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Abstract: As a growing number of exploration missions have successfully landed on the Moon in
recent decades, ground infrastructures, such as radio beacons, have attracted a great deal of attention
in the design of navigation systems. None of the available studies regarding integrating beacon
measurements for pinpoint landing have considered uncertain initial beacon locations, which are
quite common in practice. In this paper, we propose a radio beacon/inertial measurement unit
(IMU)/altimeter localization scheme that is sufficiently robust regarding uncertain initial beacon
locations. This scheme was designed based on the sparse extended information filter (SEIF) to locate
the lander and update the beacon configuration at the same time. Then, an adaptive iterated sparse
extended hybrid filter (AISEHF) was devised by modifying the prediction and update stage of SEIF
with a hybrid-form propagation and a damping iteration algorithm, respectively. The simulation
results indicated that the proposed method effectively reduced the error in the position estimations
caused by uncertain beacon locations and made an effective trade-off between the estimation accuracy
and the computational efficiency. Thus, this method is a potential candidate for future lunar
exploration activities.

Keywords: lunar lander; radio beacons; sparse extended information filter; adaptive filter;
integrated navigation

1. Introduction

Safe and soft pinpoint landing (within 100 m at 3σ from the target site [1]) on an extraterrestrial
body has been a central objective since the beginning of human space exploration missions. To date,
many manned and unmanned landers have successfully landed on moons (Apollo and Chang’E),
planets (Curiosity and Opportunity) and asteroids (Rosetta and Hayabusa-2), with landing footprints
in the scale of kilometers [2,3]. Among all these celestial bodies, a growing number of exploration
missions will land on the Moon in the future, as it is the most suitable outpost for deep space
exploration. A robotic lunar base followed by a human base will likely be constructed during these
missions, which will be the first potential implementation of co-located pinpoint landing [4]. With the
existence of these infrastructures, the natural consequence is to make use of more ground sources
to enhance the current onboard navigation capability for lunar landing missions using, for instance,
radio beacons.

Radiometric localization is an extensively used technology on Earth. Although there are many
specific kinds of signals and modulations for different applications, the information provided by radio
beacons can be divided into three categories [5]: (a) range measurements, (b) range rate measurements
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and (c) bearing measurements. All of these have drawn attention to improving the accuracy of pinpoint
landing. In 2008, NASA proposed a radio measurement-enhanced navigation architecture based on
lunar relay satellites (LRS) and lunar communication terminals (LCT) for the Autonomous Landing and
Hazard Avoidance Technology (ALHAT) project [6]. By combining range and range rate measurements
from LRS and LCT with other basic measurements of the ALHAT sensor suite, the landing accuracy
could reach a level of 10 m at 3σ [7].

Several studies regarding the optimization of beacon configurations have been presented, both in
terms of the filter accuracy [7,8] and observabilities [9,10]. On this basis, Theil et al. from the German
Space Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) investigated the impact of one to
four ground beacons for the small integrated navigation for planetary exploration (SINPLEX) project
of ESA [4,11]. In this research, bearing measurements, as well as range and range rate measurements,
were utilized by the navigation filter to augment the navigation baseline of SINPLEX. Different cases
of beacon locations and setups were compared in the Autonomous Terrain-Based Optical Navigation
(ATON) project of DLR, which indicated that the impact of additional bearing measurements was
quite small.

All studies listed above were based on a strong assumption that uncertainties only existed in the
sensor measurements, which means that all beacons were stationary and their locations were precisely
pre-determined. In fact, most ground beacons can only be located either by orbiters or by the deep
space network on the order of hundreds of meters [12]. Without the protection of the atmosphere,
the diurnal temperature variation on the Moon is more than 300 ◦C. If radio beacons are stationary,
meaning that they will be exposed to a harsh environment for a long time, the onboard electronic
equipment will be fatally damaged. One possible solution is to maintain radio beacons in the lunar
base and redeploy them before each landing mission. Such scenarios serve as a strong motivation to
investigate a novel navigation scheme that can locate the lander and update all beacon locations at
the same time, which is similar to the range-only simultaneous localization and mapping (RO-SLAM)
approach in the field of robotics.

Almost all existing radio beacons/inertial measurement unit (IMU)-integrated navigation
algorithms in pinpoint landing are formulated using the state by the covariance matrix Σ and the
mean vector µ of the multivariate Gaussian distribution and tracked via the extended Kalman filter
(EKF) [4,11,13–15] or unscented Kalman filter (UKF) [16,17]. However, the computational complexity
and memory space of these algorithms are both quadratic to the dimension of state vectors [18],
which makes them unsuitable for dealing with this SLAM-like localization problem.

A large amount of strategies for RO-SLAM [19–24] have been developed in recent decades,
in which the sparse extended information filter (SEIF) proposed by Thrun et al. [18] has been widely
used. Unlike Kalman filters, SEIF represents the state by the information matrix Λ = Σ−1 and the
information vector η = Λµ, which makes the update stage more efficient due to the natural sparseness
of the information matrix [25]. A conditional sparsification operation is implemented before the
prediction stage to maintain the sparse representation of Λ, which leads to a constant execution
time online.

While SEIF has been demonstrated to be more efficient and scalable in many applications [26–28],
the consistency and accuracy of SEIF may be worse than EKF due to three approximations [29]:
(a) the linearization of the motion and measurement models, (b) the recovery of the mean vector by
iterations and (c) the sparsification via approximated conditional independence. Several methods
have been designed to refine the performance of SEIF, such as exactly SEIF (ESEIF) [30], exactly sparse
delayed-state filter (ESDSF) [31] and hybrid SEIF (HSEIF) [32]; each method only addresses one aspect
of the approximation errors.

Iterated versions of EKF and UKF can increase their consistency and robustness against
approximation errors compared to the original versions [33]; however, the rate of convergence
is frustrated due to the dense covariance matrix. Due to the sparseness of the information filter,
the computational burden is no longer a problem for iterated SEIF. He et al. [34] proposed the first
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iterated SEIF (ISEIF) for autonomous underwater vehicles, which utilized the Gauss–Newton algorithm
for measurement updates rather than the traditional linear combination of predictions and innovations.
However, divergence may occur in the Gauss–Newton algorithm when the initial values are far from
the optimal values or the coefficient matrix in the normal equation is approximately singular [35].

In addition to the efficiency, the update stage in SEIF is also additive, which makes it capable of
deployment in distributed systems. Torres et al. [23] first proposed a distributed RO-SLAM scheme
based on SEIF for an autonomous ground vehicle (AGV). The prediction stage and update stage are
implemented on the AGV and surrounding beacons, respectively. Except for the traditional direct
robot–beacon measurements, additional inter-beacon measurements are also integrated into the SEIF,
which reduces uncertainty both in the map estimation and localization accuracy. This work was
then extended to a 3D resource-constrained operation with an auxiliary selection tool which only
integrates the most informative measurements into the SEIF [36]. Further analysis regarding the effect
of inter-beacon measurements on the building of an information matrix followed in [37], validating
the preservation of the main properties of SEIF.

Beacon initialization is another challenge in RO-SLAM due to the partial observability of range
measurements. As a multi-mode problem, the initial estimation of beacon locations can be obtained
either by delayed or undelayed initialization methods. The trilateration method [38–40] is the most
simple and efficient delayed initialization method; however, it suffers from measurement noise and
the odometry error of robots. Olson et al. [41] attempted to address this problem with a 2D probability
grid, with a performance that was limited by the size and resolution of the grid.

The shortcomings of these two methods resulted in them being quickly replaced by another widely
used delayed initialization method: particle filters (PFs) [23,36,37,42,43]. PFs model the probability
density of the beacon location as a uniform distribution around the measurement circle, and then
the weight of each particle is updated and finally converges to a single solution by accumulating
successive range measurements. Even though PFs can provide more accurate results, their significant
computational burden cannot be neglected, which leads to several corresponding investigations [44,45].

In contrast to the delay initialization method, the initial beacon location is modeled with a
multi-hypothesis distribution, which makes it available to integrate range measurements from
the start. Blanco et al. [46] first proposed a Gaussian mixture model (GMM)-based initialization
strategy, which provides accurate results but makes the integration of inter-beacon measurements
impossible as each beacon is inserted in an independent EKF. On the basis of this research,
Felipe et al. [47] proposed a centralized EKF-based initialization framework, which allowed the
integration of inter-beacon measurements, and they enhanced it with a outlier rejection filter [48,49].
Geneve et al. [50] proposed a short-delayed composite initialization method based on Euclidean
parameterization and a two-hypothesis GMM, which showed a lower computational cost.

Based on all the existing studies listed above, a novel distributed radio beacon/IMU-integrated
localization scheme based on an adaptive iterated sparse extended hybrid filter (AISEHF) is presented
in this paper. To the best of our knowledge, this is the first time that beacon location errors have
been taken into consideration in the integrated navigation architecture for lunar pinpoint landing.
This scheme is inspired by the SEIF-based distributed framework sketched in [37] and the ISEIF
proposed in [34], while several aspects have been modified according to the characteristics of lunar
pinpoint landing:

• Only lander-beacon range measurements are utilized as inter-beacon measurements and are easily
blocked by obstacles, such as craters on the lunar surface.

• A batch-least-squares trilateration algorithm similar to [39] was adopted for the initialization of
beacon locations, as their prior rough estimations are available and the inertial measurement
unit (IMU) used in our application is much more accurate than that used in the majority of
RO-SLAM applications.
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• The navigation state between two successive measurements was propagated by a hybrid form of
the “mean vector + information matrix” to avoid the frequent conversion from the information
vector to the mean vector, which can improve the computational efficiency of the prediction stage.

• An adaptive iteration algorithm with the damping factor was adopted in the update stage,
which can both improve the accuracy and efficiency of the estimator.

The remainder of this paper is structured as follows. The problem formulation is given in
Section 2. In Section 3, we detail the implementations of the proposed distributed localization scheme.
In Section 4, we verify the performance of the proposed algorithm by simulations, which is followed
by further discussions. Eventually, our conclusions are presented in Section 5.

2. Problem Formulation

As illustrated in Figure 1, the target application scenario of this paper is the final phase of the
power descent, which is short both in terms of the flight time and downrange distance (commonly
around 200 s and 5–10 km). Without generality, the landing frame (L) can be chosen as the navigation
frame. The origin of the L frame ol is located at the targeted landing site, and three coordinate
axes (xl , yl , and zl) are aligned with the geographic directions east, north and up (ENU), respectively.
Another significant coordinate system is the body frame B, whose origin lies in the mass center of the
lander, and the directions of the three axes are front–left–up (FLU); i.e., the xb axis points to the front
along the body symmetric axis, the yb axis points to the left and is orthogonal to xb and the zb axis
completes the right-handed orthogonal coordinate system. In addition, measurements of the laser
altimeter are present in the sensor frame (S), whose origin and xs axis are the same as the B frame but
whose ys axis and zs axis are opposite to yb and zb.

Lunar 

Surface

Lunar lander

Localization beacons

Standby beacons

no

nx

ny
nz

bx

by

bz

……

……

bO

Initialization beacons

Landing site

One-way signal

Two-way signal

Figure 1. Overview of the proposed distributed radio beacon/inertial measurement unit
(IMU)-integrated localization scheme and definitions of the landing frame L (east, north and up
(ENU)) and the body frame B (front–left–up (FLU)).

The kinematic equations of the lunar lander, defined with respect to the landing frame L, are given
as follows: [51]: 

ṗL = vL

v̇L = CLB fBi − [2ωLim]
∧vL + gL

ĊLB = CLB [ω
B
ib]
∧

(1)

where [·]∧ is the skew symmetric operator; pL is the lander position; vL is the lander velocity; CLB is
the rotation matrix from B to L; fBi and ωBib, respectively, denote the specific force and the angular
rate sensed by IMU, whose further interpretations can be found in [52]; and gL is the gravity vector,
whose magnitude is assumed to vary with the altitude as follows [51]:
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‖g‖ = g0

(1 + h/Rm)
2 (2)

where g0 = 1.622 m/s2 is the gravity constant at the lunar surface, h is the current altitude of the lander
and Rm is the radius of the Moon. The superscripts that denote the corresponding frame are omitted
for notational convenience in the following parts if there is no confusion.

The beacon receiver is attached on the bottom of the lander, which makes it directly visible
from the ground beacons. Several radio beacons are mounted on rovers and pre-deployed along
the designed ground track of the landing mission, while their prior rough locations are determined
by the onboard navigation systems of the rover. Due to the limited effect of bearing measurements,
each beacon is assumed to be equipped with a range-only sensor whose measurements rli are affected
by independent Gaussian white noise vb:rli = rli + vb, vb ∼ N (0, σb)

rli =
√

δx2 + δy2 + δz2 =
√(

xl − xbi

)2
+
(
yl − ybi

)2
+
(
zl − zbi

)2
(3)

where pl = [xl , yl , zl ] and pbi
=
[
xbi

, ybi
, zbi

]
, respectively, denote the positions of the lander and the

ith beacon. In addition, only the lander-beacon range measurements are available, as there are too
many obstacles (such as craters or huge rocks) on the lunar surface, which could heavily degrade
the inter-beacon measurements. Considering the terrain accessibility of the rover, all ground beacons
are assumed to be on the same horizontal plane. This coplanarity will lead to uncertainty in altitude
estimation; thus, a laser altimeter is mounted next to the beacon receiver to offer additional range
measurements ra:

ra =
zl

cos γ cos θ
+ va, va ∼ N (0, σa) (4)

where θ is the pitch angle, γ is the roll angle and va is the Gaussian white noise.
The flow diagram of the proposed distributed localization scheme is shown in Figure 2, which can

be divided into two parts: the lander and the beacon. The prediction stage is continuously conducted
onboard based on the IMU measurements. After the visible beacons have been detected, a message that
contains the current estimated lander position p̂l will be transmitted to all visible beacons. When this
message has been received by beacon bi, it will switch from the “Standby” mode to the “Initialization”
mode, in which the beacon location is initialized by minimizing the following batch-least-squares cost
function with N range measurements:

p∗bi
= arg min

pbi

N

∑
k=1

∥∥∥∥rk
li −

√(
p̂k

l − pbi

)T (p̂k
l − pbi

)∥∥∥∥2
(5)

where N can be pre-determined offline and Equation (5) can be solved by the nonlinear optimization
methods given in [53] with prior rough beacon locations as initial values.

When the initialization of bi is convergent, it starts to work in the “Localization” mode.
Its contribution (local information vector η̃i

t and information matrix Λ̃i
t) to the update stage is calculated

and sent back to the lander. Then, the locations of all visible beacons are inserted into the state vector,
and their contributions are summed together as follows:

η̃t = η̂t +
k

∑
i=1

Siη̃
i
t, Λ̃t = Λ̂t +

k

∑
i=1

SiΛ̃
i
tS

T
i (6)

where ˆ(·) and ˜(·) denote the variables obtained by the state prediction and measurement update,

respectively. Si =
[
0 · · · I · · · 0

]T
is a projection matrix that allocates η̃i

t and Λ̃i
t at the

corresponding position of η̃t and Λ̃t:
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Siη̃
i
t =



0
...

η̃i
t
...
0


, SiΛ̃

i
tS

T
i =



0 · · · 0 · · · 0
...

. . .
...

...
0 · · · Λ̃i

t · · · 0
...

...
. . .

...
0 · · · 0 · · · 0


. (7)

Finally, an iterated update was performed based on the global information vector η̃t and
information matrix Λ̃t, which was followed by the sparsification step of SEIF when the number
of visible beacons were out of bounds or some links in the information matrix were too weak [34].

Prediction

Beacon n-1

IMU 

(200Hz)

Beacon n

(invisible)
……

Update
SEIF

Sparsification

Location

Estimation
Initialized ?N

Calculate

and
Y

Lander

Beacon 1 (20Hz)

Altimeter

(20Hz)

Beacon 

Visible ?

N

Y Convergent ? Y

N

Lander State/Range

i

tΛ
%i

tη%

Figure 2. The flow diagram of the tightly-coupled navigation system based on the adaptive iterated
sparse extended hybrid filter (AISEHF).

3. Adaptive Iterated Sparse Extended Hybrid Filter

3.1. State Definition and Jacobians

Like EKF, the first-order Taylor series expansion was applied to linearize the state space model as
follows in Equation (8) to deal with nonlinear propagation and measurement functions, where wt and
vt+1 are the white process noise and measurement noise, respectively.{

ξt+1 = f (ξt, ut) + wt ≈ Ftξt + Gtut + wt, wt ∼ N (0, Qt)

zt+1 = h(ξt+1) + vt+1 ≈ Ht+1ξt+1 + vt+1, vt+1 ∼ N (0, Rt+1)
(8)

where ξt = [xT
t , BT ]T denotes the state vector at time t comprised of the lander state xt = [pT

lt, vT
lt ]

T

and the set of visible beacons locations B = [pT
b1

, · · · , pT
bn
]T . As a navigation (or localization) filter, it is

common to choose the specific force fi and gravity vector g as the control input ut = [ f T
i , gT ]T .

As B is kept unchanged and is independent of xt, we compute the Jacobians F and G from the
kinematic model (Equation (1) with respect to the xt, which is more efficient. The results are given
as follows:

F =
∂ f (ξ, u)

∂x
=

[
I ∆tI
0 I − ∆t[2ωLim]

∧

]
(9)

G =
∂ f (ξ, u)

∂u
=

[
0 0

∆tCLB ∆tI

]
. (10)

Similarly, based on the measurement function of Equation (3) and (4), the measurement Jacobian
H is given in Equation (11)∼(13), where all entries that are not given are zero.
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H =


Hli

...
Hl j
Ha

 =



∂rli
∂xt

· · · ∂rli
∂pbi

· · · 0 · · · 0
...

...
. . .

...
...

∂rl j
∂xt

· · · 0 · · · ∂rl j
∂pbj

· · · 0
∂ra
∂xt

· · · 0 · · · 0 · · · 0

 (11)

Hli =
[

δx
rli

δy
rli

δz
rli
· · · − δx

rli
− δy

rli
− δz

rli
· · ·
]

(12)

Ha =
[
0 0 1

cos γ cos θ · · ·
]

. (13)

3.2. Temporal Alignment of Asynchronous Measurements

Signal transmission or triggering delays will lead to a temporal misalignment between
measurements from different sensors, which cannot be ignored in the integrated localization scheme.
As depicted in Figure 3, a virtual measurement method based on linear interpolations was adopted
in our scheme to eliminated the temporal misalignment. Assuming there are j IMU measurements
between every two sequential beacon measurements and the two closest IMU measurements to tk are
denoted as mi

tk−1/j
and mi

tk/1
, the virtual measurement at tk can be obtained as follows:

mi
tk
=

tk/1 − tk
tk/1 − tk−1/j

mi
tk−1/j

+
tk − tk−1/j

tk/1 − tk−1/j
mi

tk/1
. (14)

When all measurements are temporally aligned, the state prediction and measurement update
stage of SEIF are then executed separately.

IMU

Beacon

………… ……

…… ……

kt1kt  1kt 

……

…… ……

Beacon Measurements IMU Measurements Interpolation Measurements

State Prediction Measurement Update

Figure 3. An example of processing asynchronous inertial measurement unit (IMU) and beacon measurements.

3.3. Hybrid State Prediction

The typical prediction stage in SEIF can be separated into two main processes [31]—state
augmentation and state marginalization—assuming the state vector ξt is subjected to the conditional
distribution given, zt and ut−1, as expressed in Equation (15):

p(ξt|zt, ut−1) ∼ N (

[
µxt

µB

]
,

[
Σxtxt ΣxtB

ΣBxt ΣBB

]
) ∼ N−1(

[
ηxt

ηB

]
,

[
Λxtxt ΛxtB

ΛBxt ΛBB

]
). (15)

At time t + 1, a new variable xt+1, which represents the newest lander state, is first inserted
into the state vector ξt, and the augmented distribution p (xt, xt+1, B) ∼ N−1 (ηt+1, Λt+1

)
is given

as follows:
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Λt+1 =


Λxtxt + FTQ−1

t F −FTQ−1
t ΛxtB

−Q−1
t F Q−1

t 0

ΛBxt 0 ΛBB

 =

 Λαα
t+1 Λαβ

t+1

Λβα
t+1 Λββ

t+1

 (16)

ηt+1 =


ηxt − FTQ−1

t ( f (µxt , ut)− Fµxt −Gut)

Q−1
t ( f (µxt , ut)− Fµxt −Gut)

ηB

 =

 ηα
t+1

η
β
t+1

 . (17)

The propagated distribution p (xt+1, B|zt, ut) can then be recovered by marginalizing out xt from
the joint distribution p (xt, xt+1, B|zt, ut):

Λ̂t+1 = Λ
ββ
t+1 −Λ

βα
t+1

(
Λ

αα
t+1

)−1
Λ

αβ
t+1 (18)

η̂t+1 = η
β
t+1 −Λ

βα
t+1

(
Λ

αα
t+1

)−1
ηα

t+1. (19)

From Equations (16) and (17), the recovery of µt from ηt must be performed before the state
augmentation to re-linearize F and G [18]. This is not a problem for a synchronous application, as ηt

will be utilized in the following update stage, whereas in an asynchronous application, the prediction
stage will be followed by several other prediction stages, meaning that the state recovery will be
implemented several times. As the state recovery is commonly performed based on iterated algorithms,
as with a pre-conditioned gradient, these extra steps will lead to an unnecessary computational burden.

Based on the analysis above, we proposed a hybrid form of the “mean vector + information
matrix” for the prediction stage, which will be called the sparse extended hybrid filter (SEHF) in
the following. SEHF propagates the uncertainty of ξt using Λt as with the typical SEIF, while the
expectation of ξt is propagated by µt instead of ηt as follows:

µ̂t+1 =

[
F 0
0 I

]
µt +

[
G
0

]
ut =

[
Fµxt + Gut

µB

]
. (20)

Figure 4 shows a comparison of the typical form and our hybrid form prediction when there are
two prediction stages between successive update stages. Clearly, in the hybrid form, the state recovery
only needs to be performed once before the filter switches from the update stage to the prediction
stage, regardless of the number of extra prediction stages, whereas it will increase with the number of
extra prediction stages in the typical form. Although there is an extra operation in the hybrid form
that constructs ηt for the update stage, the corresponding computational cost is quite small, as this is a
simple matrix multiplication.

State 

Recovery

1tΛtΛ
%

tμ 1tηtη% Prediction

Prediction

Compute
, , tF G u

State 

Recovery 1tμ
Compute

, , tF G u
Prediction 2tη

Prediction 2tΛ

1tΛtΛ

1tμtμ Prediction

Prediction

Compute
, , tF G u

Compute
, , tF G u Prediction 2tμ

Prediction 2tΛ

State 

Recovery H

Compute
2tμ

State 

Recovery

Update

Update

Update

Update
H

Compute

2tη%

2tΛ
%

2tΛ
%

2tη%

2tη

…

…

…

…

…

…

…

…

Update Stage Update StagePrediction Stage

Figure 4. Comparison of the typical form and our hybrid form prediction. Different processing steps
between these two forms are marked with different colors depending on their computational burden.
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3.4. Adaptive Iterated Measurement Update

3.4.1. Iterated Measurement Update

When the current measurement zt+1 is achieved, the SEIF typically updates the new posterior
p (ξt+1|zt+1, ut) according to the chain rule based on existing distributions p (ξt+1|zt, ut) ∼
N−1 (η̂t+1, Λ̂t+1

)
and p (zt+1|ξt+1) ∼ N (h(ξt+1), Rt+1):

Λ̃t+1 = Λ̂t+1 + HT R−1
t+1H (21)

η̃t+1 = η̂t+1 + HT R−1
t+1 (zt+1 − h(µ̂t+1) + Hµ̂t+1) . (22)

Varying from solving the measurement update via a linear combination of the prediction and
innovation in the traditional filter, the iterated filter models it as a nonlinear least squares (NLS)
problem as follows:

ξ∗t+1 = arg min
ξt+1

{
1
2
(zt+1 − h(ξt+1))

T R−1
t+1 (zt+1 − h(ξt+1))

+
1
2
(ξt+1 − µ̂t+1))

T
Σ̂−1

t+1 (ξt+1 − µ̂t+1))

}
= arg min

ξt+1
χ2(ξt+1)

(23)

where χ2(ξt+1) is the objective function of the NLS problem and ξ∗t+1 is the optimal value when
χ2(ξt+1) takes the minimum value, defined by the following matrices:

Z =

[
zt+1

µ̂t+1

]
, G(ξt+1) =

[
h (ξt+1)

ξt+1

]
, W =

[
R−1

t+1 0
0 Σ̂−1

t+1

]
. (24)

The objective function χ2(ξt+1) can be rewritten into the following a matrix form [33]:

χ2(ξt+1) =
1
2
(Z−G(ξt+1))

T W (Z−G(ξt+1))

=
1
2
(Z−G(ξt+1))

T CT︸ ︷︷ ︸
eT(ξt+1)

C (Z−G(ξt+1))︸ ︷︷ ︸
e(ξt+1)

=
1
2
‖e(ξt+1)‖2

. (25)

Then, the iterative sequences of ξi
t+1 and Λi

t+1 can be achieved as follows [34]:

Ki =
(

HT
i R−1Hi + Λ̂t+1

)−1
HT

i R−1 (26)

ξi+1
t+1 = µ̂t+1 + Ki

[
zk+1 − h

(
ξi

t+1

)
− Hi

(
µ̂t+1 − ξi

t+1

)]
(27)

Λi
t+1 = HT

i R−1Hi + Λ̂t+1 (28)

where Hi is the Jacobian of the measurement function at ξi
t+1.

3.4.2. Iterated Measurement Update with Damping Factor

The iterative form update equations given above are obtained by solving the following normal
equation of the Gauss–Newton algorithm:

JT
i Ji∆ξi

t+1 = −JT
i e(ξi

t+1) = ∆ri (29)



Sensors 2020, 20, 5643 10 of 19

where Ji represents the Jacobian of e(ξt+1) with respect to ξt+1 evaluated at ξi
t+1. As the coefficient

matrix JT
i Ji is only positive semidefinite, there is no guarantee that ∆ξ is always along the descent

direction. ∆ξ would become unstable when the initial value was far away from the solution as the
second derivative (Hessian) of the object function was approximated by the Jacobian. To address
these issues, a damped Gauss–Newton algorithm was proposed by Levenberg and Marquardt,
successivel [53]. In this method, a positive damping factor λ was added to the coefficient matrix
of the normal equation, which is known as the damping factor:(

JT
i Ji + λI

)
∆ξi

t+1 = ∆ri, λ > 0. (30)

Clearly,
(

JT
i Ji + λI

)
is always positive and the method is equivalent to the steepest descent

algorithm and the Gauss–Newton algorithm when µI � JT
i Ji and µI � JT

i Ji, respectively. With this
modification, the iterative sequence of ξt is modified as follows (see Appendix A for more details):

Ki =
(

HT
i R−1Hi + Λ̂t+1 + λI

)−1
HT

i R−1 (31)


ξi+1

t+1 = Γt+1µ̂t+1 + Ki
[
zt+1 − h(ξi

t+1)− H
(

Γt+1µ̂t+1 − ξi
t+1

)]
Γt+1 =

Λ̂t+1

λ

[
I −

(
I + λΛ̂t+1

)−1 Λ̂t+1

λ

] (32)

As the uncertainty of ξt will only be updated when the iteration converges [33], the update of Λt

is the same as Equation (28). As a hybrid form is adopted for the following prediction stages in our
scheme, there is no need to convert µt to ηt, which further reduces the computational burden.

3.4.3. Damping Factor and Stopping Criteria

A proper value of λ is vital to the iteration. One possible solution is to choose the initial value of
λ depending on the maximum value of the coefficient matrix:

λ0 = τ ·max(diag(JT
0 J0)), τ ∈ [10−8, 1] (33)

and then update λ based on the gain ratio ρ at each iteration [54]:

λ =

λ ∗max
(

1
3

, 1− (2ρ− 1)3
)

, ν = 2; ρ > 0

λ ∗ ν, ν = 2 ∗ ν; ρ ≤ 0
(34)

where ρ is the ratio of the actual and approximated decrease of the objective function:

ρ =
χ2(ξi

t+1)− χ2(ξi
t+1 + ∆ξi

t+1))

L(0)− L(∆ξi
t+1)

(35)

L(0)− L(∆ξi
t+1) = −(∆ξi

t+1)
T JT

i e(ξi
t+1)−

1
2
(∆ξi

t+1)
T JT

i Ji∆ξi
t+1

=
1
2
(∆ξi

t+1)
T
(

∆ri + λ∆ξi
t+1

)
.

(36)

Another parameter of concern is the number of iterations, which balances the accuracy and
efficiency of the iteration process. Commonly, this parameter is difficult to predetermine offline;
thus, several adaptive stopping criteria are applied in the proposed algorithm. First, the iteration
process should be terminated when the difference between two successive residuals is smaller than a
threshold ε1, which reflects the global minimum:
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‖∆ri+1 − ∆ri‖ < ε1. (37)

Another stopping criterion is related to the local minimum; i.e., the increment ∆ξi
t+1 is smaller

than the threshold ε2:
‖∆ξi

t+1‖ < ε2. (38)

Lastly, the maximum iterations kmax should be settled in the case of a dead loop.
With all notations and definitions above, the complete working flow of the adaptive iterative

update is summarized in Figure 5.

i
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Figure 5. A schematic diagram of the adaptive iterative update with the damping factor.

4. Results and Discussions

4.1. Simulation Scenario and Parameters

The simulation scenario is a final landing phase performed after the main break phase of the
powered descent, as shown in Figure 6. The landing trajectory was simulated for 210 s with an initial
position of [−9797, 0, 5530] m, an initial velocity of [85, 0, 0] m/s and an initial attitude of [0,−15, 0] in
degrees. Figure 7 presents the profile of the specific force and angular rate in detail. Ten beacons were
deployed uniformly along both sides of the ground track in the simulation, and their true locations are
listed in Table 1. An initial position error of 200 m was added to their true positions to simulate the
prior rough locations obtained by rovers.

With respect to the navigation filter, the number of measurements K in the beacon initialization in
Equation (5) was chosen to be 50. The attitude was propagated based on raw gyroscope measurements
and periodically calibrated by the star tracker independently with a residual around 9.1” [4]. The residuals
of the initial position and velocity were set to 300 m and 30 m/s, respectively. The 1σ parameters of IMU,
the laser altimeters and ground beacons are listed in Table 2, and their update frequencies are, respectively,
settled to 200 Hz, 100 Hz, and 20 Hz.

(a)

East(km)

10 8 6 4 2 0 2
North

(km
)

2.01.51.00.50.00.51.01.52.0

Up
(k

m
)

0
1
2
3
4
5

3D Trajectory
Ground Track
Start Point
Landing Site
Beacons

(b)

Figure 6. Illustration of the simulation scenario with 10 radio beacons. (a) The simulation scenario
visualized in OpenGL, where the red flag with yellow edges denotes the desired landing site and
points in red and green, respectively, denote standby and working beacons. (b) The designed landing
trajectory in the L frame.
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Figure 7. Control profiles of the designed trajectory in the simulation scenarios: (a) Triaxial specific
force profile in the B frame. (b) Triaxial angular rate profile in the B frame.

Table 1. The true locations of all ground beacons.

Beacon ID Locations in L (m) Beacon ID Locations in L (m)

1 [−10, 467.97,−1353.06, 0] 2 [−7647.32, 1719.73, 0]
3 [−7245.89,−1587.17, 0] 4 [−5465.18, 2107.20, 0]
5 [−5149.39,−3005.92, 0] 6 [−2578.25, 2027.77, 0]
7 [−2145.57,−876.16, 0] 8 [−421.43, 2305.71, 0]
9 [676.64,−2427.07, 0] 10 [1649.64, 1817.82, 0]

Table 2. Sensor parameters (1σ).

Parameter Value Parameter Value

Accelerometer bias level 0.29 mg Gyro bias level 4.86× 10−4 rad/s
Accelerometer random walk 8.97× 10−2 mg/

√
Hz Gyro random walk 2.22× 10−5 rad/(s·

√
Hz)

Accelerometer white noise 2.14× 10−3 mg/(s·
√

Hz) Gyro white noise 4.98× 10−6 rad/(s2·
√

Hz)
Beacon range noise 10 m Altimeter range noise 0.5 m

Other parameters of the localization filter—i.e., the initial covariance matrix P0, the process noise
covariance matrices Qt and the measurement noise covariance matrices Rt+1—are given as follows:

P0 = diag
[
1× 104, 1× 104, 1× 104, 1× 102, 1× 102, 1× 102, 1× 104, · · · , 1× 104

]
(n+6)×(n+6)

(39)

Qk = diag [0.5, 0.1, 5, 0.005, 0.0001, 0.001]6×6 (40)

Rk+1 = diag
[
1× 104, · · · , 1× 104, 25

]
(n+1)×(n+1)

(41)

where n is the number of available beacons.
The simulation system was implemented in C++ using the Robot Operating System (ROS) on a

laptop with an Intel CoreTMi7-4790 @ 3.68 GHz and 8 GB RAM. Each sensor runs an independent ROS
node to simulate the real interactions.

4.2. Simulation Results and Analyses

The estimation errors of the navigation state obtained by the proposed AISEHF-based distributed
localization scheme are shown in Figure 8. It can be seen from the results that the residuals converged
into the 1σ uncertainty bound rapidly both in the triaxial position and velocity estimations with steady
values less than 50 m and 5 m/s, which meet the demands of pinpoint landing.
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Figure 8. Estimation errors from the proposed tightly-coupled navigation scheme. (a) Triaxial position
errors with 3σ uncertainty bound. (b) Triaxial velocity errors with the 3σ uncertainty bound.

Figure 9a presents the performance of the proposed method in the mapping of all ground beacons.
Due to the initialization procedure, almost all beacon location errors converged within 50 s, and the
average error was 32.41 m. From Figure 9b, there appears to be an offset between the estimated value
and the true value both in the beacon locations and the ground track. This appearance is induced by the
fact that there is neither an accurate initial position of the lander nor for ground beacons, which means
that their absolute locations are not observable.
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Figure 9. Performance of the proposed scheme in the mapping of the beacon configuration.
(a) Residuals of all estimated beacon locations. (b) The beacon map and ground track before and
after the estimation.

Then, the proposed scheme (Scheme 3) was further compared with another two schemes with
the same sensor configurations: (a) the SEIF-based scheme proposed in [37] without inter-beacon
measurements (Scheme 1) and (b) the ISEIF scheme proposed in [34] (Scheme 2). The performance
of all three schemes was evaluated in 100 independent Monte Carlo runs. In each of the 100 runs,
all random seeds (e.g., beacon locations and sensor noise) were changed randomly, while all parameters
of estimator were kept unchanged. Two indicators—root-mean-square errors (RMSEs) and averaged
RMSEs (ARMSEs), which are defined in Equation (42)—were adopted to acquire a fair result.

εRMSE(t) =

√√√√ 1
K

K

∑
i=1

(
x̃i

t − xi
t
)T (x̃i

t − xi
t
)

n
, x ∈ Rn

εARMSE =
1
T

T

∑
t=0

εRMSE(t)

(42)
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where K is the number of Monte Carlo runs and T is the total time from the convergence to the end.
x̃i

t and xi
t, respectively, denote the estimated and true state at time t in the ith run.

Figure 10 gives the position RMSEs and the average computational cost of the three schemes
mentioned above from 100 independent Monte Carlo runs. The improvement of Scheme 3 in the
position estimation was 4.55% w.r.t. Scheme 2 and 8.11% w.r.t. Scheme 3. The velocity RMSEs are not
given here due to the fact that the iteration algorithm mainly focused on addressing the linearization
error caused by the linear approximation of the measurement function, and it can be seen from
Equations (12) and (13) that triaxial velocities make no contribution to the measurement function in
this case.

The computational cost of Scheme 3 was 3.64% more w.r.t. Scheme 1 and 18.96% less w.r.t. Scheme 2.
The performance of the three schemes is summarized in Table 3, indicating that Scheme 3 results in a
good trade-off between position estimation accuracy and computational efficiency.
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Figure 10. Performance analyses of different localization schemes from 100 independent Monte Carlo
runs. (a) Root-mean-square errors (RMSEs) in the position estimation. (b) Averaged computational cost.

Table 3. The performance of different algorithms.

Algorithm Position averaged RMSE (ARMSE) (m) Velocity ARMSE (m/s) CPU times (ms)

Scheme1 29.71 2.69 20.26
Scheme2 28.60 2.75 26.06
Scheme3 27.30 2.68 20.93

The influence of the beacon number n is given in Figure 11. From the results, the position
ARMSE continued to decrease when n was lower than 10 and increased to a large error in the order of
kilometers, while the computational cost continued to increase with n. We defined an indicator call
cost–ARMSE percentage, which was equal to 100/(Cost ∗ ARMSE) to further illustrate the results and
indicated that n = 10 was the most suitable configuration in our case.

Figure 12 gives the comparison of the proposed scheme under different initial location errors.
We can infer from the results that the batch-least-square trilateration initialization algorithm achieved
a consistent residual (around 40 m) regardless of the beacon initial location error in our application,
which also led to a good robustness of the proposed localization scheme to the beacon initial noise.
Extensive results with the initialization procedure disabled are further illustrated, which further prove
the conclusion.
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Figure 11. Comparison of the position estimation accuracy from different numbers of beacons.
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Figure 12. Comparison of the position estimation accuracy from different numbers of beacons.

Finally, another 100 independent Monte Carlo runs were performed to evaluate the final drops of
the proposed method, and the results are plotted in Figure 13, showing a circular error probable (CEP)
of 37.52 m and a mean value of [35.66 m, −12.17 m]. Another interesting point is that the distribution
of the final drops in the north (11.60 m) was much larger than that in the east (1.58 m). One possible
reason for this phenomenon may lie in the geometrical configuration of all ground beacons, which has
a significant effect on the observability of the whole system.
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Figure 13. The circular error probable (CEP) of the proposed method from 100 independent Monte
Carlo runs.
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5. Conclusions

In this article, a distributed localization scheme was proposed to handle the situation of having no
accurate prior knowledge regarding the beacon configuration in lunar pinpoint landing. This scheme
integrated onboard IMU/altimeter measurements together with lander-beacon range measurements
within a SEIF-based framework. The prediction and update stages of SEIF were replaced by a
hybrid-form propagation and a damping iteration algorithm, respectively, which led to the so-called
AISEHF. The simulation results indicated that the proposed scheme could satisfy the navigation
demands of lunar pinpoint landing and showed a robustness to uncertain initial beacon locations.
The Monte Carlo simulation indicated that our scheme makes a good trade-off between estimation
accuracy and computational efficiency compared with the existing algorithms.

Although the research in this paper has proved to be significant, there are still some questions that
require further investigation, such as the augmentation of the current range-only measurements with
the range-rate and the optimization of the geometrical pattern of all ground beacons. Several realistic
problems, such as transmission loss and glint noise, should be taken into consideration and verified by
experiments. Our work will be expanded to include these issues in the future.
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Appendix A. Adaptive Iterated Update Algorithm

The detailed matrix form of Ji is given as

Ji =
∂ f (ξt+1)

∂ξt+1

∣∣∣∣
ξi

t+1

= −C
[

HT
i , I
]T

. (A1)

Substituting Equation (A1) into Equation (30) leads to

ξi+1
t+1 = ξi

t+1 +
(

HT
i R−1Hi + Λ̂t+1 + λI

)−1 [
HT

i , I
] [R−1 0

0 Σ̂−1
t+1

] [
zt+1 − h(ξi

t+1)

µ̂t+1 − ξi
t+1

]

=
(

HT
i R−1Hi + S

)−1 [
HT

i R−1
(

zt+1 − h(ξi
t+1) + Hiξ

i
t+1

)
+ Σ̂−1

t+1µ̂t+1

] (A2)

where S = Λ̂t+1 + λI. Expanding the above equation with the matrix inversion lemmas given in [33],
we can achieve

Ki =
(

HT
i R−1Hi + S

)−1
HT

i R−1

ξi+1
t+1 = K

(
zt+1 − h(ξi

t+1) + Hiξ
i
t+1

)
+
(

HT
i R−1Hi + S

)−1
Σ̂−1

t+1µ̂t+1

= Γt+1µ̂t+1 + Ki
[
zt+1 − h(ξi

t+1)− H
(

Γt+1µ̂t+1 − ξi
t+1

)]
Γt+1 =

Λ̂t+1

λ

[
I −

(
I + λΛ̂t+1

)−1 Λ̂t+1

λ

]
Λi

t+1 = HT
i R−1Hi + Λ̂t+1.

(A3)
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