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Abstract: An a priori map is often unavailable for a mobile robot in a new environment. In a
large-scale environment, relying on manual guidance to construct an environment map will result in
a huge workload. Hence, an autonomous exploration algorithm is necessary for the mobile robot to
complete the exploration actively. This study proposes an autonomous exploration and mapping
method based on an incremental caching topology–grid hybrid map (TGHM). Such an algorithm can
accomplish the exploration task with high efficiency and high coverage of the established map. The
TGHM is a fusion of a topology map, containing the information gain and motion cost for exploration,
and a grid map, representing the established map for navigation and localization. At the beginning
of one exploration round, the method of candidate target point generation based on geometry rules
are applied to extract the candidates quickly. Then, a TGHM is established, and the information gain
is evaluated for each candidate topology node on it. Finally, the node with the best evaluation value
is selected as the next target point and the topology map is updated after each motion towards it as
the end of this round. Simulations and experiments were performed to benchmark the proposed
algorithm in robot autonomous exploration and map construction.

Keywords: LIDAR detection; space exploration; topology; simultaneous localization and mapping

1. Introduction

The studies of robotics cover a wide range of research directions. The applications of robot
localization, navigation, and path planning are founded on a well-established map of the operating
environment. In a large-scale unknown environment, exploration and map construction based on
human guidance is cumbersome. Therefore, a key issue in robot research is the study of how robots
can efficiently and reliably explore an unknown environment and construct the environment map.
Equipped with range sensors or visual sensors, a robot can carry out a systematic exploration without
knowledge of the layouts of its surroundings or the arrangement of the obstacles.

The state-of-the-art exploration methodologies aim to find solutions for one single robot or a
group of robots. While ensuring the integrity of the environment map, the efficiency of the strategy is
most considered in exploration tasks. Under the premise of applying the same path planning method,
proper strategies can avoid redundant movements carried out by unnecessarily generated target points
and thus dramatically reduce the traversable cost.

In order to achieve an efficient strategy for one single robot, this study proposes a robot automatic
exploration algorithm based on an incremental caching topology–grid hybrid map (TGHM). Such an
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algorithm is capable of establishing an unknown environment map with fewer target points and lower
time consumption. Geometry rules are used to generate candidate target points in the active area [1].
Then, each candidate target point is evaluated on the basis of the surrounding unknown area. Each
candidate target point that meets the evaluation criteria will be included in the topology map as a
candidate topology node. The evaluation criteria consider information gain and motion cost. The node
with the best evaluation value will be selected as the next target point. The topology map is updated
along with each action instantly. By using the topology–grid hybrid map, the exploration strategy is
well-organized and automatically fits the area under exploration.

The contributions of this study fall into the following perspectives:

1. A geometry rule-based method for selecting candidate target points in an active area is proposed.
The geometry rule is based on sensor information. This method can generate more candidate
target points than the forward simulation (FS)-based method and only considers the frontiers in
the active area for increasing computation efficiency.

2. The algorithm adopts TGHM to provide global planning for exploration strategies. The topology
map records all past target points and candidate target points that have not been visited. When
the mobile robot achieves the target position and starts the next exploration round, the criteria
value of each candidate target point is evaluated on the basis of the motion cost provided by the
topology map. Moreover, the information gain around each candidate target point provided by
the grid map is used to evaluate the value of each point. Finally, the candidate target point with
the best value will be selected as the next target point.

3. Simulations and experiments were performed to demonstrate the proposed method for
autonomous exploration. The results proved that such a method can effectively optimize
exploration efficiency. Moreover, a topology map can help prevent the mobile robot from
repeatedly exploring the previously explored areas, thereby largely reducing the exploration cost.
With the help of a grid map, navigation is executed on the optimal path.

This paper is organized as follows: Section 2 reviews the related work and previous studies of
robot exploration. Section 3 describes the framework of the proposed algorithm. Section 4 introduces
the method of selecting the candidate target by scanning the frontier. Section 5 presents the method of
evaluating candidate points along with the construction and update of the topology–grid hybrid map.
Section 6 provides detailed description and examples for the proposed exploration algorithm. Section 7
discusses the experiments conducted in both simulations and real-world environments to benchmark
the efficiency of the TGHM against state-of-the-art methods in robotics automatic exploration. Section 8
provides a conclusion and discusses future works.

2. Related Work

This section presents the related technology necessary for executing robot exploration and reviews
the previous works.

2.1. Related Technology

Simultaneous localization and mapping (SLAM) [2,3] is a common technology for exploring an
unknown environment. According to the sensors applied for sensing the surrounding environment
and the dimensions of the observation information, SLAM can be divided into 2D or 3D systems. The
2D-SLAM systems are equipped with range sensors like LIDARs or SONARs. Along with the odometer
data uploaded by the mobile platform, the systems are capable of estimating the robot position and
establishing 2D maps representing the structure and obstacle arrangement with probabilistic algorithms.

Map quality has a great influence on goal pose selection and path planning. Thus, an appropriate
algorithm must be selected to construct a map. A popular method is EKF SLAM, which applies the
extended Kalman filter to solve the nonlinear problems. However, the Gaussian noise assumption
limited its performance in dealing with uncertainty [4]. KartoSLAM [5], based on graph optimization



Sensors 2020, 20, 490 3 of 20

has advantages in a small environment. Stachniss et al. [6] studied myopic exploration in RBPF
SLAM [7] by discretizing the action space to a set of possible waypoints and evaluating the approximate
expected information gain when traveling to the waypoints by sampling. This work was later expanded
by considering the alternative measures of uncertainty of SLAM solution [8,9]. These approaches
have considered the exploration of new areas and the maintenance of the consistency of particle
filter [10] approximation.

In order to navigate a robot with less calculation load, a 2D grid map, or an occupancy grid map,
is often generated according to the established environment map for robot localization and navigation
purposes [11]. As a metric representation, it is a simplified but comprehensive description of the
environment in a defined coordinate [12]. In exploration tasks, the grid map refines the drivable area
for the path planning algorithms to generate an optimal path. It consists of three types of basic cells:

1. Occupied cells mark the area that is unreachable for the existence of obstacles or structural barriers.
2. Free cells mark the area that is explored and free for the robot to move.
3. Unknown cells mark the area that is unknown to the robot and contains information gain

for exploration.

The costmap [13], a form of occupancy grid, is such a configurable structure that provides the
robot information essential for navigation. Along with the robot data including size, footprint, safe
distance, orientation, and so on, the costmap can provide the robot with a simplified but effective map
to plan the optimal path.

Path planning can be applied by Dijkstra’s [14], A* [15], and D* algorithms [16]. Dijkstra’s algorithm
can derive the optimal solution of the shortest path, but it is inefficient because it traverses excessive
nodes [17]. A* algorithm is based on a depth-first search, and its calculation cost is considerably lower
than that of Dijkstra’s algorithm. D* algorithm is more suitable for dynamic networks than the other
two algorithms. In this paper, A* is selected as the local path planning algorithm while the proposed
TGHM algorithm is responsible for the global target point selection in exploration.

2.2. Previous Work on Exploration

The equipment required for accomplishing a robot exploration task is listed as the following [18]:

1. A mobile robot: It provides the odometer data and robotics characteristics necessary for
establishing the motion model.

2. A computing unit: It provides resources for the algorithm to run. CPU, RAM, clock frequency,
and other units should be considered to match the calculation requirement of the algorithm to
achieve better performance.

3. Sensors: They provide sensing data from the environment. LIDAT, SONAR, RGB-D, and STEREO
are widely applied in robotics research. The sensor precision, frequency, range, and other
characteristics can impact the exploration and mapping quality.

To explore an unknown environment, the robot must possess the ability to decide where to
navigate according to a specified strategy. A common exploration strategy is to obtain candidate goal
points at the frontier [19] and then evaluate these candidate goal points on the basis of the utility
function to select the optimal target point [20]. The reasonability and robustness of frontier detection
have a great influence on this strategy. The frontier region on the grid map is often recognized using
digital picture processing techniques [21,22]. However, the calculation of frontier detection and path
planning on the grid map will rapidly increase as the extension of the exploration area. Therefore, the
efficiency of mobile robot exploration will be significantly decreased. In addition, the frontier-based
method always selects the nearest candidate target point, which limits the performance of the target
point selection to a constrained area.

Freda [23] proposed a hybrid algorithm under the premise of frontier theory. This algorithm
randomly generates observation poses and directs sense poses toward the unexplored environment.
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Oriolo [24] presented a search strategy, namely, a sensor-based random tree. In this algorithm, the
next exploration node is a randomly selected boundary around the current node. Tae-Bum Kwon and
Jae-Bok Song introduced a thing-based topological exploration strategy [25] based on the real-time
construction of topological map nodes in the map. The robot determines whether or not to explore a
node by analyzing the sensor data.

Recently, a forward simulation (FS)-based autonomous exploration algorithm has been
proposed [26]. This method initially applies sequential Monte Carlo planning in order to generate
random potential paths and then computes their reward values. After several iterations, the one with
the highest reward value is chosen as the output. Several points through the path can be selected
as the local target for the mobile robot. The FS algorithm managed to achieve higher accuracy and
better stability than the utility function. However, this algorithm is time-consuming, especially for
iterative calculations, and the length of the simulated paths is often limited. These drawbacks lead to
low efficiency, especially in a large environment. In addition, the FS algorithm lacks a global strategy,
which causes the mobile robot to access the same area at various times repeatedly.

The abovementioned methods can realize the traversal of an unknown environment. However,
motion cost and path optimization are ignored when the next exploration point is determined. Thus,
exploration is not optimal or efficient. Ge et al. [27–30] used a hierarchical topology map to represent
the global environment information for improving the exploration efficiency of the robot. Moreover,
the environment exploration algorithm of simultaneous path planning and topology mapping is
realized. These methods avoid the frontier detection problem based on the grid map, but they generate
unnecessary calculations with target points in non-frontier regions. In addition, the navigation of the
mobile robot is based on the topology map, such that the path planning of the mobile robot is not the
optimal path, which increases exploration cost.

Aiming to increase the efficiency of the robot exploration, the proposed TGHM algorithm applies
a geometry-rules based method to avoid the computationally expensive potential paths selection in
the first place. Then the global exploration strategy is well organized by an incrementally updated
topology map to generate the optimal target point for each exploration stage. The information gain and
motion cost are taken as the criteria for target point selection, ensuring the balance between coverage
and efficiency of the exploration.

To evaluate a map established by the exploration algorithm, the most common way is to calculate
the difference between the output map and the ground truth map [31]. Thus, the completeness,
or coverage rate, of the built map is a major metric for exploration [18]. For efficiency, the time
consumption to complete an exploration task is regarded as another metric [32]. In addition, the
number of target points in exploration and the traveled path length of the robot are also considered as
metrics in this paper.

3. Algorithm Framework

As shown in Figure 1, the framework of the proposed TGHM algorithm consists of two levels:

1. The bottom level is where the robot collects sensor data, including the LIDAR scan data and robot
odometer information for grid map establishment and information gain calculation. Once the
bottom level achieves the outputted target point location from the upper level, it executes the
motion to reach the target point generated by the exploration algorithm.

2. The upper level contains four processes to carry out the automatic exploration, including
environment frontier scanning, new candidate target points generation, topology–grid hybrid
map update, and next target point selection.

In more detail, the button level applies the GMapping algorithm to perform SLAM [33]. This layer
computes the pose of the robot and creates the occupancy grid map on the basis of the rangefinder and
odometer data. For each round of automatic exploration, the upper level executes five specific steps to
decide the next target point:
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1. The environment frontiers are detected in the active exploration area, and candidate target points
are generated on the basis of environment geometry rules.

2. These newly generated candidate target points are added to the topology map as candidate
topology nodes.

3. The candidate topology node that does not meet the requirements will be removed.
4. Each candidate topology node is evaluated and sorted on the basis of information gain and

motion cost.
5. The candidate topology node with the highest value will be chosen as the next target point, and

the node will turn into a topology node.

Once the next target point is determined, the motion control module is responsible for planning
the path and move the robot towards it.
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Figure 1. Topology–grid hybrid map (TGHM) algorithm framework.

Below are the corresponding definitions of the terms used in this study.

• Candidate target point: A point generated on the basis of environment geometry rules.
• Candidate topology node: A node transformed from the qualified candidate target point.
• Topology node: A node transformed from the visited candidate topology node.
• Next target point: The target point for exploration in the next robot action.

4. Geometry Rules for Candidate Target Point Generation

The candidate target point is generated on the basis of the environment frontier. The area within
the sensor’s scan range can be regarded as the active exploration area. The environment frontiers of
the active area consist of two types in this work as shown in Figure 2. R indicates the location of the
robot and sensor. The ray of the sensor is represented as the dotted arrow. The environment frontier
recognized on the basis of sensor data is marked as the solid line.
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Frontier type I is at the top range of the sensor. This recognition rule of frontier type I is as follows:

li,i+1,...,i+n = lmax, (1)

where li,i+1,...,i+n represents a continuous measurement signal from li to li+n and lmax is the measurement
limit. Equation (1) shows that frontier type I is generated at the limit of the sensor’s measurement. n
must be sufficiently large to ensure that the mobile robot could pass the frontier safely. Thus, n can be
calculated from √

l2i + l2i+n − 2li li+ncosα > Dr + ∆d, (2)

n >
1

∆α
cos−1

l2i + l2i+n − (Dr + ∆d)2

2li li+n
, (3)

where li, li+n are the distance measurement signals and represent the right and left ends of the
continuous measurement signals, respectively. α is the angle of the two signals (li, li+n) of the robot.
Dr is the maximum diameter of the robot. The relationship between α and n can be expressed by
α = n ∗∆α. ∆α is the resolution of the signal. ∆d is a safe distance. Notably, α is greater than 0 and less
than π. If α is greater than π, then Equation (2) is surely satisfied.

Frontier type II in Figure 2b is recognized on the basis of the adjacent signals with large differences,
as shown in the following formula: ∣∣∣l j+1 − l j

∣∣∣∗ cosθ > Dr, (4)

where θ is the angle between the direction of l j and the orientation of the robot. In addition, the
generated candidate target point based on frontier type II must be reached safely by the robot, as follows:

d = 2l jsin
β

2
= Dr + ∆d (5)

l j+1, j+2,..., j+m > h + ∆d (6)

where β = m·∆α, l j+1, j+2,..., j+m represents a continuous distance signal from l j+1 to l j+m, and h is the
Euclidean distance between the candidate target point and the robot current location.
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The candidate target points are generated at the center of the front edge of the frontier, and the
distance between the frontier and candidate target point is a, where a is a safe distance slightly larger
than the maximum radius of the robot.

5. Topology–Grid Hybrid Map (TGHM)

In the grid map as shown in Figure 3, each grid can fall into one of three classes referring to the
related work definition:

1. Open grid: No obstacles.
2. Occupied grid: Obstacles in this grid.
3. Unknown grid: No information in this grid for the robot.

TGHM is the core of the proposed algorithm and is used as follows:

1. The newly generated candidate target points are added to the topology map as candidate topology
nodes. When the topology map is updated, each candidate performs a grid traversal within a
certain range to calculate the information gain around it. This information gain is used to evaluate
the exploration value of the candidate topology node.

2. The topology map records each visited and unvisited nodes. The topological distance between
any two topology nodes can be quickly calculated on the basis of the topology map.

The topology node can be represented as

T = {Parents, Children}, (7)

where Parents and Children are the parent and children nodes of the topology node, respectively. The
candidate topology node only has a parent node, which is defined as

Tc = {Parents, Pose,V}, (8)

where Pose is the robot’s pose at this node if Tc is selected as the next target point. V is the value of
the utility function explored at the position. The utility function is defined as follows:

V = F(T) = Nunknown · exp(−λL(T)), (9)

where λ is a positive constant and L(T) is the topology distance between the target node T and
the current node. The information gain can be calculated on the basis of the number of unknown
grids, represented by Nunknown. The candidate topology node with maximalV is selected as the next
target point.

Constant λ is used to weigh the motion cost against the expected information gain. A small λ
means that the motion is “cheap” and prioritizes the information gain. When λ → ∞ , the motion
becomes too expensive that only locations near T are selected. Hence, a small λ leads the robot to
perform a quick exploration of the environment before filling in the details. By contrast, a large λ leads
the robot to fill in the details consistently while advancing in the environment.

5.1. Evaluating Candidate Topology Node on the Grid Map

Exploration based on FastSLAM [34] generally uses occupancy grid maps to show the environment.
After the occupancy grid map is constructed, the grid can be divided into three categories, namely,
occupied, open, and unknown grids, as shown in Figure 3a. The shadow grid represents the unknown
grid, the blank grid represents the open grid, and the mesh shadow grid represents the candidate
topology node. The circular dotted line indicates the approximate range of traversal.

The information gain at a candidate topology node can be expressed by the number of surrounding
unknown grids. To calculate the number of unknown grids, the grids are traversed on the basis of
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the breath-first traversal. The number of traversal grids represented by N is limited by the size of the
traversal range. The size of the grid traversal range should be based on the actual situation. To calculate
the value of N, the traversal area is defined as a circular area with the radius of sensor measurement
distance. The value of N can be limited as follows:

N =
πr2

∆d2 , (10)

where ∆d is the grid map resolution. The occupied grids are not traversed.
When obstacles exit in the traversal range, its shape can be distorted, as shown in Figure 3b,c. The

black grid represents obstacles that block the traverse; thus, the unreachable area will not be counted
in the information gain.
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5.2. Establishing and Updating the Topology Map

Each candidate topology node that does not meet the requirement will be deleted from the
topology map. The requirement is that when traversing around each candidate target point, the
number of recorded unknown grids (Nunknown) must be larger than a fixed value (N0). The calculation
is shown in the following formula, where k represents the serial number of candidate target points:

Nk
unknown > N0. (11)

The fixed value is adjusted in accordance with the quality requirements of the map. When the
quality requirement is high, the fixed value is small. High quality means that the number of unknown
grids on the grid map is low when the exploration is accomplished.

Figure 4 shows the establishment of the candidate topology node. The blank and shaded areas are
the freedom and unknown areas, respectively. R is the robot’s current position. In Figure 4a, three
candidate target points generated by the geometric rule are represented by 1, 2, and 3, and these points
are included in the topology map as candidate topology nodes. The line is the connection line of the
topology map. Then, the update of the topology map is started. The circular dotted line represents the
traversing range. The information gains, N1, 2, 3

unknown calculated by Equation (10), were evaluated to filter
the redundant candidate topology node by Equation (9). Assuming that point 1 is unqualified and
deleted due to the low value of N1

unknown, only points 2 and 3 with information gains higher than N0

are inserted into the topology map as candidate topology nodes, as shown in Figure 4b.
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Figure 4. Establishing the candidate topology node: (a) generation of candidate topology nodes;
(b) update of the topology map.

When the exploration starts for a while, a small topology map can be generated, as shown in
Figure 5. Each target point that has been visited will be used as a topology node (I, II, III). These nodes
are connected by thick solid lines. Candidate topology nodes are connected by thin solid lines.
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Figure 5. Updating the information gain of the topology map.

When one target point is visited, the information gain of each candidate topology node will be
updated. If Nunknown < N0, then a corresponding candidate topology node will be excluded. Under
the guidance of this global planning, the mobile robot can quickly determine the next unknown area,
thereby greatly reducing repeated exploration and increasing efficiency. When no candidate topology
nodes are found, the exploration is over.

6. Exploration Based on TGHM Algorithm

Figure 6 presents the modular structure of the proposed exploration algorithm. The function
modules are represented by rounded rectangle boxes. SLAM-GMapping [33] is a modular application
of the laser SLAM algorithm. The GMapping ROS [35] node contains coordinate transformations,
robot pose optimization, and grid map updates. Among them, the coordinate conversion involves
the odometer, sensor, and robot coordinate systems. The TGHM node receives data from the sensor,
each coordinate, and a grid map. On the basis of the sensor scan, the candidate target points are
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generated and converted into candidate topology nodes. The candidate topology nodes are evaluated
in accordance with the grid and topology maps to select the optimal target point. The speed control
command is the output via Move_base [36] that directs the mobile robot to the target point.
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Algorithm 1 describes the whole process of the proposed algorithm.

Algorithm 1: TGHM Exploration Algorithm

Input: Laser data X generated by LIDAR; Odometer data O generated by the mobile robot;
Process:
1: Initialize the topology node set Tt with the origin position P0: T0 = {P0};
2: Initialize the grid map M according to X and O and the topology map T according to T0;
3: Initialize the candidate target point set C0, the candidate topology node set N0: C0, N0 = ∅;
4: Initialize t as the round number of the exploration: t = 1;
5: repeat
6: Update Ct with candidate target points generated by geometry rules;
7: if Ct , ∅

8: Update Nt with filtered candidate target points meet from Ct:Nt = Nt−1 ∪ Ct;

9:
Filter the candidate topology nodes according to Equations (10) and (11):

Nt = Nt\{Nt}unqualified;
10: else
11: Nt = Nt−1;
12: end if
13: if Nt , ∅

14: Choose the node with the highest value from Nt by Equation (9) as the next target point Pt;
15: else
16: The exploration finishes: return M and T;
17: end if
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18: Motivate the robot towards Pt and update M according to Xt and Ot;
19: Turn Pt into a topology node and update Tt accordingly: Tt = Tt−1 ∪ {Pt}, Nt = Nt\{Pt};
20: Update the topology map T with Tt;
21: t = t + 1;
22: until return called
Output: The established map M and the topology map T;

The following parts of this section discuss the two main parts of the proposed TGHM algorithm
with example experiments to indicate the detailed processes.

6.1. Extracting Candidate Target Points

To verify the validity of generating candidate target points on the basis of geometry rules, an
example experiment is shown in Figure 7. R is the pose of the robot. The red lines in Figure 7a and red
frontiers in Figure 7b are the laser ray and laser scanned boundary, respectively. Several obstacles are
set on the left side. One laser scan generates two candidate target points as represented by the green
point (I, II) and shown in Figure 7b. Points I and II are the points of frontier types I and II, respectively.
No candidate target point is in area III because this area is not passable and the laser range distance in
this direction does not satisfy Equations (5) and (6). As a result, points I and II are fed to the TGHM
algorithm as candidate topology nodes after filtering according to Equations (10) and (11).
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6.2. Building and Updating the Topology Map

To verify the validity of the TGHM algorithm, this study designed a representative experiment to
demonstrate the exploration process on the basis of the TGHM algorithm. As shown in Figure 8, the
environment size is 10 × 8 m. The visited topology nodes are connected by edges in red and comprise
the explored parts of the topology map. The edges in blue connect the valuable candidate topology
nodes marked with numbers generated from previous rounds, and the candidate topology nodes
in green with edges are generated within the active area, around the current topology node where
the robot is. The black object in the figure represents the robot and its position, and the red arrow
represents the location and the orientation of the selected next target point in Figure 8II,III.
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Figure 8. Process of building the TGHM.

In Figure 8I, the robot is at the position X and executed two rounds of exploration. The nodes (1, 2,
4, and 8) are generated by the previous rounds with value to be reached afterward if no new candidate
target points are generated by the geometry rules. Four candidate topology nodes (3, 5, 6, and 7) are
generated currently and candidate topology node (7) with the highest value calculated from Equation
(9) is selected as the next target point. In Figure 8II, once the robot reaches the position Y corresponding
to the node (7) in (I), all the candidate topology nodes are updated. No new candidate nodes are
generated in (II) and the candidate topology nodes (5, 6, and 8) are deleted as their information gains
are relatively low. The nodes (1, 2, 3, and 4) are kept temporarily. Then, the TGHM algorithm selects
the node (3) with the highest utility value as the next target point. Subsequently, the node (4) is deleted
from the topology map and the node (2) is selected as the next point. As shown in Figure 8III, the robot
reaches the position Z corresponding to the node (2) and generated one new candidate target node (9).
The node (9) is selected as the next target point. Once the robot reaches the node (9), the node (1) is
deleted for its low updated value. Figure 8IV presents the TGHM after accomplishing the exploration
and the robot reaches the position E corresponding to the node (9). When no candidate topology nodes
are generated and all updated topology nodes are visited, the TGHM algorithm suspends the robot’s
action and announces the end of exploration.

7. Simulations and Experiments

The following simulations and experiments were performed to verify the advantages of the
proposed algorithm (TGHM) in the exploration. The simulated laser data operated in the range of
(−135◦, 135◦). The laser’s limit is 5.0 m and the scanning interval is 0.375◦. The samples of the laser ray
amount to 720. The real-world experiments were performed on a mobile robot with a LIDAR sensor.

7.1. Simulations

A series of simulations were conducted to confirm the advantages of the TGHM algorithm in
exploration efficiency. The simulation map is a 20 × 20 m map, as shown in Figure 9. Three algorithms
were used in the simulations, namely, TGHM, FS [26], and Naïve [19]. Each experiment for the three
algorithms was simulated 10 times to ensure reproducibility.
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Figure 9. Three types of algorithm for comparison experiment: (a) naïve algorithm; (b) forward 
simulation (FS) algorithm; (c) TGHM algorithm (ours); (d) line chart of exploration time consumption; 
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The simulated robot can turn on the spot and is controlled by applying linear and angular 
velocity. The maximum linear velocity is 1 m/s, and the maximum angular velocity is 1 rad/s. The 
robot was equipped with a laser range finder with a maximum range of 5.0 m and a scan range from 
−135° to 135°. 

Figure 9. Three types of algorithm for comparison experiment: (a) naïve algorithm; (b) forward
simulation (FS) algorithm; (c) TGHM algorithm (ours); (d) line chart of exploration time consumption;
(e) line chart of the coverage rate of the established map; (f) line chart of the traveled path length.

The simulated robot can turn on the spot and is controlled by applying linear and angular velocity.
The maximum linear velocity is 1 m/s, and the maximum angular velocity is 1 rad/s. The robot was
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equipped with a laser range finder with a maximum range of 5.0 m and a scan range from −135◦

to 135◦.
Figure 9 shows the trajectories obtained by the three algorithms. The square blocks are target

points generated during the movement. For the naïve algorithm, the target point is generated at 1 Hz.
The robot moves to the target point regardless if the last point has been reached. Therefore, many
target points are unvisited, as shown in Figure 9a. In Figure 9b, the FS algorithm takes relatively more
time for each calculation, which limits the distance of the simulation planner. In comparison with the
first two algorithms, the TGHM algorithm calculates the least target points, as shown in Figure 9c, and
its time spent in the lowest, as shown in Figure 9d. For the quality of the established map, all three
algorithms managed to achieve a high coverage rate in the simulation, as shown in Figure 9e. The
traveled path length data is also plotted in Figure 9f, which indicates the proposed TGHM algorithm is
able to finish the exploration within a relatively short path.

Table 1 shows the benchmark results from the simulation experiments, where columns 1 to
10 indicate the results from 10 simulations for each algorithm. Since all three algorithms are capable of
established the full environment map, the time consumption, the number of target points, the map
coverage rate, and the traveled path length are the main indicators. The time consumption directly
reflects the efficiency of the exploration algorithm and the number of target points related to the
amount of the calculation and the mean speed for the robot movement along with the traveled path
length. Once the environment map is established, the coverage of the map against the ground truth
influents the robot navigation performance.

Table 1. Units for magnetic properties.

Algorithm 1 2 3 4 5 6 7 8 9 10 Avg

TGHM

Time (min) 7.41 6.98 8.42 8.58 7.04 8.81 7.63 8.36 9.96 7.26 8.045

Target points 24 22 28 29 22 30 25 28 32 22 26

Coverage (%) 97.9 98.1 98.7 94.1 96.4 96.1 96.6 95.8 98.2 94.3 96.62

Travelled Path (m) 325 315 401 403 328 431 346 377 440 349 371.5

FS

Time (min) 43.5 36.0 37.0 34.8 39.5 36.4 32.4 36.4 32.4 44.2 38.25

Target points 159 132 135 127 145 133 119 162 152 136 140

Coverage (%) 95.9 94.2 92.2 95.8 93.8 92.9 95.4 94.5 96.2 92.6 94.35

Travel Path (m) 660 471 525 589 527 484 439 546 477 635 535.3

Naïve

Time (min) 22.9 24.2 19.7 25.7 15.7 18.4 27.4 20.4 30.2 19.2 22.41

Target points 162 178 153 188 122 149 193 150 215 150 165

Coverage (%) 92.2 92.6 91.9 94.4 92.3 93.4 93.9 92.5 94.7 93.3 93.12

Travelled Path (m) 617 638 536 669 490 526 614 550 625 517 578.2

The results from Table 1 show that the time cost of the TGHM algorithm and the average number
of target points are the lowest among the tested algorithms. The coverage rate among the benchmarked
algorithms is close. The main reason comes from the following aspects:

1. The generation of the candidate target points is based on the environment geometry rules. The
valuable candidate target points can be quickly obtained, avoiding iterative calculation. Thus, the
time consumption for each round of exploration is dramatically reduced.

2. The incremental caching TGHM is used to provide global planning for the entire exploration task.
The topology map is updated for each round and only keeps the valuable nodes necessary for the
coverage of the environment map.

3. The TGHM algorithm has the lowest number of target points compared with the other two
algorithms. As a result, the time consumption carried by the number of all target points is
decreased, which greatly improves exploration efficiency.
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4. The traveled path length is relatively low for the proposed TGHM algorithm because the less
amount of target points lead to better-planned robot motions with higher average speed and less
redundant movement under the slight difference in map coverage rate.

Figure 10 shows the autonomous exploration process of a robot based on the TGHM algorithm.
Thin red lines connect the visited topology nodes. Each candidate topology node is connected to their
parent topology nodes by edges in red for visited ones and in blue for unvisited ones. As previously
mentioned in Equation (10), the requirement of keeping topology nodes is that the information gain of
each candidate topology node must be larger than a fixed value. The black arrows indicate the position
and orientation of the current target node. Figure 10I,II show the robot and the map after rounds of
exploration when the mobile robot tends to move from node O to point A. After the grid and topology
maps are updated accordingly, topology node A is added, and other candidate topology nodes with
substandard information gain are deleted. Once the robot reaches the position of node A, the next
round begins and the new topology node B is selected as the next target point as before. In Figure 10III,
the mobile robot moves from point A to point B and does not generate any new candidate topology
node that has sufficient information gain, indicating that this active area is well explored. Considering
the topology path cost and information gain, candidate topology point C is selected as the next target
point. Figure 10IV shows the final effect of automatic exploration. The topology map can be helpful for
subsequent navigation.
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7.2. Experiments 

Experiments were further performed on a Turtlebot II robot platform [37] equipped with a URG-
04LX-UG01 [38] laser scanner (LIDAR), as shown in Figure 11. The laser scanner has a scanning range 
of 240° with 0.352° angular resolution and a detectable range from 20 to 5600 mm with a 1 mm 
resolution. Its measuring accuracy is +/−30 mm from 0.06 to 1 m and 3% of the detected distance from 
1 to 4 m. The scanner is connected to a computing unit and mounted horizontally on the top of the 
Turtlebot. 

Figure 10. Exploration process: (I) Map established after rounds of exploration; (II) Map after the robot
reached point A; (III) Map after the robot reached point B; (IV) Final map after the exploration; Point
A is a target point in (I) and a visited topology node in (II–IV); Point B is a target point in (II) and a
visited topology node in (III and IV); Point C is a candidate topology node in (I–III) and a visited
topology node in (IV); Point O is a visited topology node in (I–IV).

7.2. Experiments

Experiments were further performed on a Turtlebot II robot platform [37] equipped with a
URG-04LX-UG01 [38] laser scanner (LIDAR), as shown in Figure 11. The laser scanner has a scanning
range of 240◦ with 0.352◦ angular resolution and a detectable range from 20 to 5600 mm with a 1 mm
resolution. Its measuring accuracy is +/−30 mm from 0.06 to 1 m and 3% of the detected distance
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from 1 to 4 m. The scanner is connected to a computing unit and mounted horizontally on the top of
the Turtlebot.Sensors 2019, 19, x FOR PEER REVIEW 16 of 20 

 

 
(a) 

 
(b) 

Figure 11. Experiment apparatus: (a) Turtlebot; (b) URG-04LX-UG01 laser scanner. 

Figure 12 shows the school building of East China University of Science and Technology. The 
size of the environment is 6 × 12 m. The dotted area is the scope of exploration of the mobile robot. 
The task of the mobile robot is to build a map for navigation without artificial manipulation. The 
position indicated by the red arrow is the start position of the robot. Similarly, the exploration task 
was performed by using three algorithms (TGHM, FS, and Naïve).  

Start
Start

Exploration area
 

Figure 12. Experimental environment. 

Figure 13 shows the robot trajectory using three algorithms. The square points represent the 
target points generated by algorithms during the exploration. In Figure 13a, point P was generated 
as a candidate topology node in the first round when the robot started exploration at point S. When 
the mobile robot was at point O and the algorithm did not generate candidate topology nodes that 
met the requirements, point P became the next target point from the appending candidate topology 
node. When the robot reached point P, the exploration is finished and the topology map was updated, 
as shown in Figure 13b. Figure 13c shows the trajectory of robot exploration based on the FS 
algorithm. The result was similar to the simulation results. , except when the FS algorithm did not 
generate the target point in the FS process, the Naïve algorithm was called as a supplement. From 
point A to point B, from point B to point C, the Naïve algorithm was called in the FS algorithm due 
to having no target point generated by the FS algorithm. 

Figure 13d shows the trajectory of exploration based on the Naïve algorithm. The Naïve 
algorithm failed to explore the whole environment map, thus the robot traveled a relatively short 
path. The shadow in the figure indicates the part where the Naïve algorithm did not explore. But 
given the disorder of the generated target points and unreachable points, the time consumption was 
as high as FS.  

Figure 11. Experiment apparatus: (a) Turtlebot; (b) URG-04LX-UG01 laser scanner.

Figure 12 shows the school building of East China University of Science and Technology. The
size of the environment is 6× 12 m. The dotted area is the scope of exploration of the mobile robot.
The task of the mobile robot is to build a map for navigation without artificial manipulation. The
position indicated by the red arrow is the start position of the robot. Similarly, the exploration task was
performed by using three algorithms (TGHM, FS, and Naïve).
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Figure 12. Experimental environment.

Figure 13 shows the robot trajectory using three algorithms. The square points represent the
target points generated by algorithms during the exploration. In Figure 13a, point P was generated as
a candidate topology node in the first round when the robot started exploration at point S. When the
mobile robot was at point O and the algorithm did not generate candidate topology nodes that met
the requirements, point P became the next target point from the appending candidate topology node.
When the robot reached point P, the exploration is finished and the topology map was updated, as
shown in Figure 13b. Figure 13c shows the trajectory of robot exploration based on the FS algorithm.
The result was similar to the simulation results, except when the FS algorithm did not generate the
target point in the FS process, the Naïve algorithm was called as a supplement. From point A to point
B, from point B to point C, the Naïve algorithm was called in the FS algorithm due to having no target
point generated by the FS algorithm.

Figure 13d shows the trajectory of exploration based on the Naïve algorithm. The Naïve algorithm
failed to explore the whole environment map, thus the robot traveled a relatively short path. The
shadow in the figure indicates the part where the Naïve algorithm did not explore. But given the
disorder of the generated target points and unreachable points, the time consumption was as high
as FS.
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Table 2 demonstrates the results of the real-world experiments, where columns 1 to 3 correspond
to the three experiments for each algorithm. As shown in Table 2, the naïve algorithm only established
part of the environment map with a coverage rate of 74.87%. The proposed TGHM algorithm and the
benchmarked FS algorithm managed to achieve a high coverage rate with a small difference. However,
in terms of time consumption and the traveled path length, the TGHM algorithm demonstrated
higher efficiency. The geometry-rules candidate generation method and the topology–grid hybrid map
produced the low amount of target points, which lead to more efficient robot movements and a more
timesaving exploration.

Table 2. Exploration time of each algorithm.

Algorithm 1 2 3 Avg

TGHM

Time (min) 2.51 2.46 2.78 2.58

Target points 7 7 8 7

Coverage (%) 98.9 96.4 99.1 98.13

Travel Path (m) 72.39 67.78 77.52 72.53

FS

Time (min) 4.52 4.79 5.06 4.79

Target points 16 17 18 17

Coverage (%) 97.5 95.5 96.7 96.56

Travel Path (m) 103.05 88.44 112.25 101.25

Naïve

Time (min) 4.47 5.84 5.23 5.18

Target points 12 15 13 13

Coverage (%) 69.9 79.1 75.6 74.87

Travel Path (m) 53.79 72.62 66.52 64.31
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7.3. Discussion

In this section, we discuss the results of the simulations and experiments. Both simulations and
experiments indicated that the proposed algorithm with an incremental caching topology–grid hybrid
map (TGHM) achieved a more efficient exploration when maintaining the high coverage rate of the
established map. The geometry-rules method, as described in Section 4, accelerates the candidate
point generation first. Then the topology–grid hybrid map filters the redundant candidate point
and arranges the nodes in a manner of maximum information gain. The topology map updates and
removes the invaluable nodes in each round of exploration to keep the robot motion efficient.

Notice that the difference of traveled path length between the benchmarked algorithms is smaller
than the difference of exploration time. This is because the fewer target points generated according to
geometry rules lead to the faster movement of the robot with a limited upper speed.

8. Conclusions

This study proposes an algorithm based on an incremental caching TGHM to solve the robot’s
automatic exploration problem. In comparison to the FS and Naïve algorithms with low mapping
efficiency, the proposed TGHM algorithm selects the target point by considering information gain and
topology path cost. Thus, the total exploration time is greatly reduced. The mobile robots can then
explore the environment with enhanced stability and increased efficiency. The established map can be
efficiently traversed and the entire grid map can be generated.

The advantages of the proposed algorithm in exploration efficiency have been demonstrated
through simulations and experiments. Future work falls into the following two aspects. First, the
generation of candidate target points will be extended from two to three dimensions, which can help
mobile robots avoid many realistic restrictions. Second, the topology map will be further optimized.
For example, two near topology nodes can be combined into one. A further complicated structure will
be used to represent the topology map, wherein a loop can be formed.
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