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Abstract: As one of the core issues of autonomous vehicles, vehicle motion control directly affects
vehicle safety and user experience. Therefore, it is expected to design a simple, reliable, and robust
path following the controller that can handle complex situations. To deal with the longitudinal
motion control problem, a speed tracking controller based on sliding mode control with nonlinear
conditional integrator is proposed, and its stability is proved by the Lyapunov theory. Then, a linear
parameter varying model predictive control (LPV-MPC) based lateral controller is formulated that
the optimization problem is solved by CVXGEN. The nonlinear active disturbance rejection control
(ADRC) method is applied to the second lateral controller that is easy to be implemented and robust
to parametric uncertainties and disturbances, and the pure pursuit algorithm serves as a benchmark.
Simulation results in different scenarios demonstrate the effectiveness of the proposed control schemes,
and a comparison is made to highlight the advantages and drawbacks. It can be concluded that
the LPV-MPC has some trouble to handle uncertainties while the nonlinear ADRC performs slight
worse tracking but has strong robustness. With the parallel development of the control theory and
computing power, robust MPC may be the future direction.

Keywords: autonomous vehicles; path following; speed tracking; model predictive control; nonlinear
active disturbance rejection control

1. Introduction

Autonomous driving technology has become a research and development hotspot recently,
since it has great potential to improve active safety, alleviate traffic congestion, and reduce energy
consumption [1,2]. It was reported that the driver’s mistakes contribute entirely or partially to nearly
90% of road accidents [3]. The autonomous system is more reliable and faster to react than human
drivers, so it can handle critical scenarios that human drivers find challenging or lack the ability to
navigate, such as emergency obstacle avoidance [4]. On the other hand, under the perspective of
networked control, the platooning of autonomous vehicles provides an effective way to increase traffic
capacity and fuel efficiency [5]. Therefore, numerous contests of autonomous vehicles have been
carried out to promote technological development, such the DARPA (Defense Advanced Research
Projects Agency) Challenges in the USA [6] and the Intelligent Vehicle Future Challenges in China [7],
etc. Simultaneously, the research of autonomous vehicles is booming and highly competitive in the
industry. The Waymo and Cruise autonomous driving cars are typical commercial products that have
attracted wide attention [8].

The key technologies of autonomous vehicles consist of environment perception, decision making,
motion planning, and vehicle motion control, and the objective of vehicle motion control can be
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divided into path stabilization and trajectory stabilization [1]. The difference between them is that
the reference trajectory is independent of time in the path following problem, while the trajectory
tracking is related to time. In this paper, we focus on the path following issue of autonomous vehicles,
which manipulates steering wheel to guide the vehicle to track a desired path. The path can be
generated offline based on a priori or online through a high-level planning layer. The objective of
path following is to realize accurate and smooth tracking while the vehicle stability is guaranteed.
Besides, robustness is also a key issue in control design considering the high nonlinearity of the
vehicle dynamics and the parametric uncertainties and disturbances. Many algorithms have been
applied to deal with path following, including the pure pursuit method (PPM) [9], sliding mode
control (SMC) [10,11], and model predictive control (MPC) [12–14], etc. However, there are still some
challenges for practical real-time implementation although the previous research achievements were
successful to some extent. For instance, MPC controllers may suffer from heavy computational burden
due to online optimization, especially for the nonlinear MPC. Moreover, it is difficult to accurately
model the vehicle dynamics at the handling limits. On the other hand, make everything as simple
as possible is necessary for implementation in practice. Therefore, it is expected to design a simple,
reliable, and robust path tracking controller.

In this paper, we design, validate, and compare three path following schemes to track a
predetermined path, using linear parameter varying model predictive control, nonlinear active
disturbance rejection control [15], and the pure pursuit method, respectively. The main contributions
of this paper are summarized as follows:

• A longitudinal speed controller based on sliding mode control with nonlinear conditional
integrator is proposed to realize the longitudinal motion control of autonomous vehicle during
the path following process. It is well known that sliding mode controllers suffer from chattering.
To solve this problem, we adopt the saturation function to replace the sign function, meanwhile,
a nonlinear integral action is introduced to achieve zero steady-state error and improve the
transient performance, which can also avoid integral divergence. Stability analysis is given to
prove that the equilibrium point is globally asymptotically stable.

• The lateral controllers based on LPV-MPC (Linear Parameter Varying Model Predictive Control),
ADRC (Active Disturbance Rejection Control), and PPM (Pure Pursuit Method)are designed,
respectively. First, because the MPC can exploit available preview information and handles
constraints, an MPC lateral control-based strategy that considers the soft constraints of the sideslip
angle of the steer wheel is formulated based on the error dynamics model, which adopts the
CVXGEN [16] solver to improve computational efficiency. Second, the nonlinear ADRC is applied
to develop the lateral controller due to the simple control structure and good robustness, which is
also largely model independent. Finally, the pure pursuit method using the geometric model is
provided as a benchmark.

• Multiple simulations in different scenarios are conducted to validate the effectiveness and capability
of the proposed longitudinal speed controller and lateral path following controllers. A comparison
of the three mentioned lateral controllers is made to highlight the advantages and drawbacks of
each approach in path following. Finally, the possible development direction in the future is given.

The rest of this paper is organized as follows: Section 2 introduces the state of the art. Section 3
presents the system model and the problem definition. Section 4 explains the design procedure for the
longitudinal speed controller. Section 5 presents the lateral controllers design of LPV-MPC, ADRC,
and PPM, respectively. Section 6 shows the results and analysis. Finally, the paper is concluded
in Section 7.

2. Related Work

Extensive work has been done to vehicle motion control of autonomous vehicles. In this section,
we provide a brief review of the state of the art. Vehicle motion control can be divided into longitudinal
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control and lateral control. Further, lateral control methods can be divided into geometry based,
kinematics based, and dynamics based.

The longitudinal control manipulates drive and brake actuators to guide the autonomous vehicle to
track a desired speed profile. The main control methods can be roughly classified into three categories:
(1) Model-free control. The system dynamics are regarded as a black-box, and the control commands
are generated from tracking errors only, e.g., the proportional-integral-derivative (PID) design [17].
(2) Model-based feedback control. A discrete-time preview speed controller was developed considering
future desired speed and road slope information, which holds the advantage of prediction and to reduce
to computational load as well compared to MPC [18]. Gerdes et al. utilized a multiple-surface sliding
mode control to realize speed and space control [19]. To improve tracking performance under model
uncertainties and external disturbances, a time-varying parameter adaptive speed control algorithm is
proposed [20]. (3) Model-based optimization. The model predictive control framework was applied
in a 16-bit micro controller, which can exploit available preview information [21]. However, it may
suffer from high computational load, especially for the nonlinear MPC. Improving the computational
efficiency is a key issue for MPC application.

The lateral control manipulates the steering actuator to deal with the path following problem
generally, and the direct yaw moment control can be used as an additional approach for distributed
drive vehicles and vehicles equipped with differential braking. According to the difference of the system
model, path tracking control methods can be roughly classified into three categories: (1) Geometry
based. It used the geometric relationship between the vehicle and reference. Classical algorithms
include the pure pursuit method and Stanley algorithm [17], which were used in the DARPA Challenge
vehicle. Such methods are simple and work well in many situations, but may have trouble on tight
corners and at high speed due to a lack of consideration for vehicle dynamics. (2) Kinematics based.
It is usually assumed that the autonomous vehicle satisfies non-holonomic constraint, in other words,
the side slip angle is assumed to be zero. Aiming at the path tracking problem of the non-holonomic
mobile robot, the kinematics model is transformed into the chain type by state and input feedback
transformation, and a smooth time-varying feedback control law was given [9]. (3) Dynamics based.
In order to obtain higher precision under the conditions of high speed and large curvature, it is
necessary to consider the vehicle dynamics in the control design. A nested PID steering control scheme
was proposed that the outer loop is used to compute yaw rate reference based on lateral offset and then
the inner loop tracks the desired yaw rate [22]. Xu et al. presented a preview steering control algorithm,
which formulated the path tracking issue as an augmented optimal control problem with dynamic
disturbance [23]. Tagne et al. analyzed and compared three lateral nonlinear adaptive controllers,
including the higher order sliding mode controller, the immersion and invariance controller, and the
passivity-based controller [24]. MPC has become a popular technique that enables the vehicle to act
ahead of time and handle constraints more conveniently. Falcone et al. demonstrated the effectiveness
of linear MPC-based steering controller with a speed up to 21 m/s on a slippery road [25], and proposed
a control scheme by a combined use of breaking and steering [26]. The integration of path tracking,
vehicle stabilization, and collision avoidance had been investigated by considering stability envelope
and environmental envelope in state and output constraints of MPC [27,28]. To safely navigate highly
dynamic scenarios, the nonlinear model predictive controller also had been designed and validated [29].
It should be noted that appropriate tradeoffs between model fidelity and computation should be solved
with caution [30]. Hu et al. [31] proposed a robust H∞ output-feedback control strategy considering
the parametric uncertainties and external disturbances. For the similar purpose, a linear active
disturbance rejection control scheme is proposed for lane keeping problem [32]. Compared to this work,
the nonlinear active disturbance rejection is used in this paper to improve the transient performance.
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3. Systems Description

In order to describe the motion of an autonomous vehicle, the system dynamics of path following
is defined, as illustrated in Figure 1. A preview lateral model is utilized here, where pc is the preview
control point and pd is the reference path point.
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3.1. Longitudinal Vehicle Dynamics

Considering a vehicle moving on an inclined road, a force balance along the vehicle longitudinal
axis yields:

m(
.
vx − vyγ) = Fx − Fy f sin δ f − Fr − Fw − Fg, (1)

where m is the vehicle mass, vx and vy are the vehicle longitudinal and lateral velocities, γ is the vehicle
yaw rate, Fx is the total tire force along the vehicle longitudinal axis, Fy f is the lateral tire force of the
front steering wheel, δ f is the front wheel steering angle, Fr is the rolling resistance force, Fw is the
aerodynamic force, and Fg is the gravitational force component generated by road grade.

The wheel dynamics can be expressed as the following equation:

Iω
.
ωi j = Ti j − FxijR, i j = f l, f r, rl, rr, (2)

where Iω is the wheel inertia, ωi j is the wheel angular velocity and the subscript represents the four
wheel of the vehicle, Fxij is the longitudinal tire force, R is the wheel rolling radius.

3.2. Lateral Vehicle Dynamics

The objective of lateral control design is to eliminate the path error while guaranteeing vehicle
stability. As shown in Figure 1, it is desirable to both eliminate the lateral error ye and heading angle
error ϕe at the preview point by manipulating the control input steering angle δ f .

The preview lateral kinematics can be modeled as:{ .
ye = vxϕe − vxβ− lpγ
.
ϕe = vxκ− γ

, (3)

where β is the sideslip angle, lp is the preview distance, κ is the path curvature.
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The 2DOF vehicle dynamics model is used to design the lateral controller, which can be
expressed as: 

.
β =

−2(Cα f +Cαr)

mvx
β+

(
−2(Cα f l f−Cαrlr)

mv2
x

− 1
)
γ+

2Cα f
mvx

δ f

.
γ =

−2(Cα f l f−Cαrlr)
Iz

β+
−2(Cα f l2f +Cαrl2r )

Izvx
γ+

2Cα f l f
Iz

δ f

, (4)

where Cα f and Cαr denote the cornering stiffness of the single front tire and rear tire, Iz is the
yaw moment of inertia, l f and lr are the distance from the front axle and rear axle to the center of
gravity, respectively.

The combined dynamics (3) and (4) can be written in the state space form, with the states

x =
[

ye ϕe β γ
]T
∈ R4, the control input u = δ f ∈ R, the system outputs y =

[
ye ϕe

]T
∈ R2,

and the measurable external disturbance w = κ(t) ∈ R:

.
x = Ax + Bu + Dw
y = Cx

, (5)

in which:

A =


0 vx −vx −lp
0 0 0 −1

0 0
−2(Cα f +Cαr)

mvx

−2(Cα f l f−Cαrlr)

mv2
x

− 1

0 0
−2(Cα f l f−Cαrlr)

Iz

−2(Cα f l2f +Cαrl2r )

Izvx


, B =


0 0

0 0
2Cα f
mvx

0
2Cα f l f

Iz
1
Iz


C =

[
1
0

0
1

0
0

0
0

]
, D =


0
vx

0
0


.

4. Longitudinal Speed Controller Design

The objective of longitudinal speed control is to track the desired speed profile accurately
and smoothly, by manipulating the motor and electro-hydraulic brake system (EHB) in this paper.
To improve the robustness to parametric uncertainties and provide disturbance rejection, a speed
tracking controller via sliding mode control with nonlinear conditional integrator is developed.
The control framework is shown in Figure 2.
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total
xF
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Figure 2. Block diagram of longitudinal speed controller via the sliding mode control with nonlinear
conditional integrator.
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From the control block diagram in Figure 3, it can be seen that the longitudinal speed controller
consists of feedforward and feedback components. The feedforward term uses the desired acceleration
profile to calculate the acceleration resistance, and compensates the road resistance according to
vehicle operating conditions simultaneously. In the feedback control term, the sliding mode control
method is adopted. Note that integral action is introduced in the sliding mode controller to ensure
asymptotic tracking.Sensors 2020, 20, x FOR PEER REVIEW 13 of 24 

 

 
Figure 3. Control block diagram of the nonlinear ADRC. 

Consider a single input and single output nonlinear n-order dynamic system: 
( ) ( 1)( , , , , , )n nx f x x x w t bu
y x

− = +


=

 
, (42)

where y  is the output, u  is the input, w  is the external disturbance, and ( 1)( , , , , , )nf x x x w t−   is a 
multivariable function of both the states and external disturbances, as well as time. The objective here 
is to make y  track reference signal ( )0v t  using u  as the manipulative variable. 

To provide the fastest tracking of ( )0v t  and get its derivatives, the TD in discrete-time 
implementation is written as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 1 2

2 2 3

1 2 0 0

1 1
1 1

1
( , , , , , )

n n

n

v k v k hv k

v k v k hv k

v k v k hu
u fhan v v v r h

+ = + +


+ = + +


 + = +
 =





, (43)

where h  is the sampling period, ( )fhan ⋅  is the time-optimal solution function, 0r  and 0h  are 
controller parameters. 

( 1)( , , , , , )nf x x x w t−   is denoted as the total disturbance which is something needed to overcome 
in the context of feedback control. Introducing an additional state variable ( 1)

1 ( , , , , , )n
nx f x x x w t−

+ =  
, and let 1 ( )nx d t+ = , with ( )d t  unknown. The dynamic system is now described as: 

1 2

2 3

1

1

1

( )
n n

n

x x
x x

x x bu
x d t
y x

+

+

=
 =

 = +
 =


=







, (44)

where is always observable. Then, we can construct an extended state observer in the form of: 

1

1 2 1 1

2 3 2 2

1

1 1 1

( )
( )

( )
( )

n n n n

n n n

e z y
z z e
z z e

z z e bu
z e

β
β

β
β

+

+ + +

= −
 = −
 = −


 = − +


= −







g
g

g
g

, (45)

where ( 1, 2, , 1)i i nβ = +  are the observer gains and ( )( 1,2, , 1)i e i n= +g  are nonlinear function of 
observation error e . 

Finally, the control law using nonlinear feedback combination is proposed as: 

Tracking 
Differentiator

Nonlinear 
Feedback 

Combination
1/b Plant

b

Extended 
State 

Observer

( )0v t 1v

2v
1e

2e
0u

3z3z2z1z
y

u

Figure 3. Control block diagram of the nonlinear ADRC.

4.1. Feedforward of Speed Controller

4.1.1. Feedforward from Reference Acceleration

According to the desired longitudinal acceleration ad at the reference point generated offline or
provided by high-level planner, feedforward longitudinal force from reference acceleration F f f

x can be
calculated from Newton’s second law as follows:

F f f
x = mad. (6)

4.1.2. Drag Compensation

As shown in Equation (1), the road resistance concludes the resistance force from the vehicle’s
rolling Fr, aerodynamic force Fw, road grade Fg, and the longitudinal component from the front axle
turning Ft. The expression of each resistance is given as follows:

Fr = mg f

Fw =
CDAv2

x
21.15

Fg = mg sinθg

Ft = Fy f sin δ f ≈
ml f

∣∣∣ay tan δ f
∣∣∣

l

, (7)

where f is the rolling resistance coefficient, CD is the air resistance coefficient, A is the frontal area of
the vehicle, θg is the road grade measured or estimated, ay is the lateral acceleration. The calculation of
Ft uses a steady state assumption and assumes that the front lateral force is proportional to the front
static vertical load.

Then, the drag compensation is obtained from:

Fdrag
x = Fr + Fw + Fg + Ft, (8)

The total feedforward longitudinal torque is expressed as:

T f f =
(
F f f

x + Fdrag
x

)
R. (9)
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4.2. Feedback of Speed Controller

Robust asymptotic tracking can be achieved by the sliding mode control, therefore, it is applied
here. To simplify the longitudinal dynamic model, assuming that the lateral velocity is zero, then we
can get:

m
.
vx = Fx − Fr − Fw − Fg − Ft. (10)

Using the pure rolling assumption that ωi j = vxij/R, the wheel dynamics in Equation (2) can be
rewritten as:

Iωi

.
vxij

R
= Ti j − FxijR ij = f l, f r, rl, rr. (11)

Combining Equations (10) and (11):(
m +

∑
Iωi j

R2

)
.
vx =

T
R
− Fr − Fw − Fg − Ft, i j = f l, f r, rl, rr, (12)

where T is total control input torque, and T = T f f + T f b, T f b is the feedback control input torque.
Define the tracking error ve = vx − vd, vd is the desired speed. Then, the tracking problem can be

turned into a stabilization problem. Considering the resistance estimation error term, the stabilization
system can be expressed as follows by combining Equations (6)–(10):(

m +

∑
Iωi j

R2

)
.
ve = T f b + ∆(·), i j = f l, f r, rl, rr, (13)

where ∆(·) is the bounded resistance estimation error, and it is considered that slew rate is small.
It is typical to choose the sliding surface as s = ve for a first order system, the sliding mode control

law can be expressed as:

T f b = −

(
m +

∑
Iωi j

R2

)
ksgn(s) = −kpsgn(ve), i j = f l, f r, rl, rr, (14)

with sufficiently large control gain kp, ensures that s
.
s ≤ −p0|s| < 0, for all s , 0. While ideal sliding mode

control achieves zero steady-state error, it is well known that, in practices, sliding mode controllers
suffer from chattering due to switch delays and un-modeled dynamics. To eliminate chattering, we use
the saturation function sat(·) to replace the sign function sgn(·), but it can guarantee only ultimate
boundness with respect to a compact set, which can be made arbitrarily small by decreasing the
thickness ε of boundary layer. However, a too small value of ε will again induce chattering due to
non-ideal effects:

T f b = −kpsat(
s
ε
), (15)

where sat(·) is defined as:

sat(y) =
{

y,
∣∣∣y∣∣∣ ≤ 1

sgn(y),
∣∣∣y∣∣∣ > 1

. (16)

Zero steady-state error can be achieved by including integral action in the controller. This was
done by Khalil [33] by augmenting the system with an integrator driven by the tracking error:

.
σ = ve.

The sliding surface is taken as:
s = k0σ+ ve, (17)

where the positive constant k0 is chosen such that the system dynamics on sliding surface is controlled
by

.
ve = −k0ve.
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In this paper, the linear integrator is replaced by a nonlinear conditional integrator to avoid
integral divergence and improve the transient performance:

.
σ = −k0σ+ εsat(

s
ε
). (18)

At the actuator level, the electric brake is used for slight braking case to improve response speed
and control accuracy, and the hydraulic brake compensation is used for heavy braking case.

4.3. Stability Analysis

To analyze the stability performance of the sliding mode controller with the conditional integrator,
it is carried out from two aspects of inside the boundary layer and outside the boundary layer.

4.3.1. Inside the Boundary Layer (|s| = |k0σ+ ve| < ε)

Substituting Equation (15) into Equation (13), we can have:
.
ve =

1

m+

∑
Iωi j
R2

(
−

kp
ε ve −

kpk0
ε σ+ ∆(·)

)
, i j = f l, f r, rl, rr

.
σ = ve

. (19)

The closed-loop system has a unique equilibrium point (ve, σ) at
(
0, ε

kpk0
∆(vd)

)
.

Selecting a Lyapunov candidate function:

V =
1
2

s̃2 +
1
2
σ̃2, (20)

where σ̃ = σ− σ, s̃ = s− s and s = vxe + kiσ = kiσ.
Differentiating the left and right sides of Equation (20), it can be expressed as:

.
V = s̃

.
s̃ + σ̃

.
σ̃ = s̃

.
s + σ̃

.
σ = s̃(

.
ve + k0

.
σ) + σ̃ve

= s̃

m+

∑
Iωi j
R2

(
−kp

ve+k0σ
ε + ∆(vx)

)
+ s̃k0ve + σ̃ve, i j = f l, f r, rl, rr

= s̃

m+

∑
Iωi j
R2

(
−kp

s̃+s
ε + ∆(vx)

)
+ s̃k0ve + σ̃ve, i j = f l, f r, rl, rr

. (21)

Substituting ve = s− k0σ = s̃− k0σ̃ into Equation (16), then the derivative of the Lyapunov function
candidate can be rewritten as follows:

.
V = −

(
k
ε
− k0

)̃
s2 +

s̃

m +
∑

Iωi j

R2

(
−kp

s
ε
+ ∆(vx)

)
−

(
k0

2
− 1

)̃
s̃σ− k0σ̃

2. (22)

Define a function f (x) =
∆(x)

m+

∑
Iωi j
R2

, i j = f l, f r, rl, rr, when the continuous Lipschitz continuity

condition is satisfied, it can be obtained that:∣∣∣ f (vx) − f (vd)
∣∣∣ ≤ L|ve| = L

∣∣∣̃s− k0σ̃
∣∣∣ ≤ L

∣∣∣̃s∣∣∣+ Lk0
∣∣∣̃σ∣∣∣, (23)

where L is the Lipschitz constant.
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Combining Equation (23) and s = k0σ = ε
kp

∆(vd), Equation (21) can be expressed as:

.
V = −

(
k
ε − k0

)̃
s2 + s̃

∆(vx)−∆(vd)

m+

∑
Iωi j
R2

− (
k0

2
− 1

)̃
s̃σ− k0σ̃2

≤ −

(
k
ε − k0

)̃
s2 +

∣∣∣̃s∣∣∣(L∣∣∣̃s∣∣∣+ Lk0
∣∣∣̃σ∣∣∣)− (

k0
2
− 1

)̃
s̃σ− k0σ̃2

= −
(

k
ε − k0 − L

)̃
s2 +

(
Lk0 + 1− k0

2
)∣∣∣̃s∣∣∣∣∣∣̃σ∣∣∣− k0σ̃2

= −
( ∣∣∣̃σ∣∣∣ ∣∣∣̃s∣∣∣ ) k0 −

Lk0+1−k0
2

2

−
Lk0+1−k0

2

2
k
ε − k0 − L

(
∣∣∣̃σ∣∣∣∣∣∣̃s∣∣∣

) . (24)

If the inequality k0 > 0 and k0
(

k
ε − k0 − L

)
−

(
Lk0+1−k0

2

2

)2
> 0 are both satisfied,

.
V is negative definite.

Therefore, the equilibrium point is globally asymptotically stable if the control parameters satisfy the
following equation: 

k0 > 0

0 < ε <
[

k0
k + L

k + 1
kk0

(
Lk0+1−k0

2

2

)2
]−1 . (25)

4.3.2. Outside the Boundary Layer (|s| = |k0σ+ ve| ≥ ε)

Substituting Equation (15) into Equation (13), the control law outside the boundary layer can be
expressed as: {

T f b = −kpsgn(s)
.
σ = −k0σ+ εsgn(s)

. (26)

It can be seen that the feedback control input converges to −kpsgn(s), the value of
.
σ converges

to zero, and σ becomes εsgn(s). Thus, the controller can prevent integral action from divergence.
Furthermore, when

.
vdsgn(s) > 0 is satisfied, it reaches the set {|s| ≤ ε} in finite time and remains

inside thereafter.

5. Lateral Path Following Controllers Design

To obtain a simple, reliable, and robust path following controller that can handle complex situations,
three lateral control schemes are proposed and compared. First, a LPV-MPC lateral control-based
strategy is designed due to its ability of preview and handles constraints. Second, considering the
simple control structure and good robustness, the nonlinear ADRC is applied to develop the second
lateral controller. The third controller is based on the pure pursuit method, which is provided as
a benchmark.

5.1. LPV-MPC Controller

Despite nonlinear MPC is attractive because of its ability to capture the nonlinearity of vehicle
dynamics, the model complexity limited real-time implementation. Here, a LPV-MPC control law
is designed.

5.1.1. Vehicle Model Discretization and Augmentation

The continuous vehicle model Equation (5) is discretized at each time step with a zero-order hold
approximation that assumes constant continuous inputs over the duration of each discrete time step.
The resulting discretized vehicle model is:

x(k + 1) = Akx(k) + Bku(k) + Dkw(k)
y(k) = Ckx(k)

, (27)

where Ak = In + AtTs, Bk = BtTs, Dk = DtTs, Ck = Ct, Ts is the sampling time.
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To eliminate the steady-state error, we change the control input u(k) to the rate of change of the
input ∆u(k) = u(k) − u(k− 1) that can achieve the steady-state performance like an integral action,

and augment the state vector as ξ(k) =
[

x(k) u(k− 1) w(k− 1)
]T

. Thus, the augmented system
model becomes:

ξ(k + 1) = Aξ(k) + B∆u(k)
y(k) = Cξ(k)

, (28)

in which:

A =


Ak Bk Dk
0 I 0
0 0 1

, B =


Bk
I
0

, C =
[

Ck 0 0
]
.

5.1.2. MPC Problem Formulation

Assuming that the current moment is k, the signals ξ(k + j|k ), ∆u(k + j|k ), and y(k + j|k ) represent
the future value of the states, inputs, and outputs respectively. Considering the prediction based on
the discrete state space model (28), the predict states can be obtained by iteration:

ξ(k + 1|k ) = Aξ(k) + B∆u(k|k )
ξ(k + 2|k ) = Aξ(k + 1|k ) + B∆u(k + 1|k )

= A2ξ(k) + AB∆u(k|k ) + B∆u(k + 1|k )
...

ξ
(
k + Np|k

)
= ANpξ(k) + ANp−1B∆u(k|k ) + ANp−2B∆u(k + 1|k )
+ . . .+ ANp−NcB∆u(k + Nc − 1|k )

, (29)

where Np is the predict horizon, Nc is the control horizon, and Nc ≤ Np that means ∆u
(
k + j

∣∣∣k )
= 0

when j ≥ Nc. Then, the predicted outputs can be expressed as follows:

y(k + 1|k ) = CAξ(k) + CB∆u(k|k )
y(k + 2|k ) = CA2ξ(k) + CAB∆u(k|k ) + CB∆u(k + 1|k )
y(k + 3|k ) = CA3ξ(k) + CA2B∆u(k|k ) + CAB∆u(k + 1|k ) + CB∆u(k + 2|k )

...
y
(
k + Np|k

)
= CANpξ(k) + CANp−1B∆u(k|k )+CANp−2B∆u(k + 1|k )
+ . . .+ CANp−NcB∆u(k + Nc − 1|k )

. (30)

To reduce the notational complexity, the predicted outputs can be expressed as:

Y(k) = Φξ(k) + Θ∆U(k), (31)

in which:

Y(k) =


y(k + 1|k )
y(k + 2|k )
...
y
(
k + Np|k

)
, ∆U(k) =


∆u(k|k )
∆u(k + 1|k )
...
∆u(k + Nc − 1|k )



Φ =



CA
CA2

CA3

...
CANp


, Θ =



CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0
...

...
...

. . .
...

CANp−1B CANp−2B CANp−3B . . . CANp−NcB



.
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The objective of the lateral controller is to track the desired path accurately and smoothly. Therefore,
define the cost function as:

J(ξ(k), ∆Uk) =

Np∑
i=1

‖y(k + i|k ) − yre f (k + i|k )‖2Q +

Nc−1∑
i=0

‖∆u(k + i|k )‖2R, (32)

where weight matrix Q is symmetric semi-positive definite, R is symmetric positive definite.
Substituting Equation (31) into Equation (32), the cost function can be rewritten as:

J(ξ(k), ∆Uk) =
(
Y(k) −Yre f (k)

)T
Q
(
Y(k) −Yre f (k)

)
+ ∆UT(k)R∆U(k)

= (E + Θ∆U(k))TQ(E + Θ∆U(k)) + ∆UT(k)R∆U(k)
= ∆UT(k)

(
ΘTQΘ + R

)
∆U(k) + 2ET(k)QΘ∆U(k) + ET(k)QE(k)

, (33)

where E(k) = Φξ(k), and ET(k)QE(k) is constant, then the cost function is expressed as:

J(ξ(k), ∆Uk) =
1
2

∆UT(k)H∆U(k) + gT∆U(k), (34)

where hessian matrix H = 2
(
ΘTQΘ + R

)
, and gradient matrix g = 2ΘTQE(k).

Considering the constraint umin ≤ u(k) ≤ umax on the steering angle, the control input sequence
U(k) and control increment sequence ∆U(k) satisfy the equation:

U(k) = M∆U(k) + Γu(k− 1), (35)

in which:

M =


I 0 . . . 0
I I . . . 0
...

...
. . . 0

I I I I

, Γ =


I
I
...
I

, U(k) =


u(k|k )
u(k + 1|k )
...
u(k + Nc − 1|k )

.
Considering the constraint ∆umin ≤ ∆u(k) ≤ ∆umax on steering angle increment, we can have:

∆Umin ≤ ∆U(k) ≤ ∆Umax. (36)

Considering the outputs constraint ymin ≤ y ≤ ymax, the predicted output sequence satisfies:

Ymin ≤ Φξ(k) + Θ∆U(k) ≤ Ymax. (37)

Considering the states soft constraint of slip angle of front axle α f min − ς ≤ α f ≤ α f max + ς,
the constraint is stated as:

M∆U(k) ≤ S(k) − αmin(k) + Γu(k− 1)
−M∆U(k) ≤ −S(k) + αmax(k) − Γu(k− 1)

, (38)

in which:

S(k) =


β+

l fγ

vx

β+
l fγ

vx
...

β+
l fγ

vx


∈ RNc×1 ,αmin(k) =


α f min − ς
α f min − ς
...
α f min − ς

 ∈ RNc×1 ,αmax(k) =


α f max + ς
α f max + ς
...
α f max + ς

 ∈ RNc×1 .
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Combining Equations (35)–(38), the constraints of control increment sequence ∆U(k) can be
written as: 

M
−M
I
−I
Θ
−Θ
−M
M


∆U(k) ≤



Umax − Γu(k− 1)
−Umin + Γu(k− 1)
∆Umax

−∆Umin

Ymax −Φξ(k)
−Ymin + Φξ(k)
S(k) − αmin(k) + Γu(k− 1)
−S(k) + αmax(k) − Γu(k− 1)


, (39)

where Umax, Umin, ∆Umax, ∆Umin ∈ RNc×1 that consist of Nc piece of umax,umin,∆umax,∆umin, respectively,
similarly, Ymax, Ymin ∈ RNp×2 that consist of Np piece of ymax,ymin, respectively.

The final optimization problem takes the form:

min
∆U(k) ς

J(ξ(k), ∆Uk, ς) = 1
2

[
∆UT(k) ς

]
H
[

∆U(k)
ς

]
+ gT

[
∆U(k)
ς

]
s.t. Equation(39)

, (40)

where the hessian matrix augmented as H =

 2
(
ΘTQΘ + R

)
0

0 ρ

, the gradient matrix augmented as

g =
[

2ΘTQE(k) 0
]
, ς is the slack variable, and ρ is the weight of slack variable.

5.1.3. Quadratic Program Solver

For the quadratic program representable problem as shown in Equation (40), CVXGEN provides a
custom, high-speed solver that is library-free C code, which make an online solution as fast as possible.
The optimization resolves each time step, as is standard with MPC, and the first element ∆u∗(k|k) of
optimal solution is applied to the system, and the feedback control law at time k is finally obtained:

u(k|k) = u(k− 1) + ∆u∗(k|k). (41)

5.2. ADRC Controller

Since active disturbance rejection control has strong robustness to system uncertainties and
external disturbances, and can be implemented easily, so the nonlinear ADRC is applied to design the
lateral controller in this paper. The ADRC is evolved from proportional-integral-derivative (PID) and it
inherits the core idea of PID that makes it such a success: the error driven, rather than model-based [15].

5.2.1. ADRC Theoretical Basis

As shown in Figure 3, the nonlinear ADRC consists of three components: the tracking differentiator
(TD), extended state observer (ESO), and nonlinear feedback combination (NFC). The TD provides
the fastest tracking of the input signal and its derivative, and also arranges the transition process;
the ESO considers the total disturbance as a new state variable and gives its estimation; the nonlinear
feedback provides surprisingly better results than linear feedback, which play an important role in the
ADRC framework.

Consider a single input and single output nonlinear n-order dynamic system:{
x(n) = f (x,

.
x, . . . , x(n−1), w, t) + bu

y = x
, (42)
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where y is the output, u is the input, w is the external disturbance, and f (x,
.
x, . . . , x(n−1), w, t) is a

multivariable function of both the states and external disturbances, as well as time. The objective here
is to make y track reference signal v0(t) using u as the manipulative variable.

To provide the fastest tracking of v0(t) and get its derivatives, the TD in discrete-time
implementation is written as: 

v1(k + 1) = v1(k) + hv2(k + 1)
v2(k + 1) = v2(k) + hv3(k + 1)
...
vn(k + 1) = vn(k) + hu
u = f han(v1, v2, . . . , vn, r0, h0)

, (43)

where h is the sampling period, f han(·) is the time-optimal solution function, r0 and h0 are
controller parameters.

f (x,
.
x, . . . , x(n−1), w, t) is denoted as the total disturbance which is something needed to overcome in

the context of feedback control. Introducing an additional state variable xn+1 = f (x,
.
x, . . . , x(n−1), w, t),

and let
.
xn+1 = d(t), with d(t) unknown. The dynamic system is now described as:

.
x1 = x2
.
x2 = x3
...
.
xn = xn+1 + bu
.
xn+1 = d(t)
y = x1

, (44)

where is always observable. Then, we can construct an extended state observer in the form of:

e = z1 − y
.
z1 = z2 − β1g1(e)
.
z2 = z3 − β2g2(e)
...
.
zn = zn+1 − βngn(e) + bu
.
zn+1 = −βn+1gn+1(e)

, (45)

where βi(i = 1, 2, . . . , n + 1) are the observer gains and gi(e)(i = 1, 2, . . . , n + 1) are nonlinear function
of observation error e.

Finally, the control law using nonlinear feedback combination is proposed as:

u0 =
k1 f al(e1,α1, δ) + k2 f al(e2,α2, δ) + . . .+ kn f al(en,αn, δ) − zn+1

b
, (46)

where ki(i = 1, 2, . . . , n) are controller gains, ei(i = 1, 2, . . . , n) are the tracking error of state variable,
defined as ei = vi − zi, f al(·) is a nonlinear function that defined as follows:

fal(e,α, δ) =
{
|e|αsign(e), |e| > δ
e/δ1−α, |e| ≤ δ

. (47)

It should be pointed out that the controller coefficients are not dependent on the mathematical
model of the plant, thus making ADRC largely model independent.
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5.2.2. Application of ADRC

For the ADRC method, it is not suitable to process the single input multiple output coupling
problem. Therefore, we only consider the lateral error stabilization in the ADRC scheme design.
According to the lateral vehicle dynamics Equation (5), we can have:

..
ye = f

(
ye,

.
ye, w, t

)
+

(2Cα f

m
+

2Cα f l f lp
Iz

)
δ f , (48)

where:
f
(
ye,

.
ye, w, t

)
= v2

xκ− vxγ− vx

[
−2(Cα f +Cαr)

mvx
β+

(
−2(Cα f l f−Cαrlr)

mv2
x

− 1
)
γ
]

−lp

[
−2(Cα f l f−Cαrlr)

Iz
β+

−2(Cα f l2f +Cαrl2r )

Izvx
γ

] .

Rewrite the equation as the state space form:
.
x1 = x2
.
x2 = x3 + bu
.
x3 = d(t)
y = x1

, (49)

where x1 = ye, x2 =
.
ye, x3 = f (x1, x2, w, t), b =

2Cα f
m +

2Cα f l f lp
Iz

, u = δ f .
The ESO for lateral controller is designed as:

e = z1 − y
.
z1 = z2 − β1g1(e)
.
z2 = z3 − β2g2(e) + bu
.
z3 = −β3g3(e)

. (50)

The control law using nonlinear feedback combination can be expressed as:

δ f =
k1 f al(e1,α1, δ) + k2 f al(e2,α2, δ) + k3 f al(e3,α3, δ) − z3

b
. (51)

5.3. Pure Pursuit Controller

The pure pursuit method (PPM) is used as benchmark, shown in Figure 4. Its basic principle is to
make the central control point of the rear axle reach the target point (gx, gy) along an arc by controlling
the steering radius of an autonomous vehicle.Sensors 2020, 20, x FOR PEER REVIEW 15 of 24 
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Based on the simple geometric bicycle model of an Ackerman steered vehicle, the pure pursuit
control law is given as:

δ f = arctan(
2l sin(α)

ld
), (52)

where α is the angle between the vehicle heading vector and the look-ahead vector, l is the wheel base,
and ld is the look-ahead distance.

6. Results and Discussion

In order to evaluate and compare the performance of the proposed path following controllers,
a series of simulation experiments have been conducted. The main parameters of the autonomous
vehicle are given as Table 1 which are taken from an actual prototype vehicle.

Table 1. Main parameters of the autonomous vehicle.

Definition Symbol Value Unit

Vehicle mass m 1381 kg
Distance from COG to the front axle l f 1.117 m
Distance from COG to the rear axle lr 1.188 m

Yaw moment of inertia of the vehicle Iz 1833.8 kg/m2

Cornering stiffness of the front wheel Cα f 30,087 N/rad
Cornering stiffness of the rear wheel Cαr 31,888 N/rad

Spin inertia of the wheel Iω 0.4 kg
Rolling radius of the wheel R 0.291 m

6.1. Case A: Speed Tracking

To validate the effectiveness of the proposed longitudinal speed tracking controller, stair step
and sinusoidal tests have been carried out respectively, and simulation results are shown in Figures 5
and 6. In the stair step case, we compared the improved sliding mode control with the basic sliding
mode control to verify the performance improvement. As shown in Figure 5b, the speed error of
basic sliding mode control has an obvious chattering effect near zero, which would cause a drastic
change in the control input due to the discontinuous sign function. The improved sliding mode control
shows a smooth action. It can be seen that the steady state error is almost zero and the overshoot
is small. Meanwhile, the mean rise time is about 1.327 s. In the sinusoidal condition, the transient
performance of the improved sliding mode speed controller is good. Therefore, the proposed speed
tracking controller can provide an excellent performance for longitudinal speed control during the
process of path following.Sensors 2020, 20, x FOR PEER REVIEW 16 of 24 
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6.2. Case B: Skid Pad Test

To illustrate the steady state characteristics of the proposed lateral controllers for autonomous
vehicles, the skid pad test was chosen. As shown as Figure 7a, it consists of two circular paths that
intersect at a tangent point. Meanwhile, it includes a point with discontinuous curvature where vehicles
transition from one circle to another, which can provide insight into robustness to path curvature.Sensors 2020, 20, x FOR PEER REVIEW 17 of 24 
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Figure 7. Simulation results of the skid pad test with constant speed 10 m/s: (a) The spatial path of the
vehicle following the given path; (b) Curvature of the given path; (c) The resulting lateral error; (d) The
resulting heading angle error.
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Figure 7 demonstrates the responses of the designed lateral controllers. It can be seen that the
steady state lateral error of the nonlinear ADRC controller is nearly zero and the steady state lateral
error of LPV-MPC is about 0.0254 m, while the pure pursuit method-based controller suffers from
higher steady state error. Besides, both the nonlinear ADRC and PPM controllers suffer from higher
overshoot, in this case due to discontinuous curvature at the tangent point.

6.3. Case C: Double Lane Change Test

To investigate the transient response capability of the autonomous vehicle under the conditions of
variable and large curvature, the double lane change path is designed, referring to the ISO 3888-2:2002
obstacle avoidance case, as shown in Figure 8.
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6.3.1. Constant 5 m/s with the Given Path

In this case, the autonomous vehicle was set to pass through the test area at a constant longitudinal
speed of 5 m/s, and the corresponding maximum lateral acceleration is about 1.2 m/s2.

The control results of the proposed lateral controllers are shown in Figure 9, based on which
the control accuracy is then compared. The nonlinear ADRC and PPM controllers achieve almost
the similar tracking accuracy in lateral error, while the LPV-MPC had an excellent performance that
the maximum lateral error is 0.0061 m. The heading error of the LPV-MPC controller is the smallest,
followed by the nonlinear ADRC and PPM controllers. As shown in Figure 9d, using the CVXGEN
solver and computer with Intel i7-4770 CPU, the mean computation time of LPV-MPC is about 0.0012 s
when predicting 20 steps that the sampling time is 0.02 s, while the others are more computationally
efficient than the LPV-MPC controller.

6.3.2. Constant 10 m/s with the Given Path

The desired longitudinal speed is set to 10 m/s in this case, and the corresponding maximum
lateral acceleration is about 4 m/s2 so that the tires are still in the linear zone.

The responses are presented in Figure 10. Similar to the case of 5 m/s, the LPV-MPC controller has
the best transient performance, but the lateral error increases as the vehicle speed increases that the
PPM controller has the same feature. It should be noted here that the lateral error of the nonlinear
ADRC controller does not change significantly when the vehicle speed increases. This shows the
robustness of the nonlinear ADRC controller to the uncertainties of model parameters.
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6.3.3. Constant 15 m/s with the Given Path

The desired longitudinal speed is set to 15 m/s in this case, and the corresponding maximum
lateral acceleration is about 8 m/s2 so that the tires show highly nonlinear characteristic.

The simulation results are shown in Figure 11. In this case, the performance of the PPM controller
deteriorates significantly, with a maximum lateral error of 0.7258 m and obvious oscillation as well.
The nonlinear ADRC controller still keeps stable to the vehicle speed even though large lateral
acceleration, which is further verified that the nonlinear ADRC has strong robustness to parametric
uncertainties. However, the transient performance of the LPV-MPC controller is worse than the
nonlinear ADRC because the proposed LPV-MPC controller adopted a linear model and the actual
vehicle dynamics is more nonlinear. The mean calculation time of the LPV-MPC controller is basically
the same in these three double lane change tests.

6.4. Comprehensive Evaluation

As shown in Table 2, the maximum and root mean square values of lateral displacement error and
heading angle error in the double lane change scenario are given, which provides a perspective of
comparative analysis for the proposed path following schemes. When the constant test speed is no
more than 10 m/s, the MPC has satisfactory control performance that the maximum lateral errors are
0.0061 m and 0.0372 m in test 1 and 4 respectively, far less than the nonlinear ADRC and PPM methods.
However, the nonlinear ADRC shows the best performance in path following and the lateral error
of MPC increases significantly due to the strong nonlinearity of tires in 15 m/s double lane change
tests, while the PPM approach is not applicable because it only considers geometry but ignores vehicle
dynamics. From the aspect of tracking performance, the nonlinear ADRC has strong robustness to
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speed variation. The heading angle error of each method and test is similar except for the PPM method
at 15 m/s. The root mean square error indicates the transient performance during the tracking process,
and the statistics show that there is the same trend as the maximum value.Sensors 2020, 20, x FOR PEER REVIEW 19 of 24 
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Table 2. Quantitative statistics of lateral error and heading error in the double lane change scenario.

Test No. Desired
Speed

Controller
Design

Maximum
Lateral
Error

RMSE 1 of
Lateral
Error

Maximum
Heading

Error

RMSE of
Heading

Error

1 5 m/s MPC 0.0061 0.0024 0.0776 0.0302
2 5 m/s ADRC 0.1127 0.0520 0.0941 0.0355
3 5 m/s PPM 0.1107 0.0403 0.0966 0.0345
4 10 m/s MPC 0.0372 0.0164 0.0735 0.0275
5 10 m/s ADRC 0.0872 0.0430 0.0833 0.0305
6 10 m/s PPM 0.2186 0.0921 0.1080 0.0398
7 15 m/s MPC 0.1312 0.0504 0.0806 0.0293
8 15 m/s ADRC 0.1033 0.0456 0.0796 0.0272
9 15 m/s PPM 0.7258 0.3218 0.1793 0.0819

1 Root mean square error.
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none of the proposed controller is perfect and all methods can work well in some applications. MPC 
shows great potential in the vehicle control application with the development of theory and 
computing power. Nonlinear ADRC can provide strong robustness to uncertainties. The PPM can be 
used in parking maneuver and low speed vehicles such as sweepers. 

Figure 11. Simulation results of double lane change with constant speed 15 m/s: (a) The spatial path of
the vehicle following the given path; (b) The resulting lateral error; (c) The resulting heading angle
error; (d) The computational time of the proposed LPV-MPC controller.

Table 3 summarizes the advantages and drawbacks of each control strategy, it can be seen that
none of the proposed controller is perfect and all methods can work well in some applications. MPC
shows great potential in the vehicle control application with the development of theory and computing
power. Nonlinear ADRC can provide strong robustness to uncertainties. The PPM can be used in
parking maneuver and low speed vehicles such as sweepers.

Table 3. Comparison of the lateral control strategies.

Controller Design Advantages Drawbacks

LPV-MPC
• Can exploit available preview
• Easy to handles constraints
• Excellent control accuracy

• Requires real-time computations
• Need a more accurate model
• Rely on sideslip angle information
• Sensitive to parametric uncertainties

ADRC
• Robust against

parameters uncertainties
• Easy to implement

• Controller gains are need to be tuned
well to get higher precision of tracking

PPM
• Simply enough
• Performs well when driving

slowly or parking

• Neglect the vehicle dynamics, so it does
not suitable to large lateral
acceleration case

• Suffer from overshoot and steady state
error as speed increases
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An intuitive evaluation chart is formed by scoring the KPI (Key Performance Indication) of
the simulation results, as shown in Figure 12. The score is based on a 5-point scale, with higher
scores indicating better performance in that area. Here, the key performance indications include
four aspects: path tracking accuracy, robustness to parameters uncertainties, ability to deal with
curvature discontinuity, and simplicity of practical application, which represent the four axis terms in
Figure 12. It should be noted that scores are evaluated from a perspective of subjective and objective
combination. As mentioned above, the LPV-MPC can achieve excellent lateral control precision at low
lateral acceleration, and the control accuracy is acceptable even at high lateral acceleration. Due to
the predictive ability of MPC, it can also handle the curvature discontinuity of the path. However,
MPC is relatively complex to deploy to hardware and requires processing unit of higher computing
power. Therefore, the LPV-MPC scores 5, 2, 5, 3 points in these four indicators, respectively. For the
nonlinear ADRC, the lateral error and heading error are larger than MPC comprehensively, but it
is more robust to the vehicle speed. Meanwhile, the control structure of ADRC is simple and it
can be implemented in an embedded vehicle control unit, but the parameters need to be calibrated
carefully. Path curvature discontinuity would cause a larger overshoot in the nonlinear ADRC controller.
In general, the nonlinear ADRC scores 4, 5, 3, 4 points, respectively. The pure pursuit method only
works well in the low speed case but it is the simplest in practical application. Then, the PPM scores 3,
2, 3, 5 points in these indexes, respectively.
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For model predictive control, further research is needed to build a good model that tradeoff

between high fidelity and simple enough, and robust and stochastic MPC may be the future direction.

7. Conclusions

In this paper, three control schemes have been designed, verified, and compared for the path
following application of autonomous vehicles. A longitudinal speed tracking controller is proposed
based on sliding mode control with nonlinear conditional integrator, and stability analysis is also
given. Considering the ability of preview and handling multi-constraints, the first lateral controller
is based on the linear parameter varying model predictive control, which shows excellent tracking
accuracy in the simulation tests. Though it requires real-time computations to solve the optimization
problem, using the CVXGEN can achieve high efficiency to solve the QP problem. Nonlinear active
disturbance rejection control is applied in the second lateral controller since ADRC is robust against
the parametric uncertainties of vehicles. However, the comprehensive tracking performance is slightly
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worse than the MPC that was shown in comparison. The lateral controller via the pure pursuit method
is used for a benchmark, which performs well in low speed case. The effectiveness and ability of
the proposed schemes are validated by simulations. It should be noted that the LPV-MPC controller
is relatively sensitive to the parametric uncertainties and the vehicle dynamics is highly nonlinear
in large acceleration cases, therefore, the robust nonlinear model predictive control is our future
research direction.
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