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Abstract: Initialization methods for underwater wireless acoustic sensor networks (UWASNs) have
been proposed as a subset of other network protocols under the simple assumption that all the
nodes in the network can be initialized at once. However, it is generally time- and energy-intensive
to initialize all nodes in a UWASN due to unstable underwater channel conditions. To improve
network efficiency, we propose the Application-based Partial Initialization (API) protocol, which
initializes only the same number of nodes as the number of activated nodes required to run a specific
application. Reducing the number of active nodes is also particularly advantageous underwater since
the replacement of batteries is costly. To the best of our knowledge, the API is the first approach that
initializes nodes partially according to applications. Thus, we investigate the feasibility of the API for
a UWASN by analyzing its performance via simulations. From the results, it is shown that the API
provides similar data statistics compared with the conventional full initialization that initializes all
nodes. Moreover, the API outperforms the full initialization in terms of the initialization time and
message overhead performances.

Keywords: initialization protocol; underwater wireless acoustic sensor network; partial
initialization; application

1. Introduction

Underwater wireless acoustic sensor networks (UWASNs) are considered adequate communication
infrastructures because acoustic communications can guarantee more reliable communication with
a longer propagation distance than optical and radio-frequency (RF) counterparts [1] in underwater
environments. Therefore, UWASNs have been adopted widely for diverse applications including
scientific observation, the exploitation of ocean resources, disaster detection, military surveillance and
subsea construction monitoring [2,3].

In our study, we focus on observation-based applications that deploy multiple nodes underwater
and constantly obtain sensed data from them. By using the statistics of the data set sensed and collected
by multiple underwater nodes, we can derive the desired information and predict future trends of
underwater phenomena.

Let us consider two cases in terms of the method to obtain data from nodes. One is to obtain
data from all the nodes in the network. We call this “Case 1”. The other is to obtain data from only
some of them: “Case 2”. When the sensed data varies significantly depending on region and time,
for example, when investigating ship accidents, searching for drowned persons, or engaging in military
surveillance, all nodes must be activated as in Case 1. On the other hand, in the case of observing the
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marine environment (e.g., salinity or temperature) for long periods of time, the similarity of the sensed
data can be large, so the number of active nodes can be reduced, as in Case 2.

Accordingly, if the statistics of the data set in Case 2 are similar to those in Case 1 within an
allowable error range, it is not necessary to acquire data from all the nodes in the network. Obtaining
data from only some nodes is equivalent to partially activating the nodes in the network. This implies
that Case 2 can reduce the number of active nodes, as compared with Case 1. A smaller number
of active nodes is especially advantageous in underwater environments where battery replacement
is costly.

The number of active nodes can be an important factor in the sense that it determines the similarity
of data statistics between the two cases. That is, the degree of similarity increases as the number of
active nodes approaches the total number of nodes, and vice versa. If an application requires a high
degree of data accuracy, the number of active nodes should be increased. On the other hand, if an
application just predicts the overall trend with marginal data accuracy, the number of active nodes can
be reduced. Therefore, the number of active nodes is application-specific and should be considered as
a requirement or an important parameter for the UWASN.

Nodes can be activated and go to the ready state through an initialization process before an
application starts. For this reason, we associate the application requirement (i.e., the number of
active nodes) with initialization. More specifically, we initialize as many nodes as required to run an
application, which is defined as “partial initialization”. The concept opposed to partial initialization is
“full initialization”, which initializes all the nodes in the network.

In the literature, most initialization methods for a UWASN are a subset of a specific network
protocol, as summarized in Table 1. Most of the initialization methods exist as an initial stage of a
MAC protocol, as proposed in [4–12]. Moreover, they are a part of a routing protocol, as exemplified
in [13–15], or part of a node discovery protocol [16]. Furthermore, they have been proposed under
the simple assumption that all nodes in a network need to be initialized at once before the network
transmits and receives data for applications.

To the best of our knowledge, there has been no study on a partial initialization approach.
This motivates us to propose a new initialization protocol for a UWASN that partially initializes a
UWASN according to the given application requirement.

Table 1. Summary of previous works on underwater initialization methods.

Previous Work Main Protocol
Initialization Method

Channel Access Procedure

Park et al. (2007) [5]

MAC

Random access SYNC broadcast among nodes
Ng et al. (2010) [6] Undefined Corresponding message broadcast among nodes

Yang et al. (2011) [7] Undefined Short INIT flooding from sink to sensors under tree
topology

Khalil et al. (2012) [8] Random access +
back-off

An initiator broadcasts Pilot, and others send
resend or success reply.

Kleunen et al. (2012) [9] Scheduled Corresponding message broadcast among nodes
Yun et al. (2013) [4] TDMA Corresponding message broadcast among nodes

Santos et al. (2016) [10] TDMA An initiator broadcasts SYNC, and others send
ASYNC.

Morozs et al. (2017) [11] Scheduled Ping broadcast among nodes
Zhuo et al. (2018) [12] Scheduled An initiator broadcasts IRES, and others send IRP.

Sozer et al. (2000) [13]
Routing

Undefined An initiator broadcasts Polling, and others send
Response.

Basagni et al. (2015) [14] Undefined Hello flooding
Kim et al. (2017) [15] Undefined Hello flooding
Patil et al. (2011) [16] Node discovery ALOHA Corresponding message broadcast among nodes

In this paper, we propose the Application-based Partial Initialization (API), whose design principles
are outlined as follows:

• Partial initialization. This protocol initializes as many nodes as required to execute a
given application.
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• Limited repetition. In a UWASN, communication failures frequently occur due to bad channel
conditions, including natural or artificial noises as well as the Doppler effect [17]. This poor
underwater environment makes it difficult for nodes to be initialized at once. Thus, the same
process needs to be repeated in order to satisfy the application requirement.

• Simplicity. The method of initializing nodes is designed simply to be compatible with any network
protocol. Accordingly, this protocol adopts the round-robin-based message exchange algorithm,
which does not require scheduling, time synchronization, or retransmission.

Since there have been no API-like protocols for a UWASN, we analyze the feasibility of the API by
the following two steps:

• First, we investigate whether the API can obtain data whose statistics are similar to data that
requires full initialization (FI). To do this, we perform a simulation that generates a random data
set of all nodes periodically and chooses only some nodes randomly according to the application
requirement. At each period, we calculate the statistics of the accumulated data sets of the API
and the FI, respectively, and check their similarity. Using the results, we can conclude that partial
initialization can be used instead of full initialization, provided that the similarity in the data
statistics between the API and FI converges and exists within the target range.

• Second, we check how much the API can improve in performance over the FI. Intuitively, we
can predict that the API can guarantee better performance than the FI in some aspects since the
API can have a smaller number of active nodes. However, it is difficult to determine the degree
of which the API can outperform the FI since it varies depending on the performance metrics.
We consider two performance metrics: (1) the initialization delay and (2) the message overhead.
The initialization delay measures how long the initialization takes to satisfy the requirement
of a given application. The message overhead calculates the amount of the messages required
for initialization, which is closely related to the energy efficiency. Furthermore, we execute
simulations extensively by varying the application requirement, the randomness of the data, and
the bit error rate of the acoustic channels to check the performance superiority of the API to the FI.

From the feasibility study results, we show that the API not only provides similar data statistics
compared to the FI, but can also improve overall network performance. Moreover, the API can be a
more advanced initialization approach than conventional simple initialization methods for a UWASN
in the sense that it partially initializes the network considering application requirements and promptly
responds to poor underwater environments via repetitive initialization.

In addition, due to the partial initialization characteristic, the API can be favorable for any
underwater applications requiring high energy efficiency. These applications periodically generate
a volume of data from multiple under nodes for a long time like the Internet of Underwater Things
(IoUT). These underwater applications are exemplified as follows [18]:

• The environmental observation-based applications that periodically measure various
environmental information such as water quality, pollution, salinity, and temperature.

• The disaster prevention-based applications that monitor floods, earthquakes, and tsunamis in
real time.

• The fisheries applications such as fish and shellfish farming.

We organize the rest of this paper as follows: In Section 2, we explain the network model applying
the API. In Section 3, the algorithm of the API is described in detail. In Section 4, we analyze the
performance of the API via extensive simulation tests in order to investigate its feasibility. Section 5
concludes this paper.

2. Network Model

This section describes the UWASN model for applying the API protocol. We consider a centralized
topology that is efficient to gather data from multiple underwater nodes for observation-based
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applications. In addition, the centralized topology is capable of managing network resources easily
and supporting reliable network operations compared to a decentralized topology (e.g., ad hoc).

The UWASN can be either two-dimensional or three-dimensional. In the two-dimensional UWASN,
all nodes are located at the seabed or at an equal depth of water. Thus, horizontal communication is
dominant. An example of the two-dimensional UWASN is a cluster-based sensor network composed
of multiple sensor nodes centering on a cluster head [19,20]. The three-dimensional UWASN consisting
of a buoy on the water surface and several underwater nodes located beneath the buoy is based on
vertical communication as explained in [21].

As shown in Figure 1, the UWASN consists of a master node and a number of slave nodes.
The master node located at the center is responsible for controlling all the slave nodes, gathering data
from them, and forwarding the data to a land base station. The master node also sends data from the
land base station to the slave nodes. A slave node located within the master node’s coverage enters a
network and exchanges data with other nodes under the control of the master node. A master node is
exemplified as a cluster head, a buoy, or an underwater base station. Slave nodes can be either mobile
(e.g., AUVs or underwater drones) or fixed (e.g., fixed sensors).
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The UWASN is operated through two stages; one is the initialization stage, and the other is the
operational stage. The API protocol is employed in the initialization stage. A master node manages
the start and the end of each stage. When frequent network failures occur, and thus an ongoing
application is no longer executable, the master node terminates the operational stage and returns to
the initialization stage.

All the nodes of the UWASN are equipped with a digital acoustic communication module that
provides the following common characteristics:

• The communication between a master node and slave nodes is based on a half-duplex scheme.
That is, one acoustic channel in the frequency domain is used.

• A node can communicate with any nodes within its communication range by using an
omni-directional antenna.

• Depending on the transmission power of acoustic signals, nodes can be connected with each other
via either one-hop or multi-hop. In the initialization stage, it is assumed that any slave node can
connect to a master node directly by sending signals with the maximum power.

• All nodes obtain sensing capability by having a sensor attached according to applications.
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3. API Protocol

In this section, we explain the API protocol. The main idea of the API is that only the nodes
required to run a specific application are initialized via the repetition of the same process by considering
an underwater channel. In the API, we assume the following conditions:

• A master node already knows the information of slave nodes, including their identification
number and the number of slave nodes.

• Network protocol (e.g., MAC, routing, etc.) information required for the operational stage is fully
delivered to all slave nodes by the master node through the initialization message.

• Once the initialization stage is terminated, the operational stage follows based on the given
network protocol, which is controlled by the master node.

The API is based on one-to-one initialization between a master and a slave node. To begin
initialization, a master node transmits an initialization request message to a slave node. The slave
node, which received the initialization request message without error, then completes initialization by
sending an initialization response message to the master node.

Although a complex scheduling method can be applied in the initialization stage, a simple
round-robin method where a master node sequentially initializes a slave node one by one is applied
due to the following reasons:

• It clearly shows the performance difference between the API and the FI by excluding complicated
collisional situations.

• It reduces the algorithm complexity and enables the API to be compatible by avoiding complex
scheduling or time synchronization.

• It focuses on enhancing the initialization success rate by avoiding performance degradation due
to both transmission and reception collisions.

Before explaining the algorithm, let us define several terminologies used in the API protocol
as follows:

• Round. This is used to represent the repetition of the initialization process. As illustrated in
Figure 2, a master node executes the one-to-one initialization with multiple slave nodes in one
round. The index of a round is defined as k. k does not increase to infinity but can increase to the
maximum value K (k ≤ K), where K is a network parameter and can be determined according to
network conditions. Here, the kth round is simply denoted by Rk.

• Sub-Round. This represents the order of the one-to-one initialization. In a sub-round, a master
node initializes a slave node. The index of a sub-round is defined by l.

• The number of sub-rounds of the kth round is defined as Qk. As described earlier, a master node
initializes as many slave nodes as the application requirement in the initialization stage. In R1,
the number of sub-rounds should be at least the application requirement in order to perform
a sufficient number of one-to-one initializations. Thus, Q1 is determined to be the same as the
application requirement (i.e., the number of active nodes). If we define the number of slave
nodes as N, the range of Q1 is given as 1 ≤ Q1 ≤ N and determined according to the application
requirement. If the channel condition is good, Q1 slave nodes can be initialized successfully in R1.
Otherwise, the application requirement cannot be satisfied in R1 and the next round (R2) must be
performed. Let us denote the number of slave nodes that were successfully initialized in R1 as Q1.
The number of sub-rounds in R2 can then be expressed as Q1 −Q1. If this is generalized to Rk, Qk
can be expressed as:

Qk =

 Q1, k = 1

Qk−1 −Qk−1, k > 1
(1)

• All sub-rounds are set to have the same time duration as τ in order to avoid a complex scheduling
considering spatial-time reuse. The value of τ is determined by considering the maximum



Sensors 2020, 20, 5635 6 of 18

propagation delay between the master and a slave node, the transmission delay, and the guard
time. As shown in Figure 2, the time duration of a round differs from each other because it
depends on the number of sub-rounds. Hence, the time duration of Rk can be obtained from the
equation: Rk = Qk × τ.

• All parameters defined for the API are summarized in Table 2.Sensors 2020, 20, x FOR PEER REVIEW 6 of 18 
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Table 2. The description of parameters for the API protocol.

Parameters Description

N The number of slave nodes
K The maximum number of repetitions (or rounds)
k An index of a round (1 ≤ k ≤ K)

Rk The kth round
Qk The number of sub-rounds in Rk
Qk The number of slave nodes that are successfully initialized in Rk
l An index of a sub-round

SRl The lth sub-round
τ The time duration of a sub-round

Nk The accumulated number of slave nodes that are successfully initialized until Rk

In the API, a master node controls overall network initialization. A master node performs the
following procedures in one round:

(1) At the start of a round, a master node randomly chooses Qk slave nodes among uninitialized slave
nodes and activates the selected slave nodes via a one-by-one initialization process. The number
of selected slave nodes and the selected slave nodes vary according to the initialization round.
In the case of R1, a master node determines the number of sub-rounds Q1 as the same as the
application requirement.

(2) The master node then starts initializing slave nodes sequentially during Qk sub-rounds. At each
sub-round, the master node sends an initialization request message to one of the selected slave
nodes and waits for the initialization response message from the slave node during τ. If the
master node receives an initialization response from the slave node before the expiration of that
sub-round, it adds the slave node to the initialization success list. Otherwise, the master node
confirms that the slave node failed to be initialized in that round. This one-to-one initialization is
performed in ascending order of the slave node index.

(3) At the end of the round, the master node counts the number of slave nodes that were successfully
initialized during Rk, which is denoted by Qk. Additionally, the master node calculates the
accumulated number of slave nodes that have been successfully initialized until Rk, denoted
by Nk. Nk is expressed as Nk =

∑k
i=1 Qi. The master node then checks whether the number of

accumulated slave nodes that are successfully initialized satisfies the application requirement
(i.e., Nk ≥ Q1).
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(4) If the application requirement is satisfied, the master node terminates the initialization stage and
goes to the operational stage.

(5) Otherwise, the master node increases the round index by 1 and checks whether the index exceeds
the maximum number of rounds, K.

(6) If the increased index value exceeds K, the master node also terminates the initialization stage.
This extreme case implies that the underwater channel is disabled and a UWASN failure occurs.
In this case, the network initialization process needs to be restarted when the channel condition
is good.

(7) Otherwise, the master proceeds to the next round and goes to Step 2.

The pseudo code for the API algorithm for a master node is specified in Algorithm 1.

Algorithm 1. The pseudo code of the algorithm for a master node.

1: for k = 1 : 1 : K
2: if k = 1 then
3: Set Q1 according to the application requirement.
4: else
5: Set Qk = Qk−1 −Qk−1
6: end if
7: Randomly select Qk slave nodes among uninitialized slave nodes.
8: Set Qk = 0.
9: for j = 1 : 1 : Qk
10: Send an initialization request message to an initialized slave node.
11: Wait for an initialization response message from the slave node during τ.
12: if the initialization response message is successfully received then
13: Set Qk = Qk + 1.
14: end if
15: end for
16: Calculate Nk.
17: if Nk ≥ Q1 then
18: Terminate the initialization stage, and break the for-loop
19: else
20: Go to Step 2.
21: end if
22: end for

The procedure of a slave node is reactive and simple. That is, if a slave node receives an
initialization request message successfully (i.e., decodable without errors) and confirms that it is the
destination node specified in the initialization request message, then it immediately generates and
transmits an initialization response message to the master node.

4. Feasibility Test of the API Protocol via Simulations

4.1. Feasibility Test of Partial Initialization

In this section, we investigate the feasibility of the partial initialization of the API before verifying
the performance of the API via simulations. This is because the API can be of no use if the data statistics
obtained by applying the API are not similar enough to those obtained by applying the FI.

4.1.1. Simulation Operation and Conditions for Testing the Feasibility of the API Protocol

The simulation is built using MATLAB software and its operation is as follows:
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• The simulation considers the uplink data transmission between a master node and several slave
nodes in the operational stage.

• All the slave nodes generate random data of which value is randomly distributed according to the
given data distribution.

• In the beginning of the simulation, some of them are randomly chosen according to the given
application requirement. The application requirement is the ratio of the number of successfully
initialized slave nodes to the total number of slave nodes in the network, which is also referred to
as the initialization rate.

• The selected slave nodes are then put in the operational stage, and thus transmits data to a
master node with respect to simulation time. It is assumed that there is no packet loss due to
channel contentions.

• Depending on the given BER, an error may occur in the data transmitted by the slave node.
• This same data transmission process is repeated up to the given number of transmissions at the

end of a simulation.
• At each transmission, the statistics of the accumulated data until current transmission for both the

API and the FI are driven by the master node, respectively. By using the obtained statistics of both
cases, the similarity is also obtained. The pattern of similarity is then checked.

• Simulations are executed case by case by changing the number of slave nodes, the BER, the type
of data randomness, the initialization rate, and the standard deviation of data.

The similarity is determined by using the mean square difference (MSD) between the standard
deviations (STDs) of accumulated data obtained by the API and that by the FI. We denote the STDs of the
API and the FI by STDAPI and STDFI, respectively. We then calculate the MSD by (STDAPI − STDFI)

2.
The similarity, denoted by S, can be expressed as S = 1

MSD+1 (0 ≤ S ≤ 1) [22]. The similarity increases
as the value of S approaches 1, and vice versa. The simulation conditions are given as follows:

• The value of BER is 5× 10−4, 10−3, and 10−2.
• The number of transmissions is 1000.
• The number of slave nodes is 10, 30, and 50.
• The initialization rates are set to 10%, 30%, 50%, 70%, and 100%. The FI is nothing, but the case of

the initialization rate of 100%, which implies that all the slave nodes need to be initialized.
• It is difficult to predict the data model because the characteristics of the generated data vary

depending on the underwater applications. In addition, the randomness of data distribution may
further increase due to the unreliability of underwater acoustic communications. Therefore, the
normal distribution is primarily employed in our simulations in consideration of the following
reason. Based on the Central Limit Theorem (CLT), the measured data (or random variable) in
underwater wireless networks is expected to follow the normal distribution with high probability
because the measured random variable can be the sum of many independent random variables
which were affected by many different natural phenomena in underwater. As shown in Figure 3a,
the generated data for the simulations follows a normal distribution with the mean value of 1 and
the STDs of 5, 10, and 20.

• In addition, the uniform distribution is also applied in simulations in order to investigate the
feasibility of the API according to the type of data distributions. The uniform distribution is
a typical probability density function(pdf) which is different from the normal distribution, is
also simple and easily analyzed after obtaining the simulation results. Another data following a
uniform distribution are in the range of [−10,10] (i.e., STD ≈ 5.77), [−20,20] (i.e., STD ≈ 11.54), and
[−40,40] (i.e., STD ≈ 23.09), as illustrated in Figure 3b.
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data with normal distribution. (b) The random data with uniform distribution.

4.1.2. Results

We check the similarity between the FI (at the initialization rate of 100%) and the API (at initialization
rates (IRs) of 10%, 30%, 50%, and 70%). We analyze the similarity results in the aspect of the initialization
rate, the STD of the generated data, the BER, and the number of slave nodes. First, we analyze the
similarity in the view of the initialization rate and the STD of the generated data as follows:

• It can be intuitively predicted that the higher similarity is guaranteed as the initialization rate
becomes higher and the STD of the generated data set is lower. This prediction is confirmed in
various cases by changing the STD of the generated data and the initialization rate, as illustrated
in Figure 4a–d.

• As the number of transmissions increases, the overall similarity pattern fluctuates in the beginning
and then converges after a certain number of transmissions. The larger the initialization rate, the
smaller the number of transmissions where the similarity converges.

• The similarity increases as the initialization rate increases under the given data type and STDs.
In addition, as the initialization rate increases, the variation of the similarity with respect to the
number of transmissions decreases, as well as the effect of the STD on the similarity is weak.
This result is due to the number of samples for which data statistics are obtained. When the
initialization rate is high, the number active nodes also increases, which implies the increase of the
number of samples. As more samples are accumulated, the similarity between the data statistics
of the API and the FI also increases.

• Compared with the data with normal distribution, the data with uniform distribution guarantees
slightly high similarity in most cases. This result is confirmed by Figures 4–6. However,
the similarity difference between two data types is unremarkable except the case where the
initialization rate is very low and the standard deviation of the generated data is high, as shown
in Figure 4a. When the initialization rate is low, the number of samples also decreases. In this
case, the probability, that the data obtained from the active nodes by the API are near the mean,
can be high in the normal distribution. This can increase the difference between the data obtained
by the API and that by the FI since the FI obtains the data from all nodes. On the other hand, in
the uniform distribution, the data are evenly spread depending on the standard deviation. Thus,
the difference between the data by the API and that by the FI in the uniform distribution is less
significant than that in the normal distribution. This leads to a similarity difference between the
two distributions in the case.

• It can be seen that, except for the case where the initialization rate is very low, say 10%, the similarity
is at least 90% under the given data type and STDs. Although it is confirmed that the API can be
feasible to the given data type based on the simulation results, it cannot be generalized that the
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API can be effectively applied to all data models. Depending on the underwater application, there
can be other data distributions for which the API do not operate properly, and thus the network
must be initialized close to the FI (full initialization) by increasing the number of active nodes.Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 
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rate, and the BER when the STD of the generated data with normal distribution and that with uniform
distribution are respectively 10 and 11.54, and the number of slave nodes is 30. (a) BER = 5 × 10−3,
(b) BER = 10−3, and (c) BER = 10−2.
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that with uniform distribution are, respectively, 10 and 11.54, and the BER is 10−3. (a) The number of
slave nodes = 10. (b) The number of slave nodes = 30. (c) The number of slave nodes = 50.

Second, the similarity results are analyzed in the aspect of the BER as follows:

• It can be intuitively predicted that the higher similarity is guaranteed as the BER is lower. This
prediction is checked by varying the BER and the initialization rate, as illustrated in Figure 5a–c.

• As the BER decreases, the similarity becomes higher and more fluctuated according to the number
of transmissions.

• The similarity of the generated data with normal distribution is lower than that with uniform
distribution as the BER increases.

• However, the similarity is over 90% after a certain number of transmissions even when the BER
is 10−2.

• As a result, even if a transmission failure occurs due to a slightly poor channel condition, it can be
seen that the data statistics of the API and the FI have similarity.

Third, the similarity results are investigated in the view of the number of slave nodes as follows:

• As the number of slave nodes increases, the amount of data to be applied to the data statistics
also increases. It is shown that the increase of the number of slave nodes affects the similarity
differently according to the type of data.
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• In the generated data with normal distribution, the higher the number of slave nodes, the faster
the similarity reaches 90%. In addition, as the number of slave nodes increases, the similarity also
increases, as shown in Figure 6a–c.

• On the contrary, in the generated data with uniform distribution, the similarity variation with
respect to the number of slave nodes is unremarkable.

• As a result, the number of slave nodes can affect the similarity differently depending on the type
of data distribution. In addition, if the number of slave nodes has influence on the similarity, the
similarity increases as its value increases.

4.2. Performance Analysis of the API Protocol

In this section, we analyze the performance of the API and compare it with that of the FI via
simulations. Two performance metrics are considered: (1) initialization delay and (2) message overhead.
The initialization delay shows us how much the API can reduce the time needed to initialize the
network compared with the FI. The message overhead informs us of how much the API can improve
energy efficiency over the FI because the energy spent in transmission mode is much higher than that in
reception mode or idle mode. Thus, the more messages that are transmitted, the more energy is spent.

4.2.1. Simulation Operation and Conditions for Analyzing the Performance of the API Protocol

The simulation is built using MATLAB software and its operation is explained as follows:

• The simulation considers the initialization stage between a master node and a number of
slave nodes.

• The position of a master node and slave nodes are randomly determined in the beginning of a
simulation. It is assumed that the master node and any slave node can be connected directly in
the initialization stage.

• A master node and slave nodes operate based on the initialization process as specified in Section 3.
• In the simulation, an initialization process between a master node and slave nodes can be executed

up to K times. K is given as the same as the number of slave nodes. This is determined based
on the assumption that at least one slave node can be initialized in one round such that as many
rounds as the number of all the slave nodes can be iterated in the worst case.

• At the end of one process, the master node calculates the initialization success rate, and compares
it to the given application requirement.

• Simulations are executed case by case with respect to the initialization rate and bit error rate (BER).
• For one case with a fixed BER and initialization rate, 10,000 simulation tests are performed, and

the average values of the performance metrics are derived. After performing the simulation tests
in the same way by changing the BER and the initialization rate, the performance of the API, and
the FI are analyzed and compared with each other.

The parameters used in the simulations are as follows:

• The number of simulation experiments per case is 10,000.
• The number of slave nodes is 100.
• The maximum number of initialization repetitions is 100.
• The initialization rate is 0.2:0.2:1.0.
• The length of initialization messages is 100 bits.
• The BERs are 7 × 10−3, 5 × 10−3, 3 × 10−3, 10−3, and 0.

4.2.2. Initialization Time

First, we investigate the initialization time of the API and the FI. In Section 3, the time duration of
a sub-round is fixed as τ, and thus that of a round is represented as a multiple of sub-rounds. In R1



Sensors 2020, 20, 5635 14 of 18

(i.e., the first round), the maximum number of sub-rounds for initialization is Q1 (i.e., the number of
sub-rounds). Q1 is determined by multiplying the number of slave nodes by the initialization rate
(i.e., the application requirement).

If the application requirement is not satisfied in R1, Q2 sub-rounds will be conducted for
initialization in R2. If this is generalized to the case that the initialization is completed in Rk,
the initialization time can be expressed as

∑k
i=1 Qi. Thus, the initialization time can be also expressed

as a multiple of sub-rounds. This implies that a sub-round can be used as a unit to represent the
initialization time metric.

Figure 7 illustrates the initialization time according to the simulation experiment index in the
case of the BER of 3× 10−3 and the initialization rates of 20%, 60%, and 100%. The initialization time
is distributed around the average value, as shown in Figure 7. As the initialization rate increases,
the initialization time also increases in order to initialize more slave nodes.
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In addition, the initialization time is linearly proportional to the initialization rate. When the
initialization rate is 20%, the average initialization time takes about 45 sub-rounds. In the case of the
initialization rates of 40%, 60% 80%, and 100%, the corresponding average initialization times are 90
(=2× 45), 137 (≈3× 45), 179 (≈4× 45), and 225 (=5× 45) sub-rounds, respectively. The linearity of the
initialization time with respect to the initialization rate can be remarkably seen in Figure 8b. This linearity
is originated from the property that the API selects as many slave nodes as the initialization rate.
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This linearity persists until the BER deteriorates to a point where the communication between
the master and slave nodes is very unreliable. Under the simulation conditions, when the BER value
is 7× 10−3, the linearity is broken, as illustrated in Figure 8a. This result can be predicted via simple
calculation. The packet error rate (PER) can be expressed as PER = 1 − (1− BER)L, where L is the
number of bits of a packet. By applying the PER equation, when the BER is 7× 10−3 and L is 100 bits,
the PER is approximately 0.5. From the simulation results, when the PER exceeds 50%, communication
failure between a master node and a slave node is obvious. In this case, the initialization satisfying the
application requirement cannot be realized, even if the initialization process is performed up to the
maximum number of initialization repetitions. If the length of the packet is adjusted, the value of BER,
which causes communication failure, will be also changed.

This linearity can be considered as a characteristic of the API that adaptively initializes nodes
according to the initialization rate. Using this linearity, it is possible to roughly estimate the initialization
time of the API according to the initialization rate in a specific channel state (e.g., BER).

Figure 9 shows the comparison of the initialization time between the API and the FI. Because the
FI needs to initialize all slave nodes, its initialization time performance is unrelated to the initialization
rate. Therefore, as the initialization rate increases, the initialization time of the API approaches that of
the FI, which is shown in Figure 9.
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The initialization time of the API and the FI deteriorates as BER increases. This is because a slave
node does not receive the initialization request message from the master node, and the master node
does not successfully receive the initialization response message sent by the slave nodes. Moreover,
as the BER increases, the initialization is delayed due to frequent communication failures, and the
performance gap between the API and the FI increases.

4.2.3. Message Overhead

The one-to-one initialization between a master and a slave node takes up to two messages
during one sub-round. The number of messages of a sub-round is 1 when the master node sends an
initialization request message, but the slave node cannot receive the message. On the other hand, the
number of messages is 2 when the slave node successfully receives the initialization request message,
and it sends back an initialization response message to the master node. If the channel condition is
good, two messages are transmitted in a sub-round. Otherwise, only one message is sent.

As there are Qk sub-rounds in Rk, the maximum number of messages that can occur in the round
Rk is 2×Qk, and the minimum number of messages in Rk is Qk. We define the message overhead as
the number of all messages sent until the initialization is finished. Thus, the message overhead can be
obtained by adding up all the generated messages up to the round of successful initialization. If this is
generalized to the case where the initialization is completed in the kth round Rk, the message overhead
can be calculated by

∑k
j=1
∑Qi

i=1 M ji, where M ji is the number of messages sent in the ith sub-round in
the jth round such that M ji is 1 or 2.

Using the message overhead calculation formula, the message overhead can also be expressed as
the number of sub-rounds. This implies that the linearity of the initialization time according to the
initialization rate can also be applied to the message overhead performance. The linearity is verified,
as shown in Figure 10, where the API shows the linearity of performance according to the initialization
rate, provided that the BER is not high enough to cause communication failures. From the results in
Figure 10, it can be concluded that the performance pattern of the initialization time and message
overhead according to the initialization rate and BER is similar.
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After comparing the message overhead of the API to that of the FI, it is confirmed that, as the
initialization rate increases, the message overhead of the API approaches that of the FI. In both the API
and the FI, the message overhead performance deteriorates as the BER increases, and the performance
gap between the API and the FI also becomes larger. This implies that the larger the BER and the
higher the initialization rate, the more messages occur during initialization.

In conclusion, it is verified through our simulations that the API outperforms the FI with respect
to both initialization time and message overhead. Furthermore, the performance difference between
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the API and the FI becomes remarkable when an application is run with a low initialization rate in a
poor channel condition.

5. Discussion

Underwater is an unattended area such that battery replacement is costly. If an underwater
network can be managed with only a subset of active nodes, we can extend the average battery life
of the nodes. The number of required active nodes for an application varies depending on the type
of applications. Thus, executing a specific application can be considered a requirement. Instead
of initializing all the nodes in the underwater network, it would be more efficient to initialize as
many nodes as required for an application. For this purpose, we proposed the application-based
partial initialization (API) protocol in this paper. To the best of our knowledge, the API is the first
initialization-only protocol that initializes only a portion of the nodes according to applications, and
repeats the same initialization process until the application requirement is satisfied by considering
unreliable underwater acoustic channel conditions. To apply the API for a UWASN, we also investigated
its feasibility via simulations. We checked the similarity of data statistics between the API and the
conventional FI (full initialization). The results showed that the similarity fluctuates in the beginning
but saturates to 90% as the data accumulates. In addition, we analyzed the performance of the API and
compared it to that of the FI. As a result, the initialization time and message overhead performances
are noticeably improved when the FI is replaced by the API. The worse the channel is, and the smaller
the application requirement (i.e., the required number of active nodes) is, the more remarkable the
guaranteed performance superiority of the API is compared to the FI. Therefore, considering the bad
channel conditions and high energy-efficient requirements of underwater networks, the API can be
effectively applied to a UWASN since it is compatibly applied to any protocol. Moreover, the concept
of the API can be employed to the IoUT where massive data sensing and gathering is necessary
under energy-restricted underwater environments, and various applications require different levels of
partial initialization.
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