An Energy-Efficient Unselfish Spectrum Leasing Scheme for Cognitive Radio Networks
Abstract
:1. Introduction
- A novel unselfish resource allocation scheme for CRNs. Unlike most of works where PUs decide whether or not to cooperate with SUs, the decisions are made by a centralized approach with the goal of improving the overall energy efficiency of the cell.
- A resource management network architecture responsible for maximizing the energy efficiency of the cell.
- We propose a two-stage three-dimensional matching algorithm to maximize the energy efficiency of the cell, in which the joint optimization problem is decoupled into two subproblems and solved separately in two stages.
2. Proposed Architecture and System Model for CCRN
System Model
3. Proposed Joint Resource Allocation and Relay Selection Scheme
3.1. Energy Efficiency of PUs
3.1.1. Direct Mode
3.1.2. Relay Mode
3.2. Energy Efficiency of SUs
4. Energy Efficiency for CCRN Problem Formulation and Solution
4.1. Optimization Problem Formulation
4.2. Power Allocation Subproblem
4.2.1. Equivalent Problem Transformation
4.2.2. Energy Efficiency Maximization
Algorithm 1. Power Allocation Optimization | |||||||||
1: | Set tollerance and maximum number of iterations | ||||||||
Let , choose , | |||||||||
Choose arbitrarily , , such that satisfies | |||||||||
power constraints | |||||||||
Calculate , and | |||||||||
if | |||||||||
then | |||||||||
else | |||||||||
end | |||||||||
Let | |||||||||
Initialize the Lagrange multipliers | |||||||||
2: | if | ||||||||
update and with (24) and (25) and | |||||||||
obtain and | |||||||||
else | |||||||||
update and with (28) and (29) and | |||||||||
obtain and | |||||||||
end | |||||||||
Update with (26) and obtain | |||||||||
3: | Update the Lagrange multipliers using (31)–(36) | ||||||||
4: | Compute with , and | ||||||||
if | |||||||||
, , | |||||||||
exit program (convergence reached) | |||||||||
else | |||||||||
, , | |||||||||
= | |||||||||
update using (37)–(40) | |||||||||
Update | |||||||||
end | |||||||||
go to step 2 unless n reached |
4.3. Transmission Mode and Relay Selection Subproblem
Algorithm 2. Transmission Mode and Relay Selection Optimization | |||||||||
1: | Solving optimal power allocation subproblem | ||||||||
to obtain and , construct Table 1 | |||||||||
2: | for the mth PU | ||||||||
if , | |||||||||
then | |||||||||
set | |||||||||
delete the mth row in Table 1b | |||||||||
end | |||||||||
end | |||||||||
Table 1b is updated | |||||||||
3: | repeat | ||||||||
4: | Apply K-M algorithm on Table 1b to find | ||||||||
optimal relay node obtaining | |||||||||
5: | if | ||||||||
set | |||||||||
set | |||||||||
Update Table 1b removing the mth row | |||||||||
end | |||||||||
6: | until,∀ PU in Table 1b. |
5. Results
5.1. Convergence of the Iterative Algorithm
5.2. Energy Efficiency Versus Maximum Transmit Power
- A random choice algorithm in which PUs choose cooperative relays randomly.
- A non-cooperative approach in which a similar system model is considered but PUs choose relays to increase their own energy efficiency, instead of maximizing the total energy efficiency of the system.
- A system in which there are only PUs, and therefore only direct transmission is possible.
5.3. Energy Efficiency Versus Number of Pus
5.4. Energy Efficiency Versus Path Loss Exponent
5.5. Energy Efficiency Versus Shadowing Standard Deviation
5.6. Energy Efficiency Versus Time Slot Division
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Proof of Theorem 1
Appendix B. Summary of the Kuhn-Munkres Algorithm
Appendix B.1. Solving Optimal Relay Selection Problem Based on K-M Algorithm
- Find initial feasible vertex labeling and determine and choose an arbitrary matching H in .
- If H is a maximum matching for G, then the optimization problem is solved. Otherwise, the label having not being allotted by the distribution H is selected in . Set , and , which denotes the empty set.
- denotes the collection of points which connect with S in . If , go to step (2). Otherwise, . Find
Appendix B.2. Complexity of the K-M Algorithm
References
- Bartoli, G.; Marabissi, D.; Pucci, R.; Ronga, L.S. AI Based Network and Radio Resource Management in 5G HetNets. J. Signal Process. Syst. 2017, 89, 133–143. [Google Scholar] [CrossRef]
- Federal Communications Commission. ET Docket No. 03–322. Notice of Proposed Rule Making and Order. Available online: https://docs.fcc.gov/public/attachments/FCC-03-322A1.pdf (accessed on 28 October 2020).
- Bartoli, G.; Fantacci, R.; Gei, F.; Marabissi, D.; Micciullo, L. Dynamic PSS and commercial networks spectrum sharing in the time domain. Trans. Emerg. Telecommun. Technol. 2016, 28, e3083. [Google Scholar] [CrossRef]
- Mitola, J.; Maguire, G.Q. Cognitive radio: Making software radios more personal. IEEE Pers. Commun. 1999, 6, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Sithamparanathan, K.; Giorgetti, A. Cognitive Radio Techniques: Spectrum Sensing, Interference Mitigation, and Localization; Artech House: Boston, MA, USA, 2012. [Google Scholar]
- Giorgetti, A.; Varrella, M.; Chiani, M. Analysis and performance comparison of different cognitive radio algorithms. In Proceedings of the 2009 Second International Workshop on Cognitive Radio and Advanced Spectrum Management, Aalborg, Denmark, 18–20 May 2009; pp. 127–131, Invited Paper. [Google Scholar]
- Fantacci, R.; Marabissi, D. Cognitive Spectrum Sharing: An Enabling Wireless Communication Technology for a Wide Use of Smart Systems. Future Internet 2016, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Aqeel, S.; Kok-Lim, Y. Spectrum Leasing in Cognitive Radio Networks: A Survey. Int. J. Distrib. Sens. Netw. 2014, 10, 329235. [Google Scholar]
- Amin, O.; Ikki, S.S.; Uysal, M. On the performance analysis of multi-relay cooperative diversity systems with channel estimation errors. IEEE Trans. Veh. Technol. 2011, 60, 2050–2059. [Google Scholar] [CrossRef]
- Amin, O.; Lampe, L. Opportunistic Energy Efficient Cooperative Communication. IEEE Wirel. Commun. Lett. 2012, 1, 412–415. [Google Scholar] [CrossRef]
- Amin, O.; Ikki, S.S.; Uysal, M. Adaptive bit loading for multi-relay cooperative orthogonal frequency division multiple with imperfect channel estimation. IET Commun. 2012, 6, 1821–1828. [Google Scholar] [CrossRef]
- Nie, P.Y.; Zhang, P. A note on Stackelberg games. In Proceedings of the Chinese Control and Decision Conference, Yantai, China, 2–4 July 2008; pp. 1201–1203. [Google Scholar]
- Scutari, G.; Pang, J. Joint Sensing and Power Allocation in Nonconvex Cognitive Radio Games: Nash Equilibria and Distributed Algorithms. IEEE Trans. Inf. Theory 2013, 59, 4626–4661. [Google Scholar] [CrossRef]
- Xu, H.; Gao, H.; Zhou, C.; Duan, R.; Zhou, X. Resource Allocation in Cognitive Radio Wireless Sensor Networks with Energy Harvesting. Sensors 2019, 19, 5115. [Google Scholar] [CrossRef] [Green Version]
- Elkourdi, T.; Simeone, O. Spectrum Leasing via Cooperation With Multiple Primary Users. IEEE Trans. Veh. Technol. 2012, 61, 820–825. [Google Scholar] [CrossRef]
- Toroujeni, S.M.M.; Sadough, S.M.; Ghorashi, S.A. Spectrum Leasing for OFDM-Based Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2013, 62, 2131–2139. [Google Scholar] [CrossRef]
- Hafeez, M.; Elmirghani, J.M.H. Dynamic Spectrum Leasing for Bi-Directional Communication: Impact of Selfishness. IEEE Trans. Commun. 2016, 64, 2427–2437. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Grace, D.; Wang, L. Spectrum Leasing and Relay Selection in Multiuser Cooperative Cognitive Radio Networks. J. Commun. 2014, 9, 198–207. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, M.; Xie, Y.; Li, X.; Ma, K. Relay selection and power allocation for spectrum leasing in cooperative cognitive radio networks. In Proceedings of the Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 8958–8963. [Google Scholar]
- Zhai, C.; Zhang, W. Adaptive Spectrum Leasing with Secondary User Scheduling in Cognitive Radio Networks. IEEE Trans. Wirel. Commun. 2013, 12, 3388–3398. [Google Scholar] [CrossRef]
- Bastami, A.H.; Kazemi, P. Cognitive Multi-Hop Multi-Branch Relaying: Spectrum Leasing and Optimal Power Allocation. IEEE Trans. Wirel. Commun. 2019, 18, 4075–4088. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, X.; Yang, X.; Liu, Q. Resource allocation for spectrum-leasing based CRN with delay-sensitive traffic. EURASIP J. Wirel. Commun. Netw. 2017, 108. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Qu, Z.; Wang, Z.; Li, L. Energy-Efficient Cooperation in Cognitive Wireless Powered Networks. IEEE Commun. Lett. 2017, 21, 128–131. [Google Scholar] [CrossRef]
- Chatterjee, S.; Maity, S.P.; Acharya, T. Energy-Spectrum Efficiency Trade-Off in Energy Harvesting Cooperative Cognitive Radio Networks. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 295–303. [Google Scholar] [CrossRef]
- Kong, H.Y.; Koo, I. Opportunistic relaying based spectrum leasing for cognitive radio networks. J. Commun. Netw. 2011, 13, 50–55. [Google Scholar] [CrossRef]
- Kader, M.F.; Chowdhury, M. Cooperative secondary user selection as a relay for the primary system in underlay cognitive radio networks. In Proceedings of the 15th International Conference on Computer and Information Technology (ICCIT), Chittagong, Bangladesh, 22–24 December 2012; pp. 275–278. [Google Scholar]
- Shao, C.; Roh, H.; Lee, W. Aspiration Level-Based Strategy Dynamics on the Coexistence of Spectrum Cooperation and Leasing. IEEE Commun. Lett. 2014, 18, 70–73. [Google Scholar] [CrossRef]
- Marabissi, D.; Bartoli, G.; Fantacci, R.; Micciullo, L. Energy efficient cooperative multicast beamforming in ultra dense networks. IET Commun. 2017, 12, 573–578. [Google Scholar] [CrossRef]
- Bilibashi, D.; Chai, R. Energy Efficiency Based Resource Allocation Scheme for Cooperative Cognitive Radio Networks. Int. J. Electron. Electr. Eng. 2017, 5, 7–14. [Google Scholar] [CrossRef]
- Jagannathan, R. On some properties of programming problems in parametric form pertaining to fractional programming. Manag. Sci. 1966, 12, 609–615. [Google Scholar] [CrossRef]
- Dinkelbach, W. On nonlinear fractional programming. Manag. Sci. 1967, 13, 492–498. [Google Scholar] [CrossRef]
- Dür, M.; Horst, R.; Thoai, N. Solving sum-of-ratios fractional programs using efficient points. Optimization 2001, 49, 447–466. [Google Scholar] [CrossRef]
- Darsena, D.; Gelli, G.; Melito, F.; Verde, F. Performance Analysis of Amplify-and-Forward Multiple-Relay MIMO Systems with ZF Reception. IEEE Trans. Veh. Technol. 2015, 64, 3274–3280. [Google Scholar] [CrossRef]
- Verde, F.; Scaglione, A.; Darsena, D.; Gelli, G. An Amplify-and-Forward Scheme for Spectrum Sharing in Cognitive Radio Channels. IEEE Trans. Wirel. Commun. 2015, 14, 5629–5642. [Google Scholar] [CrossRef]
- Amin, O.; Uysal, M. Adaptive power loading for multi-relay OFDM Regenerative networks with relay selection. IEEE Trans. Commun. 2012, 60, 614–619. [Google Scholar] [CrossRef]
- Bagheri, S.; Verde, F.; Darsena, D.; Scaglione, A. Randomized Decode-and-Forward Strategies for Two-Way Relay Networks. IEEE Trans. Wirel. Commun. 2011, 12, 4214–4225. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Nonlinear Programming, 2nd ed.; Athena Scientific: Belmont, MA, USA, 1999. [Google Scholar]
- He, S.; Huang, Y.; Yang, L.; Ottersten, B. Coordinated Multicell Multiuser Precoding for Maximizing Weighted Sum Energy Efficiency. IEEE Trans. Signal Process. 2014, 62, 741–751. [Google Scholar] [CrossRef]
- Borwein, J.; Lewis, A. Convex Analysis and Nonlinear Optimization: Theory and Examples; Springer: New York, NY, USA, 2006. [Google Scholar]
- Ng, D.W.K.; Lo, E.S.; Schober, R. Energy-Efficient Resource Allocation in OFDMA Systems with Large Numbers of Base Station Antennas. IEEE Trans. Wirel. Commun. 2012, 11, 3292–3304. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Boyd, S.; Mutapcic, A. Subgradient Methods, Notes for EE364; Standford University: Stanford, CA, USA, 2006. [Google Scholar]
- Lee, E.T.; Wang, J.W. Statistical Methods for Survival Data Analyses, 3rd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 428–432. [Google Scholar]
- Samanta, S.; Sarkar, B. Isomorphism on generalized fuzzy graphs and image visualizations. Soft Comput. 2020, 24, 14401–14409. [Google Scholar] [CrossRef]
- Kuhn, H. The hungarian method for the assignment problem. Naval Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Mensah, K.K.; Chai, R.; Bilibashi, D.; Gao, F. Energy efficiency based joint cell selection and power allocation scheme for HetNets. Digit. Commun. Netw. 2016, 2, 184–190. [Google Scholar] [CrossRef]
- Hong, C.; Jingjing, Z.; Chunfeng, C.; Qinyu, C. Solving large-scale assignment problems by Kuhn-Munkres algorithm. In Proceedings of the International Conference on Advances in Mechanical Engineering and Industrial Informatics, Hangzhou, China, 9–10 April 2016. [Google Scholar]
- Bourgeois, F.; Lassalle, J.C. An extension of the munkres algorithm for the assignment problem to rectangular matrices. Commun. ACM 1971, 14, 802–804. [Google Scholar] [CrossRef]
- Edmonds, J.; Karp, R.M. Theoretical improvements in algorithmic efficiency for network flow problems. Commun. ACM 1972, 19, 248–264. [Google Scholar] [CrossRef]
(a) Direct Mode | (b) Cooperative Mode | ||||
---|---|---|---|---|---|
Direct Mode | Coop. with SU | Coop. with SU | ⋯ | Coop. with SU | |
PU | ⋯ | ||||
PU | ⋯ | ||||
⋯ | ⋯ | ⋯ | |||
PU | ⋯ |
Cell radius | m |
Small scale fading distribution | Rayleigh fading |
Carrier frequency | GHz |
Bandwidth | MHz |
Noise power per link, | dBm |
Shadowing, | Log-normal with standard deviation of dB |
Average channel gain at 1 m, | dB |
Path-loss exponent, | 3 |
Circuit power per UE (PU or SU), | dBm |
Maximum transmit power per UE, | dBm |
Minimum data rate constraint, | Mbit/s |
Fraction of bandwidth, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilibashi, D.; Vitucci, E.M.; Degli-Esposti, V.; Giorgetti, A. An Energy-Efficient Unselfish Spectrum Leasing Scheme for Cognitive Radio Networks. Sensors 2020, 20, 6161. https://doi.org/10.3390/s20216161
Bilibashi D, Vitucci EM, Degli-Esposti V, Giorgetti A. An Energy-Efficient Unselfish Spectrum Leasing Scheme for Cognitive Radio Networks. Sensors. 2020; 20(21):6161. https://doi.org/10.3390/s20216161
Chicago/Turabian StyleBilibashi, Denis, Enrico M. Vitucci, Vittorio Degli-Esposti, and Andrea Giorgetti. 2020. "An Energy-Efficient Unselfish Spectrum Leasing Scheme for Cognitive Radio Networks" Sensors 20, no. 21: 6161. https://doi.org/10.3390/s20216161
APA StyleBilibashi, D., Vitucci, E. M., Degli-Esposti, V., & Giorgetti, A. (2020). An Energy-Efficient Unselfish Spectrum Leasing Scheme for Cognitive Radio Networks. Sensors, 20(21), 6161. https://doi.org/10.3390/s20216161