A Power Amplifier with Large High-Efficiency Range for 5G Communication
Abstract
:1. Introduction
2. Theory Analysis of The Proposed DPA
3. Design of the Proposed DPA
3.1. Output Matching Network Design
3.2. Input Matching Network Design
3.3. Post Matching Network Design and DPA Overall Circuit Optimization
4. Experiment and Results Analysis
4.1. Continuous Wave Testing
4.2. 20 MHz 9.5 dB LTE Testing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, M.; Pang, J.; Li, Y.; Zhu, A. Bandwidth Enhancement of Doherty Power Amplifier Using Modified Load Modulation Network. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1824–1834. [Google Scholar] [CrossRef]
- Boumaiza, S.; Golestaneh, H.; Abadi, M.N.A. Multispectrum Signal Transmitters: Advances in Broadband High-Efficiency Power Amplifiers for Carrier Aggregated Signals. IEEE Microw. Mag. 2014, 15, S14–S24. [Google Scholar] [CrossRef]
- Akbarpour, M.; Helaoui, M.; Ghannouchi, F. A Transformer-Less Load-Modulated (TLLM) Architecture for Efficient Wideband Power Amplifiers. IEEE Trans. Microw. Theory Tech. 2012, 60, 2863–2874. [Google Scholar] [CrossRef]
- Chang, H.C.; Hahn, Y.; Roblin, P.; Barton, T.W. Barton, New mixed mode design methodology for high-efficiency out-phasing chireix amplifiers. IEEE Trans. Circuits Syst. I Reg. Pap. 2019, 66, 1594–1607. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, Z.; Ke, H.; Liu, G.; Li, S. Design of a Broadband High-Efficiency Hybrid Class-EFJ Power Amplifier. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 407–409. [Google Scholar] [CrossRef]
- Doherty, W. A New High Efficiency Power Amplifier for Modulated Waves. Proc. IRE 1936, 24, 1163–1182. [Google Scholar] [CrossRef]
- Chireix, H. High Power Outphasing Modulation. Proc. IRE 1935, 23, 1370–1392. [Google Scholar] [CrossRef]
- Kimball, D.; Jeong, J.; Hsia, C.; Draxler, P.; Lanfranco, S.; Nagy, W.; Linthicum, K.; Larson, L.; Asbeck, P. High-Efficiency Envelope-Tracking W-CDMA Base-Station Amplifier Using GaN HFETs. IEEE Trans. Microw. Theory Tech. 2006, 54, 3848–3856. [Google Scholar] [CrossRef]
- Bathich, K.; Markos, A.Z.; Boeck, G. Frequency Response Analysis and Bandwidth Extension of the Doherty Amplifier. IEEE Trans. Microw. Theory Tech. 2011, 59, 934–944. [Google Scholar] [CrossRef]
- Gustafsson, D.; Andersson, C.M.; Fager, C. A modified Doherty power amplifier with extended bandwidth and reconFigureureurable efficiency. IEEE Trans. Microw. Theory Tech. 2013, 61, 533–542. [Google Scholar] [CrossRef]
- Pelk, M.; Neo, W.; Gajadharsing, J.; Pengelly, R.; De Vreede, L. A High-Efficiency 100-W GaN Three-Way Doherty Amplifier for Base-Station Applications. IEEE Trans. Microw. Theory Tech. 2008, 56, 1582–1591. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-S.; Lee, M.-W.; Kam, S.-H.; Jeong, Y. A highly linear and efficient three-way Doherty amplifier using two-stage GaN HEMT cells for repeater systems. Microw. Opt. Technol. Lett. 2009, 51, 2895–2898. [Google Scholar] [CrossRef]
- Pang, J.; He, S.; Dai, Z.; Huang, C.; Peng, J.; You, F. Design of a Post-Matching Asymmetric Doherty Power Amplifier for Broadband Applications. IEEE Microw. Wirel. Compon. Lett. 2015, 26, 52–54. [Google Scholar] [CrossRef]
- Kim, J.; Cha, J.; Kim, I.; Kim, B. Optimum operation of asymmetrical-cells-based linear Doherty power Amplifiers-uneven power drive and power matching. IEEE Trans. Microw. Theory Tech. 2005, 53, 1802–1809. [Google Scholar] [CrossRef]
- Darraji, R.; Ghannouchi, F.; Hammi, O. A Dual-Input Digitally Driven Doherty Amplifier Architecture for Performance Enhancement of Doherty Transmitters. IEEE Trans. Microw. Theory Tech. 2011, 59, 1284–1293. [Google Scholar] [CrossRef]
- Darraji, R.; Ghannouchi, F.M. Digital Doherty Amplifier with Enhanced Efficiency and Extended Range. IEEE Trans. Microw. Theory Tech. 2011, 59, 2898–2909. [Google Scholar] [CrossRef]
- Fang, X.H.; Cheng, K.-K.M. Extension of High-Efficiency Range of Doherty Amplifier by Using Complex Combining Load. IEEE Trans. Microw. Theory Tech. 2014, 62, 2038–2047. [Google Scholar] [CrossRef]
- Özen, M.; Andersson, K.; Fager, C. Symmetrical Doherty Power Amplifier with Extended Efficiency Range. IEEE Trans. Microw. Theory Tech. 2016, 64, 1273–1284. [Google Scholar] [CrossRef]
- Fang, X.-H.; Liu, H.-Y.; Cheng, K.-K.M. Extended Efficiency Range, Equal-Cell Doherty Amplifier Design Using Explicit Circuit Model. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 1–3. [Google Scholar] [CrossRef]
- Shi, W.; He, S.; Gideon, N. Extending high-efficiency power range of symmetrical Doherty power amplifiers by taking advantage of peaking stage. IET Microw. Antennas Propag. 2017, 11, 1296–1302. [Google Scholar] [CrossRef]
- Hasin, M.R.; Kitchen, J. Exploiting Phase for Extended Efficiency Range in Symmetrical Doherty Power Amplifiers. IEEE Trans. Microw. Theory Tech. 2019, 67, 3455–3463. [Google Scholar] [CrossRef]
- Fang, X.-H.; Liu, H.-Y.; Cheng, K.-K.M.; Boumaiza, S. Two-Way Doherty Power Amplifier Efficiency Enhancement by Incorporating Transistors’ Nonlinear Phase Distortion. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 168–170. [Google Scholar] [CrossRef]
- Qureshi, J.H.; Li, N.; Neo, W.E.; Van Rijs, F.; Blednov, I.; De Vreede, L. A wide-band 20W LMOS Doherty power amplifier. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 1504–1507. [Google Scholar]
- Wu, D.Y.T.; Boumaiza, S. A Modified Doherty ConFigureureuration for Broadband Amplification Using Symmetrical Devices. IEEE Trans. Microw. Theory Tech. 2012, 60, 3201–3213. [Google Scholar] [CrossRef]
- Shi, W.; He, S.; You, F.; Xie, H.; Naah, G.; Liu, Q.-A.; Li, Q. The Influence of the Output Impedances of Peaking Power Amplifier on Broadband Doherty Amplifiers. IEEE Trans. Microw. Theory Tech. 2017, 65, 3002–3013. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Moon, J.; Son, J.; Kim, I.; Jee, S.; Kim, B. Saturated Power Amplifier Optimized for Efficiency Using Self-Generated Harmonic Current and Voltage. IEEE Trans. Microw. Theory Tech. 2011, 59, 2049–2058. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Ghannouchi, F.M.; Feng, Z.; Liu, Y. A Broadband Doherty Power Amplifier Based on Continuous-Mode Technology. IEEE Trans. Microw. Theory Tech. 2016, 64, 4505–4517. [Google Scholar] [CrossRef]
- Hasin, M.R.; Kitchen, J. Optimized Load Trajectory for Finite Peaking OFF-State Impedance-Based Doherty Power Amplifiers. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 486–488. [Google Scholar] [CrossRef]
- Cheng, Z.; Xiong, G.; Liu, Y.; Zhang, T.; Tian, J.; Guo, Y.J.; Guoping, X. High-efficiency Doherty power amplifier with wide OPBO range for base station systems. IET Microw. Antennas Propag. 2019, 13, 926–929. [Google Scholar] [CrossRef]
Ref. | Freq (GHz) | Pout@SAT (dBm) | DE@SAT (%) | OBO (dB) | DE@OBO (%) | PAE (%) | Gain (dB) | Tech | Bandwidth (MHz) |
---|---|---|---|---|---|---|---|---|---|
2014 [17] | 2.0 | 42 | 67 | 8.7 | 57 | N/A | 10.4 | GaN | 100 |
2016 [18] | 1.95 | 44 | 68 | 9 | 47 | 43 | 9.5 | GaN | 200 |
2017 [19] | 2.1 | 42 | 72 | 9.5 | 58 | N/A | 10.2 | GaN | 250 |
2017 [20] | 2.3 | 45 | 68 | 9 | 49 | N/A | 11 | GaN | 100 |
2019 [21] | 2.2 | 43.6 | 71 | 9 | 54 | 50 | 9.7 | GaN | 200 |
2018 [22] | 1.7 | 42 | 71 | 9 | 53 | N/A | N/A | GaN | 350 |
2019 [28] | 2.2 | 44 | 69 | 10 | 45 | N/A | 10.5 | GaN | 200 |
2019 [29] | 3.1 | 44 | 71 | 10 | 44 | N/A | 10 | GaN | 400 |
T. work | 3.5 | 43.7 | 70.8 | 10 | 52.6 | 48.7 | 10.7 | GaN | 300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Cheng, Z.; Liu, G. A Power Amplifier with Large High-Efficiency Range for 5G Communication. Sensors 2020, 20, 5581. https://doi.org/10.3390/s20195581
Zhang Z, Cheng Z, Liu G. A Power Amplifier with Large High-Efficiency Range for 5G Communication. Sensors. 2020; 20(19):5581. https://doi.org/10.3390/s20195581
Chicago/Turabian StyleZhang, Zhiwei, Zhiqun Cheng, and Guohua Liu. 2020. "A Power Amplifier with Large High-Efficiency Range for 5G Communication" Sensors 20, no. 19: 5581. https://doi.org/10.3390/s20195581
APA StyleZhang, Z., Cheng, Z., & Liu, G. (2020). A Power Amplifier with Large High-Efficiency Range for 5G Communication. Sensors, 20(19), 5581. https://doi.org/10.3390/s20195581