WCN.
WCN transmits inspection data to CMC through optical fibers (OPGW). CMC processes and analyzes
the inspection data and makes control decisions for the robot.

2.2. Related Problem Model

2.2.1. Motion Model of Inspection Robot

For MRCPS and its RHHN, the inspection robot takes the transmission line as its running track,
and the simplified motion law of it is shown in Figure 4. IR has the following three typical motion modes:
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• Firstly, line inspection mode: IR moves between towers, that is, it makes a uniform linear motion
in each section between towers.

• Secondly, tower crossing motion mode: the robot needs to cross all kinds of hardware near
the tower, and makes a low-speed complex movement when it passes through obstacles near
the tower.

• Thirdly, power tower inspection mode: after the IR passes over the obstacles, it makes a fine
inspection of the area near the tower in a static state.
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According to the motion law of the IR, a simplified motion model of the inspection robot and its
formula method is given in this section. The motion modeling of the inspection robot is as follows:
Suppose that the motion area of the robot is A, the path of the robot along the transmission line is P,
and the transmission line tower is T. On any path P, the starting point and ending point of the motion are
S and E, respectively. In the interval of SE, the robot’s motion speed is vIR ∈ (vmin, vmax). Among them,
the starting point or endpoint of each segment is the key inspection area of the transmission line.
That is, the robot carries out the inspection work at S (E), and during the inspection operation time,
the robot keeps still, so as to complete the inspection movement process of the line. After that,
the above-mentioned movement process is repeated, and the ending point Ei of the previous movement
is taken as the starting point Si+1 of the next movement to form the whole inspection movement.

The robot inspection movement model and the projection distance calculation between the moving
endpoints are shown in Figure 4. Suppose that the robot inspects n towers from Ti to Ti+n, the Euclidean
distance from Ti to Ti+n is dSE, and the segmented projection distance is di, di+1, . . . , di + n−1, (n∈N*).
When Rs = 1, the robot is in the motion state, and the movement rate is vIR ∈ (vmin, vmax), the duration
of robot movement is t. When Rs = 0, the robot is in the inspection operation state, and the robot
remains stationary. Robot inspection mileage S (t) is shown in Equation (1),

S(t) =
{

vIRt rs = 1, vIR ∈ (vmin, vmax)

0 rs = 0
(1)

As shown in Figure 5, WCN or WRN is taken as the origin, and the line direction is taken
as the x-axis coordinate system direction to establish the coordinate system. Then the coordinate
of the inspection robot at a certain time is (xIR, yIR), which satisfies Equation (2), where L is the
distance between the two towers, and S (t) is the distance between the inspection robot and the
previous tower, which is calculated by Equation (1). In practical engineering, due to terrain or
terrain factors, the direction of the transmission line will change. At this time, the transmission tower
at the corner must bear the tension of the transmission line and overhead ground wire. This kind of
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transmission tower is called an angle-type transmission tower [32]. In Equation (2), θ represents the
corner of each tower.

xIR = Li +
i+n−2∑
ς=i+1

Lς cos(
ς∑

κ=i+1
θκ) + s(t) cos(

i+n−2∑
ς=i+1

θς+θi+n−1)

yIR =
i+n−2∑
ς=i+1

Lς sin(
ς∑

κ=i+1
θκ) + s(t) sin(

i+n−2∑
ς=i+1

θς+θi+n−1)

(2)
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2.2.2. Energy Consumption of Data Transmission  

According to Heinzelman [33], a simplified energy consumption model of data transmission is 
used for RHHN. The energy consumption of l bit data received or transmitted by the node is shown 
in Equations (3)–(4). Among them, Eelec is the energy consumption coefficient, d is the distance 
between neighboring nodes. The variable d0  = ඥεfs / εmp is the threshold value, the radio free space, 
and the multi-path loss coefficient are εfs and εmp, respectively.  

= ×Rx elecE E l (3) 

ε

ε

 + ≤= 
+ >

2
0

4
0

,
( , )

,
elec fs

Tx
elec mp

lE l d d d
E l d

lE l d d d
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Equation (4) shows that the farther the neighbor nodes are, the greater the energy consumption 
in data transmission. Due to the high mobility of the robot, the data transmission energy consumption 
of RHHN presents dynamic characteristics. 

2.2.3. Data Transmission Delay 

The communication link delay D (i, j) is a measure of the delay experienced by data from node i 
to node j. According to the definition of [10], link delay D (i, j) is shown in Equation (5), including 
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2.2.2. Energy Consumption of Data Transmission

According to Heinzelman [33], a simplified energy consumption model of data transmission is
used for RHHN. The energy consumption of l bit data received or transmitted by the node is shown
in Equations (3) and (4). Among them, Eelec is the energy consumption coefficient, d is the distance

between neighboring nodes. The variable d0 =
√
ε f s / εmp is the threshold value, the radio free space,

and the multi-path loss coefficient are εfs and εmp, respectively.

ERx = Eelec × l (3)

ETx(l, d) =
{

lEelec + lε f sd2, d ≤ d0

lEelec + lεmpd4, d > d0
(4)

Equation (4) shows that the farther the neighbor nodes are, the greater the energy consumption in
data transmission. Due to the high mobility of the robot, the data transmission energy consumption of
RHHN presents dynamic characteristics.

2.2.3. Data Transmission Delay

The communication link delay D (i, j) is a measure of the delay experienced by data from node i to
node j. According to the definition of [10], link delay D (i, j) is shown in Equation (5), including channel
access delay dca, transmission delay dt and propagation delay dp. Where dt = l/λ, dp = di j/Ψ. And l
(unit: Byte) is the size of the data packet, λ (unit: bps) is the link bandwidth, dij (unit: m) is the
Euclidean distance between node i and node j, Ψ (unit: m/s) is the propagation speed of the wireless
signal in the media, and the average channel access delay dca = tca.

D(i, j) = dca + dt + dp (5)
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The end-to-end delay Dete (IR, CMC) of patrol data transmission indicates the time required
for data to leave the robot and arrive at CMC. In the process of inspection, the distance between
the robot and WRN/WCN changes, so the hop number and delay of data transmission also change.
Dete (IR, CMC) is a dynamic value, which satisfies Equation (6),

Dete(IR, CMC) =
∑

i, j∈{IR,CMC,W,R}
D(i, j)

=
∑

i, j∈{IR,CMC,W,R}
(tca +

l
λ +

di j
ψ )

(6)

2.3. Deployment Model

To ensure the economic layout and real-time communication, network nodes should be deployed
reasonably to optimize the cost and network performance of RHHN. Therefore, we introduce the
graph theory to describe RHHN. Furthermore, a node deployment model with path connectivity,
robot endurance, and bandwidth constraints is proposed.

2.3.1. RHHN Network Model

As shown in Figure 6, the RHHN network model can be represented by a directed graph
G = (V, E) [34]. In graph G, the element V represents the vertex set and the corresponding node in
RHHN. In actual scenarios, the location of WCN and WRN distribution is unknown, so we need to
find a suitable method to solve the deployment strategy of WCN and WRN.
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Set V = {IR} ∪ {CMC} ∪W ∪R, where W is the set of WCN; R is the set of WRN; and the number
of elements in V is N + n, where the number of WCN/WRN is N, and the number of IR/CMC is n.
The element E represents the edge set and represents the physical link between nodes in RHHN.
It includes the wired link lWk, CMC = (Wk, CMC) between CMC and WCN; the wireless link lIR, Ri =

(IR, Ri) between robot and WRN; the wireless link lIR, Wk = (IR, Wk) between robot and WCN; and the
wireless link lRi, Rj = (Ri, Rj) between WRN, where Wk, Ri and Rj represent WCN and WRN, respectively,
Wk, Ri, Rj ∈ N. In the process of robot inspection, the inspection data need to be transmitted to CMC
from the robot. These data have common destination and constraints, and each data transmission can
be expressed as Equation (7),

F = (Source, Destination, e, b, D) (7)

where Source is the source node of the data, that is, IR, and Destination is the target node of the data,
namely CMC. The variable e is the energy consumption of robot the forwarding data, b is the bandwidth
requirement of data transmission, and D is the end-to-end delay of data transmission.
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2.3.2. RHHN Deployment Mode

The RHHN deployment problem is described as follows: under certain constraints, the deployment
location of WCN and WRN is determined to balance the network economy and performance.

• Deployment cost target

The deployment cost of the whole communication network is mainly the network deployment
cost of N devices such as WRN and WCN. This is the cost of deploying communication devices on
selected transmission line towers. The deployment cost target fc is shown in Equation (8),

fc =
NT∑
i=1

CWxi+

NT∑
j=1

CRy j (8)

where NT is the number of transmission towers in a transmission line, and CW and CR are the
deployment costs of WCN and WRN, respectively. The variables xi and yj are deployment coefficients
of WCN and WRN, respectively. If power tower Ti deploys WCN, xi = 1, otherwise xi = 0. If power
tower Tj deploys WRN, then yj = 1, otherwise yj = 0.

• Transmission energy consumption target

In the process of data transmission, the path selection follows the principle of minimizing energy
consumption and delay. In the network model graph G = (V, E), the transmission path pIR, CMC between
the robot and CMC can be described by Equation (9),

pIR,CMC =
{
lIR,i, li,u, . . . , lw,CMC

}
⊆ E (9)

The energy consumption of robot inspection data forwarding fe is shown in Equation (10),
where neighbor nodes i∈ {W, R}, ERx and ETx (l, dIR, i) are the energy consumed by the robot to receive
and send information respectively, which are given by Equations (3) and (4). Parameter l is the size
of the data packet, and parameter dIR, i is the distance from the robot to the next-hop node. With the
movement of the robot, the network changes dynamically, so the energy consumption target of network
transmission is changed at different times.

fe = ERx + ETx(l, dIR,i)i ∈ {W, R} (10)

• Transmission delay target

Due to the autonomous mobility of the inspection robot, the whole network has local connectivity at
different times. Therefore, the network node adjusts the transmission path according to the connectivity
characteristics to optimize the real-time performance. Different transmission paths pIR, CMC lead to the
change in hop number (h (pIR, CMC) = |pIR, CMC| can be used to represent the hop number of data link)
and distance dIR, CMC of patrol data transmission. The maximum end-to-end delay of data transmission
in RHHN can be obtained by combining Equations (6) and (9). The transmission delay target is shown
in Equation (11), where dIR, i is the distance from the robot to the next-hop node.

fd = [max(h(pIR,CMC)) + 1](tca +
l
λ
) +

l
λ
+

dIR,i

ψ
i ∈ {W, R} (11)

• Multi-objective function

Considering the multi-objective matching and optimization problem of RHHN deployment cost,
network transmission energy consumption, and network real-time performance, the RHHN
multi-objective function is shown in Equation (12),

minF = [ fc, fe, fd] (12)
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In the communication network deployment for MRCPS, the objective function fc is discontinuous
and fe and fd are nonlinear functions. Therefore, the problem of RHHN deployment can be defined as
a discontinuous, nonlinear, multi-variable, and multi-objective optimization problem.

• Constraint condition

The system data are transmitted to WCN in the form of multi-hop through RHHN and then
uploaded to CMC from WCN through optical fibers (OPGW). As the data are transmitted in the
network, whether the data of node i pass through a certain link can be described by the variable Xi, j, k,
where i and j in the variable denote the start and end nodes of the link, respectively. If the patrol
data use the link, the value of Xi, j, k = 1, otherwise it is 0. In order to ensure the connectivity of data
transmission path, according to the geometric relationship in graph G = (V, E), the constraint conditions
are established as follows,

N+1∑
k=1

W∑
i=1

Xi,CMC,k = N + 1 (13)

Xi,CMC,k = 1∀i ∈W, k ∈ N + 1 (14)

Xi, j,k ≤ X j,CMC,k∀i ∈ R∪ IR, j ∈W, k ∈ [1, N + 1] (15)

Xi,CMC,k − xi ≤ 0∀i ∈W, k ∈ [1, N + 1] (16)

xi, y j, Xi, j,k ∈ {0, 1}∀i, j, k (17)

Equations (13) and (14) ensure that system data must arrive at CMC through WCN and the
destination of the data is CMC, where W is the set of WCN. Then, Equation (15) ensures that the
data first reach WCN and then forwards to CMC. Equation (16) ensures that WCN is installed on the
required power tower Ti when any data stream uses the link. Finally, Equation (17) ensures that the
decision variables are binary variables with values of 0 and 1.

Furthermore, the constraints of network delay, bandwidth, and robot energy consumption should
be considered in network planning. Equation (18) ensures that the delay of system data transmission
from IR to CMC is less than or equal to the maximum allowable end-to-end delay Dete (IR, CMC).
As the robot patrols, the hop number h (pIR, CMC) of data transmission also changes with the change of
robot position. When the robot runs to the midpoint of the two WCNs, the hop number h (pIR, CMC) of
data transmission is the maximum, and fd is the maximum value. Therefore, the maximum value of
the transmission delay target fd can be calculated by calculating the maximum value of h (pIR, CMC).
Equation (19) ensures that the total traffic on each link does not exceed the available bandwidth of
the link. Where bk is the data generation rate of node k, then Bi, j is the bandwidth constraint of
link L (i, j).

Equation (20) is the constraint of robot communication energy consumption. It indicates that at
time t, the total energy of the robot is EIR (t), and the energy consumed by the robot to transmit data
through the link L (IR, i) is eIR, i (t).

fd ≤ Dete(IR, CMC) (18)∑
k∈N+1

bkXi, j,k ≤ Bi j∀(i, j) ∈ E (19)

∑
eIR,i(t) < EIR(t)∀i ∈W ∪R (20)

There are many corners in the transmission line. When the corners are too large, the effective
coverage area of the linear wireless signal is greatly reduced, as shown in Figure 7. In order to maximize
the effective coverage area of linear signals at communication nodes and ensure the effective connection
between nodes, the node deployment meets the constraint of Equation (21). Equation (21) indicates
that WCN or WRN is deployed at tower i when the line angle at tower i is greater than or equal
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to α/2. Where NT is the number of transmission line towers, θ is the corners of each tower, and α is the
horizontal lobe angle of the antenna.{

xi = 1 ∀i ∈ NT,θi ≥ α/2
y j = 1 ∀ j ∈ NT,θ j ≥ α/2

(21)
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3. The Deployment Method

In Section 2, we prove that the RHHN deployment problem is a discontinuous, nonlinear,
multi-variable, and multi-objective optimization problem. Firstly, we analyze the relationship between
network cost, delay, and energy consumption in this Section. Then, the three-objective optimization
model is transformed into two simplified two objective optimization models, and the improved PSO is
used to solve the deployment scheme. Finally, the MADM of a vague set with preference is used to
sort the deployment schemes and determine the optimal deployment scheme to meet the needs of
actual scenarios [35].

3.1. Transformation Model

In RHHN, the inspection data are first forwarded to the communication node by the mobile
robot nearby. After receiving the inspection data, the node forwards the data to WCN through
multi-hop transmission. Finally, WCN transmits the inspection data to CMC through OPGW.

It can be seen that the energy consumption in the process of data forwarding is only related to the
distance dIR, i between the robot and the communication node. Moreover, it is independent of the type
of node (WCN or WRN). The end-to-end delay Dete (IR, CMC) of data transmission represents the time
required for data to be forwarded from the robot to CMC. The value of Dete (IR, CMC) is positively
correlated with the number of hops and the distance d between nodes. Then, when the WRN position
is known, the value of Dete (IR, CMC) only depends on the number of data forwarding hops h (pIR, CMC).
In addition, the value of h (pIR, CMC) depends on the deployment plan of WCN.

Therefore, the three objective optimization problems can be transformed into two double objective
optimization problems. In other words, the deployment planning of WRN is solved by Equation (21).
After obtaining the deployment scheme of WRN, the WCN deployment plan is solved by Equation (22). fcR =

NT∑
i=1

CRyi

fe = ERx + ETx(l, dIR,i)

(22)
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
fcW =

NT∑
i=1

CWxi

fd =
∑

i, j∈{IR,CMC,W,R}
(tca +

l
λ +

di j
ψ )

(23)

In the multi-objective optimization problem, optimizing one of the objectives must sacrifice the
other as the cost, so there is no single optimal solution for the overall goal. However, in practice,
there are multiple optimal compromise solutions, which are called Pareto optimal solutions [36]. Usually,
the multi-objective optimization problem can be transformed into a single objective optimization
problem by weighting the objective, and then solved by mathematical programming method. However,
this weighted serialization method can only obtain one optimal solution at a time. At present, the method
to solve multi-objective optimization problem is the multi-objective evolutionary algorithm [37]. In the
multi-objective evolutionary algorithm, the PSO algorithm has the characteristics of fast convergence
speed and simple operation. In this paper, an improved PSO algorithm is used to solve the Pareto
optimal solution set of objective function. In addition, a vague set multi-attribute decision-making
method with a preference for alternatives is proposed to rank the optimal solution set. This method
determines the optimal solution according to the actual scene, which makes up for the blindness of
linear weighting.

3.2. Improved PSO for RHHN Deployment

Particle swarm optimization [38] was proposed by Kennedy and Eberhart in 1995. After that,
Shi [39] introduced the inertia weight factor on this basis, which is called the basic particle swarm
optimization algorithm. The update equation of inertia weight w and particle velocity is as follows:

w = wmax − (wmax −wmin)/(MaxIt− 1) · iter

vi j(t + 1) = wvi j(t) + c1r1(t)(pi j(t) − xi j(t)) + c2r2(t)(pgj(t) − xi j(t))
(24)

where wmax and wmin are the maximum and minimum values of inertia weight, respectively.
The variables MaxIt and iter are the maximum number of iterations and the current number of iterations,
respectively. Parameters c1 and c2 are learning factors. Parameters r1 and r2 are random numbers with
uniform distribution on [0, 1].

However, the linear inertia weight of PSO has no emphasis on global search and local search.
In addition, the PSO algorithm needs to conduct a wide range of global search in the initial stage. In the
later stage, it needs strong local searchability, and at the same time, it needs to speed up the convergence
speed of the algorithm. In this paper, a nonlinear sine function curve is introduced to adjust the inertia
weight w of PSO. The slope of the sine function curve increases first and then decreases, which makes
particles focus on global search first and then local search. At the same time, adjusting the update
mode of learning factors c1 and c2 is helpful for particle swarm optimization to quickly search the
global optimum. The specific improvement of the improved PSO (SinPSO) algorithm is shown in
Equation (25): 

w = wmax−wmin
2 cos iter·π

MaxIt +
wmax+wmin

2

c1 = c1max −
(c1max−c1min)·iter

MaxIt

c2 = c2min +
(c2max−c2min)·iter

MaxIt

vi j(t + 1) = wvi j(t) + c1r1(t)(pi j(t) − xi j(t)) + c2r2(t)(pgj(t) − xi j(t))

(25)

In the deployment of RHHN, it is necessary to optimize the specific installation location and
deployment number of WRNs and WCNs. Therefore, the particle is a coding sequence formed by xi,
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which represents the installation position of WRNs and WCNs. The encoding form is shown in
Equation (26). Different particles constitute a heterogeneous deployment scheme. If it is WCN or WRN,
the corresponding element in the coding sequence is 1, otherwise it is 0.

X = [x1, x2, . . . , xN] (26)

The pseudo-code of SinPSO is shown in Algorithm 1 as follows.

Algorithm 1: SinPSO

1: for each particle i
2: Initialize velocity vi and position Xi for particle i
3: Evaluate particle i and set pBesti = Xi
4: end for
5: gBest = min{pBesti}
6: for i = 1 to MaxIt
7: Evaluate particle i
8: if fit (Xi) < fit(pBesti)
9: pBesti = Xi;
10: end if
11: if fit(pBesti) < fit(gBest)
12: gBest = pBesti;
13: end if
14: for each particle i, update vi and position Xi according to Equation (25)
15: end for
16: print gBest

3.3. Multi-Attribute Decision Making

After the Pareto optimal solution set is obtained by SinPSO, the optimal solution set is sorted by
the multi-attribute decision-making method (MADM) of a vague set with a preference on alternatives.
The optimal solution set is sorted by MADM of a vague set with a preference on alternatives, and its
specific steps are as follows:

• Step 1: Calculate the vague value.

Using Equation (27), each attribute index is standardized. Then, according to the size of variable rij,
the corresponding Vague value aij = [gij, 1 − mij] of scheme Ai under the j-th evaluation index is
obtained. Where gij is the true membership of vague sets, mij is the false membership of vague sets,
and gij, mij ∈ [0, 1]. The decision maker’s preference for scheme Ai is expressed by vague as ai* =

[gi*, 1 − mi*]. The corresponding relationship between the size of variable rij and vague value is shown
in Table 1.

ri j =
x jmin

xi j
, x jmin = min

i
xi j (27)

Table 1. The corresponding relationship between parameter rij and the vague value.

Interval of Parameter rij (%) Vague Value

[95,100] [1,1]
[85,95) [0.9,0.95]
[75,85) [0.8,0.9]
[65,75) [0.7,0.85]
[55,65) [0.6,0.8]
[45,55) [0.5,0.5]
[35,45) [0.4,0.6]
[25,35) [0.3,0.45]
[15,25) [0.2,0.3]
[0,15) [0.1,0.15]
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• Step 2: Calculate weight.

The weight xj of each attribute is calculated according to Equation (28), where ξ and ς represent
the number of programs and evaluation indicators, respectively.

χ j =

ξ∑
i=1

(
∣∣∣gi j − gi

∗
∣∣∣+∣∣∣mi j −mi

∗
∣∣∣)

ζ∑
j=1

ξ∑
i=1

(
∣∣∣gi j − gi∗

∣∣∣+∣∣∣mi j −mi∗
∣∣∣) (28)

• Step 3: Calculation of the comprehensive attribute value.

The comprehensive value Zi = [gi’, 1 − mi’] of each scheme attribute is calculated according
to Equation (29), where gi’ and mi’ are the comprehensive values of true membership and false
membership of scheme Ai, respectively.

Zi =

ζ∑
j=1

ai jχ j (29)

• Step 4: Calculation of the possibility matrix.

According to Equation (30), the possibility degree of comparison among the comprehensive values
of the attributes of each scheme is calculated, and the possibility matrix P is obtained.

P(Zi > Z j) =
max[0, (1−mi

′ + 1−m j
′
− gi

′
− g j

′) −max(0, 1−m j
′
− gi

′)]

1−mi′ + 1−m j′ − gi′ − g j′
(30)

• Step 5: Comprehensive ranking calculation of schemes.

The ranking vector v of possibility degree is calculated from the possibility degree matrix P,
and the comprehensive ranking of alternatives is obtained. Mostly, v [i] is compared, and the largest
one is the selection scheme. If v [i] is the same, the scheme with a larger gi’ value is selected.

In the actual scenario, the number of transmission lines is not an integral multiple of WRN or WCN.
In general, a balanced deployment of WRN and WCN can achieve optimal network performance.
Therefore, when the cost-robot energy consumption or cost-delay are consistent, the deployment
scheme with the minimum variance should be selected. The variance is calculated as Equation (31),
where di is the distance between two communication nodes, n is the number of communication nodes,
and S is the length of the transmission line.

σ2 =
1
n

n∑
i=1

(di −
S
n
)

2
(31)

4. Results and Discussion

In the multi-objective optimization problem, the higher the objective dimension, the more
serious the pressure attenuation of the excellent solution selection. In addition, it is difficult
to maintain the convergence and diversity of the objective solution set at the same time [40].
Generally, dimensionality reduction is an effective method to improve the diversity and convergence
of solutions. Meanwhile, this method can reduce the complexity of the algorithm and improve
computational efficiency. Therefore, in Section 4, we analyze the relationship between network cost,
robot energy consumption, and data transmission delay. Then, the three-objective optimization
problem is transformed into two double objective optimization problems.
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In this section, we try to use the two-dimensional objective optimization method to implement the
actual deployment of RHHN. Furthermore, SinPSO is compared with several deployment algorithms
to evaluate its efficiency. The energy consumption in the process of data forwarding is only related to
the distance between the robot and the communication node. It has nothing to do with the type of
node (WCN or WRN), while the network delay Dete (IR, CMC) is positively correlated with the number
of relay hops h (pIR, CMC) and the distance d between nodes. When the deployment scheme of WRN is
not determined, the value of h (pIR, CMC) cannot be determined. Therefore, it is very important to obtain
the deployment scheme of WRN by solving the two-dimensional optimization problem of deployment
cost and robot energy consumption. To sum up, the deployment of RHHN communication node is
divided into the following steps:

• Step 1: The optimal objective function of WRN deployment cost and the robot energy consumption
is solved to obtain the deployment scheme of WRN.

• Step 2: According to the relationship between the maximum end-to-end delay of data transmission
and the deployment cost of WCN, the deployment scheme of WCN is solved.

Thus, combined with the WRN deployment scheme and the WCN deployment scheme, the final
deployment strategy is obtained.

4.1. Deployment of WRNs

In order to verify the effectiveness of the proposed RHHN deployment model and algorithm,
SinPSO is used to solve the deployment problem. In the scenario of different numbers and scales
of towers, the solution set of SinPSO algorithm is compared with that of the non-dominated sorting
genetic algorithm-II (NSGA-II) [41] and standard PSO [39]. The reason why the NSGA-II algorithm
is selected for comparison is that the NSGA-II algorithm is widely recognized as a classic algorithm
for multi-objective optimization. The comparison with PSO algorithm is to reflect the advantages of
SinPSO algorithm.

For simulation scenarios, the size of data package received by the robot is 30 bit and the size of data
package sent is 1200 Kb during each data transmission process. All nodes have wireless communication
capabilities similar to IEEE 802.11n, and the transmission rate is 10 Mbps. The default network
transmission range of WCNs, WRNs and robot is 8 km. The horizontal lobe angle of directional antenna
is 60◦. Considering installation, equipment procurement and other factors, the deployment costs of
WCN and WRN are 7000 (USD) and 3500 (USD), respectively. The distance between towers is 100 m to
1000 m, but it is a definite number. SinPSO, NSGA-II and PSO were used to solve the deployment of
experimental scenarios with the number of towers of 50, 100, 200, 300 and 500, respectively, and 100
simulations were carried out for each scenario. The default simulation parameters are shown in Table 2.
The basic parameters and parameter values of each algorithm are shown in Tables 3 and 4. The learning
factor of the basic PSO algorithm is not updated during the iteration process and is set to a fixed value
c1 = c2 = 0.55.

For the RHHN deployment model, the Pareto frontier of the optimization objective function of
WRN installation cost and the robot energy consumption is shown in Figures 8 and 9. Figure 7 shows
the Pareto front comparison of NSGA-II and SinPSO with tower numbers of 50, 100, 200, 300 and 500,
respectively. Besides, Figure 8 shows the Pareto front comparison between SinPSO and standard PSO.

Analyzing the Pareto frontier contrast diagrams of Figures 8 and 9 shows that with the increase
in deployment cost, the number of nodes in the network gradually increases. With the increase in
the number of nodes, the distance between nodes decreases, and the energy consumption in the
process of data forwarding is less. By increasing the deployment cost, the energy consumption in
the process of data transmission can be effectively reduced. Besides, the Pareto solution obtained by
SinPSO is better than NSGA-II when the number of transmission lines is 50, 100, 200, 300 and 500.
With the same deployment cost, the energy consumption of the robot is smaller. Under the same robot
energy consumption, the node deployment cost is lower. Similarly, it can be seen from Figure 9 that
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the PSO algorithm is much better than NSGA-II. However, the solution set of SinPSO with nonlinear
inertia weight is better than that of basic PSO. Analyzing the experimental data of Figures 8 and 9,
we can see that SinPSO has obvious advantages over NSGA-II and PSO when the deployment rate of
communication node Γ (Γ = nt

NT
, nt is the number of communication nodes, and NT is the number

of towers) is less than 0.3. With the increase in Γ, the advantage of SinPSO decreases. This is because
the number of deployed communication nodes increases with the increase in Γ, and the distribution of
communication nodes is more uniform. In the experiments with 50, 100, 200, 300, and 500 transmission
line towers, compared with the deployment scheme solved by NSGA-II, the robot energy consumption
in the deployment scheme solved by SinPSO was reduced by 76.1%, 78.5%, 66.3%, 74.3% and 77.8%,
respectively, at the same deployment cost. Similarly, compared with the deployment scheme solved
by PSO, under the same deployment cost, the robot energy consumption in the deployment scheme
solved by SinPSO was reduced by 30.2%, 50.0%, 42.8%, 33.0% and 41.2%, respectively.

Table 2. Default parameters for simulations.

Parameter Default Value

The size of the message received by the robot (B) 30
The size of the message sent by the robot (Kb) 1200

Communication radius of robot, WCN and WRN (m) 8000
Horizontal lobe angle of antenna (◦) 60

Eelec (J/bit) 50.0 × 10−9

εmp (J/(bit·m4)) 1.3 × 10−15

εfs (J/(bit·m4)) 1.0 × 10−11

Ψ (m/s) 3.0 × 108

tca (ms) 41
Cw (USD) 7000
CR (USD) 3500
Bij (Mbps) 10

Number of power towers 50/100/200/300/500
Maximum distance between towers (m) 1000
Minimum distance between towers (m) 100

Table 3. Parameters of the specific improvement of the improved particle swarm optimization (SinPSO)
and PSO algorithm.

Parameter Value

Population size, NumEsp 200
Max Iterations, MaxIt 1000

Initial velocity of particles, v 0
Particle length, D 50/100/200/300/500

Learning factor, c1max 1.2
Learning factor, c1min 0.5
Learning factor, c2max 1.2
Learning factor, c2min 0.5

Maximum inertia weight, Wmax 0.45
Minimum inertia weight, Wmin 0.1

Table 4. Parameters of the non-dominated sorting genetic algorithm II (NSGA-II algorithm).

Parameter Value

Population size, N 200
Length of chromosome, L 50/100/200/300/500

Max iterations, MaxIt 1000
Recombination probability, Pc 0.8

Mutation probability, Pm 0.6
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Figure 8. Pareto frontier comparison of deployment cost and optimization objective function of robot
energy consumption for WRN by NSGA-II and SinPSO: (a) the number of towers is 50; (b) the number
of towers is 100; (c) the number of towers is 200; (d) the number of towers is 300; (e) the number of
towers is 500.
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Figure 9. Pareto frontier comparison of deployment cost and optimization objective function of robot
energy consumption for WRN by PSO and SinPSO: (a) the number of towers is 50; (b) the number of
towers is 100; (c) the number of towers is 200; (d) the number of towers is 300; (e) the number of towers
is 500.
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It is found that when the number of towers increases from 300 to 500, the number of solution sets
of SinPSO algorithm increases significantly. Therefore, the simulation experiment of 400, 600, 700,
and 800 is added. As shown in Figure 10, the diversity of SinPSO solutions is better than that of PSO
and NSGA-II under the same sample size, which provides more options for decision makers. When the
sample size is more than 500, the diversity of solution sets of the three algorithms tends to be stable.
Thus, the solution set obtained by SinPSO has better convergence and diversity.
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Figure 10. The result of algorithm diversity.

To measure the computational complexity, the running time of each algorithm is compared
and analyzed. The average time of the WRN optimization function running for 100 times under
different number of power towers is counted, as shown in Table 5.

Table 5. Algorithm running time.

Number of Towers SinPSO PSO NSGA-II

50 12.672 s 12.778 s 25.374 s
100 21.456 s 21.481 s 29.705 s
200 30.169 s 31.195 s 43.048 s
300 36.095 s 36.610 s 49.092 s
500 52.665 s 55.305 s 61.465 s

On the whole, the running time of NSGA-II is significantly longer than that of SinPSO and PSO.
With the increase in the number of towers, the running time of the three algorithms is increasing. In the
process of optimization, SinPSO first focuses on global search, then focuses on local search, which is
conducive to particle swarm optimization to quickly search the global optimal. Therefore, the running
times of SinPSO and PSO are basically the same, and SinPSO is slightly better than PSO. To sum up,
SinPSO has lower algorithm complexity than PSO and NSGA-II.

After the objective function of WRN deployment is obtained, the comprehensive score of each
scheme is calculated by the multi-attribute decision-making method in Section 3.3. Taking the scenario
with 300 towers as an example, the Pareto front of Equation (22) is obtained by SinPSO, as shown in
Figure 11.

Among the 59 schemes in Figure 11, the score chart of each scheme is shown in Figure 12, and the
scheme with the highest score is Scheme 1. For Scheme 1, the deployment cost of WRN is USD
45,500, and the energy consumption of the robot is 4,881,927.16041553 J. According to Equation (30),
the uniform layout scheme is selected. The specific deployment of WRNs and its related parameters
are shown in Table 6.
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4.2. Deployment of WCNs

Taking 300 towers as an example, the optimal solution set of objective function is obtained twice,
and the MADM of vague set with preference for alternatives is used to make decision. After obtaining the
layout scheme of Equation (22), the optimal solution set of Equation (23) is obtained by using SinPSO,
NSGA-II and PSO. As shown in Figure 10, the maximum end-to-end delay is compared with
the deployment cost planning scheme. The input parameters are as follows: wireless signal
propagation speed: 3.0× 108 m·s−1; average channel access delay: tca = 41 ms; WCN cost: Cw = USD 7000;
link bandwidth limit: Bij = 10 Mbps.

Analysis of Figure 13 shows that the higher the deployment cost, the more available WCNs,
which reduces the number of hops h (pIR, CMC) during patrol data transmission and thus significantly
reduces the end-to-end delay. By increasing deployment costs, network delays can be effectively reduced.
When solving the layout scheme of Equation (23), due to the small number of data points, SinPSO and
PSO obtain the same scheme, and NSGA-II only obtains one deployment scheme.
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Table 6. The specific layout of Scheme 1 and the distance between communication nodes.

Tower Number of Installation
Communication Node

Distance between Communication Nodes
(m)

13 8,791.53 (Distance from the first tower)
34 12,405.70
53 11,027.46
74 11,276.60
97 12,981.63
118 11,033.42
149 14,958.80
175 12,767.72
197 12,136.55
215 11,223.56
238 10,698.31
261 12,538.49
283 12,889.18

9,737.39 (Distance from the last tower)
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economic optimization.

When solving the planning scheme of maximum end-to-end delay and deployment cost, the three
algorithms are run 100 times. The average time consumed by all algorithms is counted, as shown in
Table 7. On the whole, the running time of NSGA-II is significantly longer than that of SinPSO and PSO,
and the average running time of SinPSO and PSO is similar. The optimal solution set of Equation (23)
Pareto is obtained by SinPSO. The Pareto frontier of the maximum end-to-end delay and deployment
cost planning scheme, as shown in Figure 14a, is obtained. Compared with NSGA-II, the maximum
end-to-end delay of data transmission between SinPSO and PSO is smaller when the deployment cost
is the same, and both SinPSO and PSO are better than NSGA-II in diversity of solution sets.

Table 7. Algorithm running time.

SinPSO PSO NSGA-II

Average running time 3.7598 s 3.8231 s 17.4820 s



Sensors 2020, 20, 5521 22 of 25Sensors 2020, 20, x FOR PEER REVIEW 23 of 26 

 

  

(a) (b) 

Figure 14. The results of WCN deployment based on SinPSO: (a) the Pareto frontier of optimization 
objective function of WCN installation cost and end-to-end delay; (b) the comprehensive attribute 
score of each deployment scheme of WCN. 

The final deployment scenario is shown in Table 8. The tower numbers of WRN deployment 
location in the final plan are 13th, 53rd, 74th, 118th, 175th, 215th, 238th and 283rd. WCNs deployment 
locations are 34th, 97th, 149th, 197th and 261st. Thus, the total deployment cost of RHHN is USD  
6.3 × 104, the maximum energy consumption of robot is 4.88 × 106 J, and the maximum end-to-end 
delay is 442.0 ms. From the final deployment result, the deployment locations of communication 
nodes are evenly distributed, which realizes the real-time hybrid hierarchical network deployment 
under multiple constraints. 

Table 8. Communication network deployment scheme of the inspection robot. 

Deployment Plan 
Deployme

nt Costs 
(USD) 

Robot Energy 
Consumption (J) 

Maximum End to 
End Delay (ms) 

13th, 34th*, 53rd, 74th, 97th*, 118th, 
149th* 175th, 197th*, 215th, 238th, 

261st*, 283rd 
6.3 × 104  4.88 × 106 442.0 

Note: x*is the installation location of WCN, x is the installation location of WRN, and x stands for 
tower number. 

4.3. Analysis of Simulation Results  

For RHHN, increasing deployment costs can change energy consumption and end-to-end delays 
in the data transfer process of the robot. In sensor network applications with different message 
delivery time requirements, network economy and data timeliness have different requirements. As 
shown in Figures 8, 9 and 13, the energy consumption of data transmission decreases significantly, 
and the timeliness of the network increases significantly as the network economy decreases. At the 
same time, the method can adapt to all kinds of networks with different node energy consumption 
requirements and data transmission time requirements. It also can improve the controllability of 
network delay and node energy consumption, and balance the relationship between network 
economy, efficiency and energy consumption. In view of the application of the robot dynamic 
monitoring network for the smart gird in this paper, low data transmission delay and a delay 
controllable network are conducive to improving the level of power grid monitoring. In practical 
application, a preference matrix can be set reasonably according to actual needs. A network 
deployment scheme meeting actual needs can be selected to balance economic, real-time and energy 
consumption of nodes. 

Figure 14. The results of WCN deployment based on SinPSO: (a) the Pareto frontier of optimization
objective function of WCN installation cost and end-to-end delay; (b) the comprehensive attribute score
of each deployment scheme of WCN.

Among the 4 schemes, the maximum delay is 1247.2 ms, especially when WCNs are
densely distributed, and the end-to-end delay of patrol data transmission is 442.0 ms. According to
Equation (31), the layout of each scheme is uniform. Using the attribute decision method in Section 3.3,
the comprehensive score of each scheme is calculated. As shown in Figure 14b, Scheme 4 has the
highest comprehensive attribute score among the four schemes. In Scheme 4, the deployment cost of
WCN is USD 35,000, and the maximum end-to-end delay is 442.0 ms.

The final deployment scenario is shown in Table 8. The tower numbers of WRN deployment
location in the final plan are 13th, 53rd, 74th, 118th, 175th, 215th, 238th and 283rd. WCNs deployment
locations are 34th, 97th, 149th, 197th and 261st. Thus, the total deployment cost of RHHN is USD
6.3 × 104, the maximum energy consumption of robot is 4.88 × 106 J, and the maximum end-to-end
delay is 442.0 ms. From the final deployment result, the deployment locations of communication nodes
are evenly distributed, which realizes the real-time hybrid hierarchical network deployment under
multiple constraints.

Table 8. Communication network deployment scheme of the inspection robot.

Deployment Plan Deployment Costs
(USD)

Robot Energy
Consumption (J)

Maximum End to End
Delay (ms)

13th, 34th *, 53rd, 74th,
97th *, 118th, 149th *
175th, 197th *, 215th,
238th, 261st *, 283rd

6.3 × 104 4.88 × 106 442.0

Note: x* is the installation location of WCN, x is the installation location of WRN, and x stands for tower number.

4.3. Analysis of Simulation Results

For RHHN, increasing deployment costs can change energy consumption and end-to-end delays
in the data transfer process of the robot. In sensor network applications with different message delivery
time requirements, network economy and data timeliness have different requirements. As shown
in Figures 8, 9 and 13, the energy consumption of data transmission decreases significantly, and the
timeliness of the network increases significantly as the network economy decreases. At the same time,
the method can adapt to all kinds of networks with different node energy consumption requirements
and data transmission time requirements. It also can improve the controllability of network delay and
node energy consumption, and balance the relationship between network economy, efficiency and
energy consumption. In view of the application of the robot dynamic monitoring network for the
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smart gird in this paper, low data transmission delay and a delay controllable network are conducive
to improving the level of power grid monitoring. In practical application, a preference matrix can be
set reasonably according to actual needs. A network deployment scheme meeting actual needs can be
selected to balance economic, real-time and energy consumption of nodes.

5. Conclusions

This paper presents a robot hybrid hierarchical network (RHHN) and its optimal deployment
method for remote real-time monitoring of transmission lines. Compared with the delay tolerant
network proposed in the previous research, the real-time characteristics of RHHN enhance the
practicability of the network and improve the monitoring efficiency of the smart grid. The main
conclusions are summarized as follows:

(1) According to the characteristics of transmission lines, a hybrid hierarchical network model and
architecture for a multi-robot sensing system of smart girds are proposed. The movement law of
robot inspection is analyzed, and the calculation method of energy consumption and delay in
the process of network data forwarding are given. Then, considering cost, energy consumption,
and delay as optimization objectives, a theoretical deployment model of communication nodes is
established under multiple constraints.

(2) The relationship between multiple optimization objectives is analyzed, and the multi-objective
transformation model is established. The improved PSO is used to solve the deployment scheme.
The deployment schemes are sorted by MADM of a vague set with a preference for alternatives,
and the optimal deployment scheme is determined according to the actual needs.

(3) In the simulation experiment, the comparison results of several algorithms in a multi-scenario
are given. The experimental results show that the energy consumption and delay of the
deployment scheme solved by SinPSO are lower under the same deployment cost. At the
same time, the diversity of the SinPSO solution set is better, and the time complexity of the
algorithm is lower. Taking the scenario with 300 towers as an example, a series of specific RHHN
deployment schemes are given by combining the SinPSO algorithm with the MADM.

In this paper, the impact of network node failure on the overall network performance is
not considered. As part of future work, we plan to study a cost-efficient fault-tolerant network design.
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