Clinical Applications of Visual Plasmonic Colorimetric Sensing
Abstract
:1. Introduction
2. Distance–Dependent Plasmonic Naked-Eye Colorimetric Assays
2.1. Protein-Related and Other Biological Analytes
2.2. Infectious Diseases Biomarkers
2.3. Drug-Induced Aggregation
3. Colorimetric Sensors Based on Etching and Growth of Noble Metal Nanoparticles
3.1. Colorimetric Glucose Detection
3.2. Other Biological Analytes
3.3. Infectious Diseases
4. Hybrid Biosensing Strategies
5. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Kosack, C.S.; Page, A.-L.; Klatser, P.R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 2017, 95, 639–645. [Google Scholar] [CrossRef]
- Soler, M.; Estevez, M.-C.; de Moreno, M.L.; Cebolla, A.; Lechuga, L.M. Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up. Biosens. Bioelectron. 2016, 79, 158–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhou, J.; Li, J. Construction of Plasmonic Nano-Biosensor-Based Devices for Point-of-Care Testing. Small Methods 2017, 1, 1700197. [Google Scholar] [CrossRef]
- Rohr, U.-P.; Binder, C.; Dieterle, T.; Giusti, F.; Messina, C.G.M.; Toerien, E.; Moch, H.; Schäfer, H.H. The Value of In Vitro Diagnostic Testing in Medical Practice: A Status Report. PLoS ONE 2016, 11, e0149856. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Wei, Q. Plasmonic molecular assays: Recent advances and applications for mobile health. Nano Res. 2018, 11, 5439–5473. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Zhou, H.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron. 2020, 165, 112349. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, K.; Li, Z.; Wang, P. Point of care testing for infectious diseases. Clin. Chim. Acta 2019, 493, 138–147. [Google Scholar] [CrossRef]
- Li, Z.; Leustean, L.; Inci, F.; Zheng, M.; Demirci, U.; Wang, S. Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol. Adv. 2019, 37, 107440. [Google Scholar] [CrossRef]
- Mejía-Salazar, J.R.; Rodrigues Cruz, K.; Materón Vásques, E.M.; Novais de Oliveira, O., Jr. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics. Sensors 2020, 20, 1951. [Google Scholar]
- Liu, J.; Jalali, M.; Mahshid, S.; Wachsmann-Hogiu, S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 2020, 145, 364–384. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Tian, S.; Zhao, W.; Liu, K.; Ma, X.; Guo, J. Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 2020, 145, 2828–2840. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.B.; Stewart, L.; King, D.; Cameron, H. Meeting the New FDA Standard for Accuracy of Self-Monitoring Blood Glucose Test Systems Intended for Home Use by Lay Users. J. Diabetes Sci. Technol. 2020, 14, 912–916. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; Li, J. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics. ACS Sens. 2017, 2, 857–875. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Chen, Z.; Wang, X.; Choo, J.; Chen, L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens. Bioelectron. 2018, 114, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Rao, H.; Luo, M.; Xue, X.; Xue, Z.; Lu, X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord. Chem. Rev. 2019, 398, 113003. [Google Scholar] [CrossRef]
- Liu, G.; Lu, M.; Huang, X.; Li, T.; Xu, D. Application of Gold-Nanoparticle Colorimetric Sensing to Rapid Food Safety Screening. Sensors 2018, 18, 4166. [Google Scholar] [CrossRef] [Green Version]
- Kailasa, S.K.; Koduru, J.R.; Desai, M.L.; Park, T.J.; Singhal, R.K.; Basu, H. Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. Trac Trends Anal. Chem. 2018, 105, 106–120. [Google Scholar] [CrossRef]
- Song, Y.; Wei, W.; Qu, X. Colorimetric Biosensing Using Smart Materials. Adv. Mater. 2011, 23, 4215–4236. [Google Scholar] [CrossRef]
- Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 2008, 37, 2028. [Google Scholar] [CrossRef]
- Zhao, W.; Brook, M.A.; Li, Y. Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays. ChemBioChem 2008, 9, 2363–2371. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Patskovskyy, S.; Bouvrette, P.; Luong, J.H.T.; Gedanken, A. The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids. J. Phys. Chem. B 2004, 108, 4046–4052. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Gao, Z. A Highly Sensitive Plasmonic DNA Assay Based on Triangular Silver Nanoprism Etching. ACS Nano 2014, 8, 4902–4907. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Liu, X.; Goyal, G.; Tran, N.T.; Shing Ho, J.C.; Wang, Y.; Aili, D.; Liedberg, B. Nanoplasmonic Sensing from the Human Vision Perspective. Anal. Chem. 2018, 90, 4916–4924. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Z.; Kannan, P.; Lin, Z.; Qiu, B.; Guo, L. Gold Nanorods as Colorful Chromogenic Substrates for Semiquantitative Detection of Nucleic Acids, Proteins, and Small Molecules with the Naked Eye. Anal. Chem. 2016, 88, 3227–3234. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Couture, M.; Zhao, S.S.; Masson, J.-F. Modern surface plasmon resonance for bioanalytics and biophysics. Phys. Chem. Chem. Phys. 2013, 15, 11190. [Google Scholar] [CrossRef]
- Masson, J.-F. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020, 145, 3776–3800. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Gao, X.; Liu, D.; Chen, X. Gold Nanoparticles for In Vitro Diagnostics. Chem. Rev. 2015, 115, 10575–10636. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Hossein Abtahi, S.M.; Vikesland, P.J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci. Nano 2015, 2, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; He, S.; Qiu, B.; Luo, F.; Guo, L.; Lin, Z. Noble Metal Nanoparticle-Based Multicolor Immunoassays: An Approach toward Visual Quantification of the Analytes with the Naked Eye. ACS Sens. 2019, 4, 782–791. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, W. In situ formed nanomaterials for colorimetric and fluorescent sensing. Coord. Chem. Rev. 2019, 387, 249–261. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862. [Google Scholar] [CrossRef]
- Sun, J.; Lu, Y.; He, L.; Pang, J.; Yang, F.; Liu, Y. Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances. TrAC Trends Anal. Chem. 2020, 122, 115754. [Google Scholar] [CrossRef]
- Santopolo, G.; Doménech-Sánchez, A.; Russell, S.M.; de la Rica, R. Ultrafast and Ultrasensitive Naked-Eye Detection of Urease-Positive Bacteria with Plasmonic Nanosensors. ACS Sens. 2019, 4, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Piriya, V.S.A.; Joseph, P.; Daniel, S.C.G.K.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Jia, H.; Zhang, L.; He, W.; Meng, Q. Shell surface sulfidation mediated the plasmonic response of Au@Ag NPs for colorimetric sensing of sulfide ions and sulfur. Appl. Surf. Sci. 2019, 481, 678–683. [Google Scholar] [CrossRef]
- Sharma, S.; Jaiswal, A.; Uttam, K.N. Colorimetric and Surface Enhanced Raman Scattering (SERS) Detection of Metal Ions in Aqueous Medium Using Sensitive, Robust and Novel Pectin Functionalized Silver Nanoparticles. Anal. Lett. 2020, 53, 2355–2378. [Google Scholar] [CrossRef]
- Lee, J.-S.; Han, M.S.; Mirkin, C.A. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093–4096. [Google Scholar] [CrossRef]
- Xianyu, Y.; Xie, Y.; Wang, N.; Wang, Z.; Jiang, X. A Dispersion-Dominated Chromogenic Strategy for Colorimetric Sensing of Glutathione at the Nanomolar Level Using Gold Nanoparticles. Small 2015, 11, 5510–5514. [Google Scholar] [CrossRef]
- Della Pelle, F.; Scroccarello, A.; Scarano, S.; Compagnone, D. Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices. Anal. Chim. Acta 2019, 1051, 129–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Zhao, H.; Lin, Y.; Zhu, N.; Ma, Y.; Mao, L. Colorimetric Detection of Glucose in Rat Brain Using Gold Nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 4800–4804. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.; Xue, X.; Wang, H.; Xue, Z. Gold nanorod etching-based multicolorimetric sensors: Strategies and applications. J. Mater. Chem. C 2019, 7, 4610–4621. [Google Scholar] [CrossRef]
- Liu, L.; Hao, Y.; Deng, D.; Xia, N. Nanomaterials-Based Colorimetric Immunoassays. Nanomaterials 2019, 9, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.; Duan, X.; Khamba, G.W.; Xie, Z. Highly sensitive “signal on” plasmonic ELISA for small molecules by the naked eye. Anal. Methods 2014, 6, 9616–9621. [Google Scholar] [CrossRef]
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef]
- Vogel, N.; Retsch, M.; Fustin, C.-A.; del Campo, A.; Jonas, U. Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chem. Rev. 2015, 115, 6265–6311. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Pournara, A.; Vellingiri, K.; Kim, K.-H. Nanomaterials for the sensing of narcotics: Challenges and opportunities. Trac Trends Anal. Chem. 2018, 106, 84–115. [Google Scholar] [CrossRef]
- Garzón, V.; Pinacho, D.G.; Bustos, R.-H.; Garzón, G.; Bustamante, S. Optical Biosensors for Therapeutic Drug Monitoring. Biosensors 2019, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Taddeo, A.; Prim, D.; Bojescu, E.-D.; Segura, J.-M.; Pfeifer, M.E. Point-of-Care Therapeutic Drug Monitoring for Precision Dosing of Immunosuppressive Drugs. J. Appl. Lab. Med. 2020, 5, 738–761. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Shaban, S.M.; Pyun, D.G.; Kim, D.-H. Solid-phase colorimetric apta-biosensor for thrombin detection. Thin Solid Film. 2019, 686, 137428. [Google Scholar] [CrossRef]
- Boonyuen, U.; Praoparotai, A.; Chamchoy, K.; Swangsri, T.; Warakulwit, C.; Suteewong, T. Controlled reversible assembly of gold nanoparticles as a new colorimetric and sensitive detection of glucose-6-phosphate dehydrogenase deficiency. Anal. Chim. Acta 2020, 1122, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Ding, L.; Gong, P.; Huang, J. A colorimetric detection of microRNA-148a in gastric cancer by gold nanoparticle–RNA conjugates. Nanotechnology 2020, 31, 095501. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, M.; Liu, Y.; Wan, S.; Cui, C.; Zhang, L.; Tan, W. Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. Angew. Chem. Int. Ed. 2017, 56, 11916–11920. [Google Scholar] [CrossRef]
- Sadeghi, S.; Hosseinpour-Zaryabi, M. Sodium gluconate capped silver nanoparticles as a highly sensitive and selective colorimetric probe for the naked eye sensing of creatinine in human serum and urine. Microchem. J. 2020, 154, 104601. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Tang, H.; Yu, R.-Q.; Jiang, J.-H. DNA-Programmed plasmonic ELISA for the ultrasensitive detection of protein biomarkers. Analyst 2020, 145, 4860–4866. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Lakshmi, A.D.; Ilanchelian, M. Smart phone assisted, rapid, simplistic, straightforward and sensitive biosensing of cysteine over other essential amino acids by β-cyclodextrin functionalized gold nanoparticles as a colorimetric probe. New J. Chem. 2020, 44, 12169–12177. [Google Scholar] [CrossRef]
- Kaviya, S. Rapid naked eye detection of arginine by pomegranate peel extract stabilized gold nanoparticles. J. King Saud Univ. Sci. 2019, 31, 864–868. [Google Scholar] [CrossRef]
- Simon, T.; Shellaiah, M.; Steffi, P.; Sun, K.W.; Ko, F.-H. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples. Anal. Chim. Acta 2018, 1023, 96–104. [Google Scholar] [CrossRef]
- Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano 2020, 14, 7617–7627. [Google Scholar] [CrossRef]
- Tatulli, G.; Pompa, P.P. An amplification-free colorimetric test for sensitive DNA detection based on the capturing of gold nanoparticle clusters. Nanoscale 2020, 12, 15604–15610. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Wu, W.B.; Yang, L.; Huang, C.Z. Sensitive detection of respiratory syncytial virus based on a dual signal amplified plasmonic enzyme-linked immunosorbent assay. Anal. Chim. Acta 2017, 962, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Laghari, S.; Khuhawar, M.Y. Colorimetric detection of fluoxetine using citrate-capped silver nanoparticles. Sn Appl. Sci. 2020, 2, 581. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Yu, L.; Sun, Y.; He, H. Visual and spectrophotometric detection of metformin based on the host-guest molecular recognition of cucurbit[6]uril-modified silver nanoparticles. Anal. Bioanal. Chem. 2019, 411, 7293–7301. [Google Scholar] [CrossRef]
- Chavada, V.D.; Bhatt, N.M.; Sanyal, M.; Shrivastav, P.S. Surface plasmon resonance based selective and sensitive colorimetric determination of azithromycin using unmodified silver nanoparticles in pharmaceuticals and human plasma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 170, 97–103. [Google Scholar] [CrossRef]
- Weng, S.; Feng, F.; Guo, H.; Wu, N.; Zheng, Y.; Lin, Z.; Lin, X. In Situ Growth of Plasmonic Gold Nanoparticles for the Direct and Sensitive Colorimetric Assay of Glucose. Bull. Korean Chem. Soc. 2017, 38, 378–383. [Google Scholar] [CrossRef]
- Phiri; Mulder; Vorster Plasmonic Detection of Glucose in Serum Based on Biocatalytic Shape-Altering of Gold Nanostars. Biosensors 2019, 9, 83. [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Zhao, M.; Guo, Y.; Ma, X.; Luo, F.; Guo, L.; Qiu, B.; Chen, G.; Lin, Z. Multicolor Colormetric Biosensor for the Determination of Glucose based on the Etching of Gold Nanorods. Sci Rep 2016, 6, 37879. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Cheng, F.; Zhang, Y.; Chen, L. Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods. Biosens. Bioelectron. 2017, 89, 932–936. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, L.; Liu, Y.; Liu, P.; Wang, W.; Luo, X. A morphology-based ultrasensitive multicolor colorimetric assay for detection of blood glucose by enzymatic etching of plasmonic gold nanobipyramids. Anal. Chim. Acta 2019, 1071, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, M.; Lv, B.; Liu, Y.; Liu, X.; Wei, W. Sensitive colorimetric detection of glucose and cholesterol by using Au@Ag core–shell nanoparticles. RSC Adv. 2016, 6, 35001–35007. [Google Scholar] [CrossRef]
- Jiang, C.; Huang, Y.; He, T.; Huang, P.; Lin, J. A dual-round signal amplification strategy for colorimetric/photoacoustic/fluorescence triple read-out detection of prostate specific antigen. Chem. Commun. 2020, 56, 4942–4945. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Ye, H.; Tang, D.; Tao, J.; Habibi, S.; Minerick, A.; Tang, D.; Xia, X. Platinum-Decorated Gold Nanoparticles with Dual Functionalities for Ultrasensitive Colorimetric in Vitro Diagnostics. Nano Lett. 2017, 17, 5572–5579. [Google Scholar] [CrossRef]
- Ma, X.; Lin, Y.; Guo, L.; Qiu, B.; Chen, G.; Yang, H.; Lin, Z. A universal multicolor immunosensor for semiquantitative visual detection of biomarkers with the naked eyes. Biosens. Bioelectron. 2017, 87, 122–128. [Google Scholar] [CrossRef]
- Wang, F.; Na, N.; Ouyang, J. A catalytic—regulated gold nanorods etching process as a receptor with multiple readouts for protein detection. Sens. Actuators B Chem. 2020, 318, 128215. [Google Scholar] [CrossRef]
- Huang, H.; Liu, L.; Zhang, L.; Zhao, Q.; Zhou, Y.; Yuan, S.; Tang, Z.; Liu, X. Peroxidase-Like Activity of Ethylene Diamine Tetraacetic Acid and Its Application for Ultrasensitive Detection of Tumor Biomarkers and Circular Tumor Cells. Anal. Chem. 2017, 89, 666–672. [Google Scholar] [CrossRef]
- Pang, H.-H.; Ke, Y.-C.; Li, N.-S.; Chen, Y.-T.; Huang, C.-Y.; Wei, K.-C.; Yang, H.-W. A new lateral flow plasmonic biosensor based on gold-viral biomineralized nanozyme for on-site intracellular glutathione detection to evaluate drug-resistance level. Biosens. Bioelectron. 2020, 165, 112325. [Google Scholar] [CrossRef]
- Gao, B.; Chen, X.; Huang, X.; Pei, K.; Xiong, Y.; Wu, Y.; Duan, H.; Lai, W.; Xiong, Y. Urease-induced metallization of gold nanorods for the sensitive detection of Salmonella enterica Choleraesuis through colorimetric ELISA. J. Dairy Sci. 2019, 102, 1997–2007. [Google Scholar] [CrossRef]
- Li, X.; Yin, C.; Wu, Y.; Zhang, Z.; Jiang, D.; Xiao, D.; Fang, X.; Zhou, C. Plasmonic nanoplatform for point-of-care testing trace HCV core protein. Biosens. Bioelectron. 2020, 147, 111488. [Google Scholar] [CrossRef]
- Yin, C.; Wu, Y.; Li, X.; Niu, J.; Lei, J.; Ding, X.; Xiao, D.; Zhou, C. Highly Selective, Naked-Eye, and Trace Discrimination between Perfect-Match and Mismatch Sequences Using a Plasmonic Nanoplatform. Anal. Chem. 2018, 90, 7371–7376. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, A.; Zhang, L.; Hu, D.; Salmain, M.; Mazouzi, Y.; Flack, R.; Liedberg, B.; Boujday, S. Core–Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing. ACS Appl. Mater. Interfaces 2019, 11, 46462–46471. [Google Scholar] [CrossRef] [PubMed]
- Mohd Bakhori, N.; Yusof, N.; Abdullah, J.; Wasoh, H.; Md Noor, S.; Ahmad Raston, N.; Mohammad, F. Immuno Nanosensor for the Ultrasensitive Naked Eye Detection of Tuberculosis. Sensors 2018, 18, 1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami, S.; Mehdinia, A.; Niroumand, R.; Jabbari, A. Enhanced LSPR performance of graphene nanoribbons-silver nanoparticles hybrid as a colorimetric sensor for sequential detection of dopamine and glutathione. Anal. Chim. Acta 2020, 1120, 11–23. [Google Scholar] [CrossRef]
- Mao, J.; Lu, Y.; Chang, N.; Yang, J.; Zhang, S.; Liu, Y. Multidimensional colorimetric sensor array for discrimination of proteins. Biosens. Bioelectron. 2016, 86, 56–61. [Google Scholar] [CrossRef]
Target Analyte | Plasmonic Nanoparticle/Sensing Scheme/Biological Receptor | Color Change | LOD (Naked-Eye/Spectroscopy) (Biological Sample) | Reference |
---|---|---|---|---|
Protein-related and other biological analytes | ||||
Thrombin | AuNPs modified on 3-aminopropyl-triethoxysilane (APTES)-coated substrates/Dual aptamer | Red to purple | 3 mg mL−1/1.33 μg mL−1 (100-fold—diluted human serum) | [52] |
Glucose-6-phosphate dehydrogenase (G6PD) variants | AuNPs segregation in the presence of NADPH (HAuCl4, mediated) | Bluish to red | 8.38 mM/Not stated (assay buffer) | [53] |
Micro RNA-148a | AuNPs conjugated with oligonucleotides (sandwich hybridization reaction between the conjugated probes and target RNA using “tail-to-tail” or “Head-to-Tail (HT)” alignment) | Red to purple | ~1.9 nM (Hybridization buffer) | [54] |
Exosomal proteins | AuNPs aggregation in high salt conditions (interaction with a panel of aptamers) | Red to blue | Not stated | [55] |
Creatinine | Ag NPs capped with sodium-D gluconate (hydrogen bonds between target analyte and the hydroxyl groups of gluconates) | Yellow to red | 0.2 nM (serum 200-fold and urine 1000-fold dilutions times) | [56] |
PSA (prostate specific antigen) and CEA (carcinoembryonic antigen) | AuNPs modified with biotin-labeled DNA probe using two enzyme-free and isothermal nucleic acid amplification methods: hybridization chain reaction (HCR) and catalyzed hairpin assembly (CHA) | Red to purple | 1 pg mL−1 (five human serum samples) | [57] |
Cysteine | AuNPs functionalized with β-cyclodextrin (Au-thiol bonds via the thiol group of cysteine molecules) | Wine to red purple | 25.47 × 10−9 mol dm−3 (human urine and serum samples) | [58] |
Arginine | Four AuNPs biosynthesized from extract of pomegranate plant (effect of size, shape of the nanoparticles and pH of the medium on the detection of arginine) | Violet to brown (AuNP1); Red to brown (AuNP2); Blue to black (AuNP3) and ash to black (AuNP4) | 10−6 M range (aqueous solution) | [59] |
Clenbuterol, ractopamine | AuNPs functionalized with glutamic acid (Glu) and polyethylenimine (PE) (via NaBH4 reduction method) | Wine red to purple blue | 200 nM/0.93–0.98 nM (assay buffer) | [60] |
Bacteria and viruses | ||||
SARS-CoV 2 | AuNPs capped with suitably designed thiol-modified antisense oligonucleotides (ASOs) specific for N-gene (nucleocapsid phosphoprotein) | Violet to dark blue | 0.18 ng mL−1 (clinical specimen) | [61] |
Urease Bacteria | AuNPs and bovine serum albumin (BSA) induced interaction of positively charged polymer poly-(diallyl dimethylammonium chloride) (PDDA) magnetic beads with negatively charged bacteria or proteins | Red−mauve to gray−blue−violet colors | 101 cells mL−1 (PBS solution) | [37] |
Escherichia coli genomic DNA | AuNP-cluster capturing onto the surface of magnetic microbeads to detect DNA | Pink/red to wine | 7.5 × 102 CFU/μL (assay buffer) | [62] |
Respiratory Syncytial virus | AuNPs aggregation induced by alkaline phosphatase combined with the loading capacity of magnetic beads and the stimulation effect of zinc ion for signal enhancement/Dual-signal amplified plasmonic ELISA | Gray to red | 0.021 pg mL−1 (buffer) and 0.035 pg mL−1 (spiked serum samples) | [63] |
Pharmaceuticals | ||||
Fluoxetine | Silver nanoparticles capped with citrate | Yellow to dark brown | 0.18 mg mL−1 (human urine and blood serum samples) | [64] |
Metformin | Silver nanoparticles modified with cucurbit(6)]uril (CB(6) (in the presence of AgNOs, AgNPs combine with the carbonyl portals of CB(6) | Light yellow to light red | 75 μM (50 times diluted urine samples) | [65] |
Azithromycin | Silver nanoparticles capped with citrate | Bright yellow to purple | 0.2 μM (spiked human plasma) | [66] |
Target Analyte | Plasmonic Nanoparticle/Sensing Scheme/Principle | Color Change | LOD (Naked-Eye/Spectroscopy)/(Biological Sample) | Reference |
---|---|---|---|---|
Biological analytes | ||||
Glucose | AuNPs oxidized by glucose oxidase (reduction of HAuCl4 by H2O2)/Growth | Colorless to red | 6.28 μM (assay buffer) | [67] |
Gold nanostars (AuNSs) generated by the deposition of silver (oxidation of glucose)/shape altering | Blue to deep purple | 0.04–0.12 mmol/L (MES buffer/1000 times diluted serum) | [68] | |
Gold nanorods (AuNRs): HRP-H2O2-3,3′,5,5′-tetramethylbenzidine (TMB) system coupled with an enzymatic reaction to produce H2O2 in order to etch gold nanorods/Etching | From reddish brown, gray, green, blue, purple, pink to yellow | 0.1 to 0.9 mM/1.0–8.0 mM (buffer/ten times diluted human serum) | [69] | |
AuNRs: combination of oxidase-catalyzed glucose oxidation and molybdate-catalyzed etching of GNRs by H2O2 | Blue to red to colorless | 3 μM/0.45 mM (naked-eye buffer/spiked urine samples) | [70] | |
Gold nanobipyramids (AuNBPs): catalysis of horseradish peroxidase (HRP), H2O2 (generated from glucose oxidation) broken down into hydroxyl radicals (·OH) with strong oxidizability | Green and blue to purple pink | 0.02 mM, (100 times diluted serum samples from healthy people and diabetes patients) | [71] | |
Au@Ag core-shell NPs involved in situ growth of silver nanoparticles (AgNPs) on the surface of thiol-PEG-capped gold nanoparticles | Orange to red | 0.24 mM and 0.15 mM (20 times human urine and serum samples) | [72] | |
PSA | Silica coated Au@Ag core–shell nanorod (Au@Ag@SiO2) Etching/ELISA system(triple read-out including colorimetric, fluorescence and photoacoustic detection)/Dual signal amplification (glucose oxidase (GOx) and magnetic beads) | Green to pink | 0.1–1.5 ng mL−1 (ELISA/Fluorescence)/(assay buffer) | [73] |
AuNPs coated with ultrathin Platinum/Dual functionality (plasmonic and catalytic activities)/Lateral flow immunoassay | Blue to red | 2 ng mL−1 (real human serum samples) | [74] | |
PSA/CEA | AuNRs etching by 3,3′,5,5′-tetramethylbenzidine (TMB), TMB2+/Immunoassay (horseradish peroxidase as the enzyme label and TMB-AuNRs mixture as the chromogenic substrate) | Brown to blue to purple to pink to colorless to yellow | 2.5 ng mL−1 (PSA) and 75 pg mL−1 (CEA) (human serum samples) | [75] |
Proteins | AuNRs etching/Oxidization of TMB into TMB2+ through H2O2 | Gray to purple to blue to pink | Not stated (identification through hierarchical cluster analysis.) | [76] |
Circulating tumor cells | Gold nanorods etching/Peroxidase-like activity of Ethylene diamine tetra acetic acid (EDTA)(decomposition of H2O2) | Purple to red | 7.52 × 10−15 U/mL (CA15-3 and PSA: human serum samples) | [77] |
Glutathione | AuNPs growth/Gold-viral biomineralized nanoclusters (AuVCs) used as nanozymes/Smartphone auto analysis | Deep purple | 9.80 μM (phosphate-buffered saline buffer) | [78] |
Bacteria and viruses | ||||
Salmonella enterica Choleraesuis | AuNPs enzyme-mediated etching/Silver metallization (urease induced)/ELISA format | Blue to brownish yellow (multicolor) | 1.21 × 101–1.21 × 102 CFU/mL CFU/mL (spiked pasteurized whole milk) | [79] |
Hepatitis C virus core protein | AuNPs growth/catalytic hairpin assembly (CHA) amplification reaction combined with polystyrene (PS) nanofibrous membrane | Red to blue | 1.0 × 10−4 pg mL−1 (human serum samples) | [80] |
Human immunodeficiency virus (HIV) DNA | AuNPs growth/catalytic hairpin assembly (CHA) and biocatalytic activity of hemin/G-quadruplex (DNA zyme)/of CHA peroxidase (HRP) and decomposition catalysis of H2O2 | Red to blue | Not stated/Single- and two-base mismatch at 10−11 M and 10−8 M, (assay buffer) | [81] |
Staphylococcal enterotoxin A (SEA) | Plasmonic core−shell NPs: Au@AgNPs and Ag@AuNPs/Modification of silver shell thickness or composition | Orange to red | 0.2 and 0.4 nM for Au@AgNPs and Ag@AuNPs (assay buffer) | [82] |
Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10) | AuNPs growth/ELISA format (catalase-labeled antibodies, addition of gold (III) chloride, hydrogen peroxide mediated) | Red to blue | 0.01 g mL−1 (sputum samples) | [83] |
Hybrid biosensing strategies | ||||
Dopamine and glutathione | Hybridization of graphene nanoribbons and silver nanoparticles/Etching and Aggregation of AgNPs | Red to gray | 0.04 mM (dopamine) and 0.23 mM (glutathione) (5–100-fold diluted human serum samples) | [84] |
Protein conformations | AuNPs decorated with specific and nonspecific oligonucleotides/Aggregation (salt) and Growth (HAuCl4 using NH2OH) | Purple to red to blue | 50 nM (50% diluted urine samples) | [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauriz, E. Clinical Applications of Visual Plasmonic Colorimetric Sensing. Sensors 2020, 20, 6214. https://doi.org/10.3390/s20216214
Mauriz E. Clinical Applications of Visual Plasmonic Colorimetric Sensing. Sensors. 2020; 20(21):6214. https://doi.org/10.3390/s20216214
Chicago/Turabian StyleMauriz, Elba. 2020. "Clinical Applications of Visual Plasmonic Colorimetric Sensing" Sensors 20, no. 21: 6214. https://doi.org/10.3390/s20216214
APA StyleMauriz, E. (2020). Clinical Applications of Visual Plasmonic Colorimetric Sensing. Sensors, 20(21), 6214. https://doi.org/10.3390/s20216214