Optimization of Ring Laser Gyroscope Bias Compensation Algorithm in Variable Temperature Environment
Abstract
:1. Introduction
2. Formation Mechanism of RLG Bias Temperature Drift Error
3. RLG Temperature Compensation Model and Algorithm
3.1. Determination of Segments
3.2. Overlap
3.3. Multi-Segment Continuous Least Squares
4. Temperature Experiment and Results Analysis
4.1. Temperature Test System
4.2. Overlap Analysis
4.3. Static Temperature Compensation Model and Results Analysis
4.4. Composite Temperature Compensation Model and Results Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, B.L.; Li, S.Z. Laser Gyro; National University of Defense Technology Press: Changsha, China, 1984; pp. 2–139. [Google Scholar]
- Chow, W.W.; Gea-Banacloche, J.; Pedrotti, L.M.; Sanders, V.E.; Schleich, W.; Scully, M.O. The ring laser gyro. Rev. Mod. Phys. 1985, 57, 61–102. [Google Scholar] [CrossRef]
- Yan, G.M.; Weng, J. Strapdown Inertial Navigation Algorithm and Integrated Navigation Principle; Northwestern Polytechnical University Press: Shaanxi, China, 2019; pp. 1–36. [Google Scholar]
- Ren, S.C. Principles of Practical Inertial Navigation System; Aerospace Publishing: Camberley, UK, 1988; pp. 145–161. [Google Scholar]
- Hong, W.S.; Lee, K.S.; Paik, B.S.; Han, J.Y.; Son, S.H. The compensation method for thermal bias of ring laser gyro. In Proceedings of the LEOS 2008–21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Acapulco, Mexico, 9–13 November 2008; pp. 723–724. [Google Scholar]
- Zhang, P.F.; Wang, Y.; Tang, J.X.; Yu, X.D. Research on methods for compensating temperature of mechanically dithered RLG. J. Ordnance Eng. 2010, 31, 562–566. [Google Scholar]
- Zhang, P.F.; Long, X.W. Temperature compensation of machine bias laser gyro based on RBF neural network. J. Laser Sci. 2007, 28, 60–62. [Google Scholar]
- Zhao, X.N.; Li, X.; Lei, B.Q. Temperature compensation for ring laser gyro. J. Chin. Inert. Technol. 2004, 12, 55–57. [Google Scholar]
- Ouyang, Y.G.; Chen, X.; Yang, J.Q. Research on Laser Inertial Temperature Compensation Based on Stepwise Regression Analysis. Opt. Optoelectron. Technol. 2014, 12, 60–63. [Google Scholar]
- Ge, W.T.; Chen, M.G.; Lin, Y.R.; Deng, Z.L. Dynamic modeling and compensation technique for temperature error of three-axis laser gyro. Opt. Precis. Eng. 2007, 15, 1509. [Google Scholar]
- Tao, Y.M.; Tang, B.S.; Lei, X.L.; Lu, Y.M.; Wang, M.J. A new laser strapdown inertial navigation system temperature compensation method. Navig. Control 2017, 16. [Google Scholar]
- He, X.L.; Tao, Y.B. Zero-bias compensation method for multi-temperature point of prismatic laser gyro. Electron. Sci. Technol. 2017, 30, 138–141. [Google Scholar]
- Li, G.; Zhang, P.; Wei, G.; Yu, X.; Xie, Y.; Long, X. Ring laser gyroscope drift-error compensation using support vector machine with Kernel-based data fusion. In Proceedings of the IEEE 2015 2nd International Conference on Opto-Electronics and Applied Optics (IEM OPTRONIX), Vancouver, BC, Canada, 15–17 October 2015; pp. 1–4. [Google Scholar]
- Li, G.; Wang, F.; Xiao, G.; Wei, G.; Zhang, P.; Long, X. Temperature compensation method using readout signals of ring laser gyroscope. Opt. Express 2015, 23, 13320–13332. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Li, G.; Wu, Y.; Long, X. Application of Least Squares-Support Vector Machine in system-level temperature compensation of ring laser gyroscope. Measurement 2011, 44, 1898–1903. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, J.; Huang, W.; Chen, S. Laser Gyro Temperature Compensation Using Modified RBFNN. Sensors 2014, 14, 18711–18727. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.C.; Fang, J.C. Comparison of compensation methods on RLG temperature error and their application in POS. In Proceedings of the 2012 8th IEEE International Symposium on Instrumentation and Control Technology (ISICT) Proceedings, London, UK, 11–13 July 2012; pp. 189–194. [Google Scholar]
- Wang, Q.; Niu, Z. Identification method of laser gyro error model under changing physical field. In AIP Conference Proceedings; AIP Publishing: Brooklyn, NY, USA, 2018; Volume 1955, p. 040179. [Google Scholar]
- Tao, Y.; Li, S.; Zheng, J.; Wu, F.; Fu, Q. High Precision Compensation for a Total Reflection Prism Laser Gyro Bias in Consideration of High Frequency Oscillator Voltage. Sensors 2019, 19, 2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IEEE STD 647-2006. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros; IEEE: Piscataway Township, NJ, USA, 2006. [Google Scholar]
- Li, W.; Zhang, P.F.; Long, X.W. Compensation analysis of laser gyro zero offset error composite signal. J. Natl. Univ. Def. Technol. 2016, 38, 163–167. [Google Scholar]
- Chatfield, A.B. Fundamentals of High Accuracy Inertial Navigation; American Institude of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 1997. [Google Scholar]
- Titterton, D.H.; Weston, J.L. Strapdown Inertial Navigation Technology. Aerosp. Electron. Syst. Mag. IEEE 2004, 20, 33–34. [Google Scholar] [CrossRef]
- Jiang, Y.N. Ring Laser Gyro; Tsinghua University Press: Beijing, China, 1985; pp. 77–106. [Google Scholar]
- Liu, J.N.; Jiang, J.; Shi, S. Analysis of the combined light output and gyro accuracy of a total reflection prism ring laser. Chin. J. Laser 2013, 40, 30–35. [Google Scholar]
- Pan, X.F.; Yang, J.; Wu, M.P. Laser gyro zero offset compensation method in complex temperature change environment. Chin. J. Inert. Technol. 2011, 19, 234–238. [Google Scholar]
- Lü, Y.H. Random Error Analysis of Ring Laser Gyro. Sens. Technol. 2004, 23, 40–43. [Google Scholar]
- Wu, G.Y.; Gu, Q.T.; Zheng, X.; Tian, H.F.; Bai, C.C. Temperature model of ring laser gyro. J. Tsinghua Univ. Natl. Sci. Ed. 2003, 43, 180–183. [Google Scholar]
- Xiong, Z.; Liu, J.Y.; Lin, X.Y. Inertial Instrument Error Compensation Technology in Laser Gyro Strapdown Inertial Navigation System. J. Shanghai Jiaotong Univ. 2003, 37, 1795–1799. [Google Scholar]
Uncompensated | Compensated | Compensated (Overlap) | |
---|---|---|---|
X-axis | 0.0233 | 0.0174 | 0.0173 |
Y-axis | 0.0280 | 0.0190 | 0.0189 |
Z-axis | 0.0335 | 0.0086 | 0.0071 |
Temperature Segment (k) | Model Parameters | |||
---|---|---|---|---|
(×10−5) | ||||
X-axis | 1/(−15–15 °C) | 0.0173 | −0.0014 | 1.7535 |
2/(5–35 °C) | 0.0064 | 0.0004 | −4.2567 | |
3/(25–60 °C) | −0.0551 | 0.0026 | −3.302 | |
4/(50–80 °C) | 0.3390 | −0.0118 | 9.6146 | |
Y-axis | 1/(−15–15 °C) | 0.0184 | −0.0014 | −3.1281 |
2/(5–35 °C) | 0.0187 | −0.0010 | 1.3435 | |
3/(25–60 °C) | 0.0884 | −0.0040 | 4.1885 | |
4/(50–80 °C) | 0.1204 | −0.0033 | 1.5919 | |
Z-axis | 1/(−15–15 °C) | 0.0167 | 0.0004 | −2.0700 |
2/(5–35 °C) | 0.0036 | −0.0009 | 3.9374 | |
3/(25–60 °C) | 0.0635 | −0.0042 | 6.5480 | |
4/(50–80 °C) | −0.0974 | 0.0032 | −2.7658 |
Uncompensated | Static Compensation | Composite Compensation | |
---|---|---|---|
X-axis | 0.0533 | 0.0512 | 0.0187 |
Y-axis | 0.0229 | 0.0232 | 0.0193 |
Z-axis | 0.0471 | 0.0467 | 0.0454 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, J.; Bian, X.; Kou, K.; Lian, T. Optimization of Ring Laser Gyroscope Bias Compensation Algorithm in Variable Temperature Environment. Sensors 2020, 20, 377. https://doi.org/10.3390/s20020377
Weng J, Bian X, Kou K, Lian T. Optimization of Ring Laser Gyroscope Bias Compensation Algorithm in Variable Temperature Environment. Sensors. 2020; 20(2):377. https://doi.org/10.3390/s20020377
Chicago/Turabian StyleWeng, Jun, Xiaoyun Bian, Ke Kou, and Tianhong Lian. 2020. "Optimization of Ring Laser Gyroscope Bias Compensation Algorithm in Variable Temperature Environment" Sensors 20, no. 2: 377. https://doi.org/10.3390/s20020377
APA StyleWeng, J., Bian, X., Kou, K., & Lian, T. (2020). Optimization of Ring Laser Gyroscope Bias Compensation Algorithm in Variable Temperature Environment. Sensors, 20(2), 377. https://doi.org/10.3390/s20020377