
sensors

Article

Fuzzy Adaptive-Sampling Block Compressed
Sensing for Wireless Multimedia Sensor Networks

Sovannarith Heng 1,2 , Phet Aimtongkham 1, Van Nhan Vo 3,4, Tri Gia Nguyen 1,4 and
Chakchai So-In 1,*

1 Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
sovannarith@rupp.edu.kh (S.H.); phet@kkumail.com (P.A.); nguyengiatri@duytan.edu.vn (T.G.N.)

2 Department of Computer Science, Faculty of Science, Royal University of Phnom Penh,
Phnom Penh 12156, Cambodia

3 International School, Duy Tan University, Danang 550000, Vietnam; vonhanvan@dtu.edu.vn
4 Institutes of Research and Development, Duy Tan University, Danang 550000, Vietnam
* Correspondence: chakso@kku.ac.th

Received: 13 September 2020; Accepted: 28 October 2020; Published: 31 October 2020
����������
�������

Abstract: The transmission of high-volume multimedia content (e.g., images) is challenging for
a resource-constrained wireless multimedia sensor network (WMSN) due to energy consumption
requirements. Redundant image information can be compressed using traditional compression
techniques at the cost of considerable energy consumption. Fortunately, compressed sensing (CS) has
been introduced as a low-complexity coding scheme for WMSNs. However, the storage and processing
of CS-generated images and measurement matrices require substantial memory. Block compressed
sensing (BCS) can mitigate this problem. Nevertheless, allocating a fixed sampling to all blocks is
impractical since each block holds different information. Although solutions such as adaptive block
compressed sensing (ABCS) exist, they lack robustness across various types of images. As a solution,
we propose a holistic WMSN architecture for image transmission that performs well on diverse
images by leveraging saliency and standard deviation features. A fuzzy logic system (FLS) is then
used to determine the appropriate features when allocating the sampling, and each corresponding
block is resized using CS. The combined FLS and BCS algorithms are implemented with smoothed
projected Landweber (SPL) reconstruction to determine the convergence speed. The experiments
confirm the promising performance of the proposed algorithm compared with that of conventional
and state-of-the-art algorithms.

Keywords: adaptive sampling; block compressed sensing; feature selection; fuzzy logic system;
wireless multimedia sensor networks

1. Introduction

The wireless sensor network (WSN), which is composed of a large number of tiny
resource-constrained wireless sensor nodes (SNs), has become a pervasive emerging technology [1].
WSNs can be deployed for use in various fields, e.g., military applications, disaster management,
industry, environmental monitoring, and agricultural farming [2]; consequently, they have received
considerable attention from the research community [3] and have become a pillar of the Internet of
Things (IoT) [4]. Challenges such as routing and clustering, security and privacy, and localization and
coverage [1–3,5,6] have been investigated. However, most of the related studies have focused on the
collection of scalar data (e.g., temperature, pressure, humidity, or object locations), followed by the
transmission of the collected data via low-bandwidth data streams to a base station (BS) [3].

The advent of inexpensive hardware, such as complementary metal-oxide-semiconductor (CMOS)
cameras and microphones, that can be integrated with SNs has allowed multiple types of sensors to

Sensors 2020, 20, 6217; doi:10.3390/s20216217 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8649-1079
https://orcid.org/0000-0003-4578-9925
https://orcid.org/0000-0003-1026-191X
http://dx.doi.org/10.3390/s20216217
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/21/6217?type=check_update&version=4

Sensors 2020, 20, 6217 2 of 29

be combined to construct wireless multimedia sensor networks (WMSNs) [4]. As a result, the focus
of researchers studying WSNs is also shifting towards WMSNs. The goal is to enable the efficient
transmission of not only scalar data but also multimedia streams, such as still images and video and
audio streams [3,6]. Similar to WSNs, WMSNs are resource-constrained networks, and multimedia data
are naturally large in size; therefore, many challenges exist in processing and transmitting multimedia
content over resource-constrained WMSN networks because SNs typically have limited capacities in
terms of processing power, memory, battery lifetime, and throughput. Furthermore, during wireless
transmission, WMSNs also suffer from problems such as interference, multipath fading, shadowing
and high signal attenuation, which can cause high bit-error rates and packet congestion [7].

Fortunately, images contain large amounts of redundant information that can be exploited to
reduce their volume [8]. Traditional image compression techniques (e.g., JPEG, JPEG2000, and SPIHT),
which are based on the Nyquist sampling theorem, can substantially reduce the size of an image while
ensuring satisfactory image quality; however, these methods are unsuitable for implementation in
single SNs because they are complicated and easily affected by channel errors during transmission.
For instance, losing even a few bits during image transmission can threaten the success of the
reconstruction process [9].

To mitigate this problem, compressed sensing (CS) was recently presented. Developed in 2004,
CS has recently gained considerable attention from researchers because it can be used to compress
multimedia data such as images and videos effectively [9–17]. Moreover, in the fields of data
compression and communication, CS is one of the best theories due to its performance and nonadaptive
coding, and its encoding and decoding operations are independent [18]. CS also combines image
acquisition and image compression into a single process that does not require a raw image [19].
Since CS requires fewer samples than do the conventional methods, the amount of data collected can be
drastically reduced. Moreover, CS is resistant to transmission errors because the image reconstruction
process is only slightly affected by sampling losses during image transmission [14]. Therefore, CS is
suitable for image acquisition and processing with massive data in WMSNs. However, the image
and measurement matrices generated by CS still require large amounts of storage space and high
computational power.

Block compressed sensing (BCS) has been presented to address these problems [20]. In BCS,
the original image is divided into equal-sized nonoverlapping blocks to reduce memory consumption
and complexity. Each image block is then processed individually using the same fixed measurement
matrix and reconstructed independently at the decoder, typically a BS. However, allocating the same
fixed sampling to all blocks without considering the feature information in each block is impractical,
because not all blocks in an image contain the same useful information.

Therefore, adaptive block compressed sensing (ABCS) algorithms have been proposed [9,14,16,21,22]
to address the issues of BCS. These ABCS algorithms adaptively allocate the sampling to each block
based on an image feature, i.e., either saliency, standard deviation, edge, or texture. Sun et al. [9]
exploited texture features to adaptively sample each block in their ABCS algorithm. The texture
contrast in each block was computed by measuring the texture variations of each pixel in the block.
Zhang et al. [14] proposed a standard-deviation-based ABCS algorithm in which standard deviation
values are utilized to allocate the sampling for each block. The authors of [16] used saliency values to
adaptively determine the sampling of each block. Distinct regions in an image that attract viewers’
attention are called salient objects. The saliency value is generated from the contrast between CS
measurements. Based on observation, Zhou et al. [23] introduced an irregular-block-based ABCS
algorithm in which the size of each block varies based on the saliency values in each block, which are
also used to determine the sampling for the CS process. Wang et al. [21] exploited differences in the
texture information in images to allocate the sampling for each block. The limitation of these studies is
that they used only one feature for different types of images; however, some features may impact the
quality of the reconstructed image.

Sensors 2020, 20, 6217 3 of 29

Note that most of the abovementioned studies considered a fixed-base sampling allocated to
all blocks before additional sampling is allocated based on relevant features. However, methods
based on fixed base sampling do not produce optimal results because unimportant blocks (e.g., black
background blocks) are assigned the same base sampling as more important blocks.

Although various image features have been explored by these ABCS algorithms, the results show
that they perform well only for specific types of images. For example, using standard deviation as
a feature to allocate the sampling for each block may produce good results only for low-intensity images.
Therefore, determining the adaptive sampling for each block remains a challenging problem that must
be approached carefully because it can affect the quality of the reconstructed images. Although ABCS
algorithms offer improved image compression efficiency, they have not considered blocking artifacts,
which may lead to unsatisfactory image reconstruction quality [24]. Mun and Fowler [25] proposed
a BCS-based smoothed projected Landweber reconstruction algorithm (BCS-SPL) to eliminate blocking
artifacts; however, this technique can still produce unsatisfactory reconstructed images because it
uses Wiener filtering and thresholding methods as well as a fixed convergence speed (limiting the
number of possible iterations, which potentially affects the achievable accuracy). Note that in the fixed
scheme, a high convergence speed causes greater complexity during image reconstruction, while a low
convergence speed results in reconstructed images with poor quality [26].

Thus, the main challenges in developing an ABCS algorithm are to select appropriate features,
assign a suitable sampling to each block based on the selected features, and adaptively determine the
convergence speed of the reconstruction algorithm to yield reconstructed images with acceptable quality.

In WSNs, fuzzy logic systems (FLSs) have been utilized to enhance decision-making,
reduce resource consumption, boost performance, and prolong the overall network lifetime [6].
Image data contain considerable ambiguity, and an FLS can effectively represent such uncertainty
in image data. An FLS provides an excellent mathematical framework for addressing information
uncertainty, and FLSs have been broadly used to model complex and high-dimensional nonlinear
real-life systems [27]. FLSs can also be applied in various real-time applications and hardware
implementations. For instance, the authors of [28,29] applied FLSs in a near-space hypersonic vehicle
as well as in a robotic airship. An FLS is also a well-known technique for selecting appropriate weights
over multiple inputs, various memberships, and outputs [6], and it is suitable for implementation in
SNs [30].

Therefore, to overcome the abovementioned issue faced in ABCS, we propose a novel CS
architecture that applies an FLS-based approach to the task of image transmission in WMSNs and
improves the quality of the reconstructed images. Our architecture improves upon the current
research by considering two types of features instead of one, a flexible base sampling and an adaptive
convergence speed. The contributions of this paper are summarized below.

• We design an FLS to select suitable features that are used to adaptively assign the sampling for
each block.

• We also introduce an FLS to adaptively determine the base sampling for each block.
• We enhance the reconstruction process by adaptively determining the convergence speed using

an FLS.

The remainder of this paper is organized as follows. Section 2 describes the related works.
In Section 3, we present the proposed fuzzy ABCS algorithm and the reconstruction architecture for
WMSNs in detail. Section 4 reports the results of experiments, and Section 5 concludes this paper and
suggests directions for future work.

2. Related Works

BCS was pioneered by Gan [20], who proposed that an original image can be divided into
many square blocks of equal size and that the same sampling can then be applied to all the blocks.
This BCS approach reduces both the computational complexity and the memory requirements for

Sensors 2020, 20, 6217 4 of 29

image processing. Nevertheless, as mentioned above, assigning the same fixed sampling to all the
blocks of an image without considering the specific features in each block is not an optimal solution,
because some image blocks contain crucial information, while others may not.

Recently, many ABCS algorithms have been proposed [9,13,14,16,21–23] to address the various
issues that arise with BCS. These ABCS algorithms assign a different sampling to each block based
on its features (e.g., textures, edges, standard deviation, or saliency). In [21], an ABCS algorithm that
utilized gray entropy based on image texture information was proposed. Each block contains different
texture information, and the image entropy is used to calculate a corresponding texture information
value. This method provides good compression and improves the image quality to some degree, but
the complexity at the decoder is high. Moreover, a smooth image contains less texture information;
consequently, at a low sampling rate, there may be insufficient information to ensure good image
reconstruction. An ABCS algorithm based on edge features was introduced in [24] that reduces image
distortions, but only for selected images. Furthermore, analogous to texture, edge information can
produce better results at high sampling rates (number of samples per unit time) and it can be measured
in Hertz [26]) since more detailed information of an image remains.

Zhang et al. [14] proposed a standard-deviation-based ABCS algorithm (STD-ABCS) that consists
of both fixed base sampling and additional adaptive sampling and involves the following steps.
First, fixed base sampling is computed. Then, the standard deviation of each block is calculated to
explore the feature information and to define an additional adaptive sampling strategy for each block.
At the decoder, the image is reconstructed using BCS-SPL. Only the fixed base sampling is used to
reconstruct the image when fast reconstruction and basic image quality are needed, while both fixed
base and the additional adaptive sampling are used to achieve higher image quality. This method offers
improved image reconstruction quality over the conventional BCS algorithm. However, using the
standard deviation is not optimal for allocating sampling to all images because the feature information
distribution in images is typically nonuniform. Moreover, the results of this algorithm are equal to
or worse than those of BCS at low sampling rates. Additionally, it has been reported that STD-ABCS
performs better on low-intensity images than on other types of images.

Recently, some studies [16,23,31] have focused on exploiting saliency values in images for ABCS;
such algorithms are called SABCS algorithms. The salient objects in images are distinct regions that
attract viewers’ attention [32]. Yu et al. [31] presented a method for extracting saliency values using the
pulsed cosine transform (PCT). High sampling is applied to high-saliency blocks, while low sampling
is applied to low-saliency blocks. This method enhances the image reconstruction quality compared
with conventional BCS. Nonetheless, when the block size is very large, this method cannot optimally
allocate the sampling to each block because a single block may contain both high and low saliency.

To address the above problem, Zhou et al. [23] proposed a saliency-based adaptive partitioning
algorithm for CS. In this approach, the size of the image blocks is not fixed; k-means clustering is used
to adaptively partition the image blocks based on the saliency of each block’s neighbors. The goal of
this approach is to adjust the size of each block to minimize the saliency differences among blocks.
Then, adaptive sampling of each block is performed based on the blocks’ saliency values. The blocks
are restored to normal size before the image reconstruction process begins. This method slightly
improves the quality of the reconstructed images compared with conventional BCS. Unfortunately,
using k-means clustering to adaptively determine the block size becomes more complicated as the
number of blocks increases. Furthermore, this method improved the performance only on selected
simple images and with a very large block size.

Li et al. [16] presented a saliency-based adaptive CS method using measurement contrast. In this
approach, the saliency values of an image are extracted using the contrast between CS measurements
to avoid the original image sampling approach, which causes CS to lose its superiority. The authors
also proposed a reconstruction algorithm called the weighted global recovery model. However, the
performance evaluation showed that this method obtained better results than the compared algorithms
only when the sampling rate was less than 0.5. Moreover, the abovementioned ABCS algorithms

Sensors 2020, 20, 6217 5 of 29

generated fixed values for the base sampling of each block before assigning additional adaptive
sampling based on the relevant features. Using a fixed base sampling for each block, these methods
cannot produce improved results for all image types and sampling rates.

An ABCS algorithm that uses the spatial entropy of an image was proposed in [13]. Since spatial
entropy captures considerable information (such as edge and texture information) it was used in this
scheme to assign the sampling for each block. To reduce the encoder complexity, a linear model was
applied to reconstruct each block based on a matrix-vector product. However, the results of this
algorithm showed that it performs well only on selected images.

Liu et al. [33] adopted principal component analysis (PCA) to decompose each image patch
for their CS-based image-coding technique, which reduced the complexity at the encoder to that
of JPEG2000. However, JPEG2000 complexity is still too high for implementation in a single SN,
and because this method depended on multiple iterations, the overall computational complexity at the
decoder remained high.

The authors of [10] proposed an ABCS algorithm that used the error between blocks. In this
algorithm, the image is divided into equal-sized smaller blocks, and the error between each block and
its adjacent blocks is then determined. A structural complexity value for each block is then assigned
based on the determined errors and used to assign the sampling for each block. This algorithm
improves the quality of the reconstructed images; however, finding the error between each pair of
blocks requires more computational power and memory than is typically available in a single SN.
Moreover, the results of this study were compared only with those of the conventional BCS algorithm.

On the decoder side, many image reconstruction algorithms have been presented to reduce the
computational cost and improve the reconstructed image quality [20,34–38]. In [20], Gan et al. proposed
a fast calculation approach for BCS in which the reconstruction algorithm involves two main processes:
Hard thresholding and projection into convex sets. This approach reduces the computational complexity
and improves the reconstructed image quality compared with signal reconstruction algorithms such
as orthogonal matching pursuit (OMP) [39], stagewise OMP (StOMP) [40], and gradient projection
(GP) [37]. However, the blocking artifacts produced by BCS remain.

Mun et al., proposed the BCS-SPL reconstruction algorithm [38], which is based on the Landweber
iteration method. This algorithm uses a Wiener filter to remove blocking artifacts. Later, a multiscale
variant algorithm (MS-BCS-SPL) [25] was presented as an enhanced version of BCS-SPL based on
the sampling of different decompositional levels in the transform domain. However, MS-BCS-SPL is
not a full CS reconstruction algorithm because the low-frequency part of the wavelet decomposition
results is not measured by the random measurement matrix. However, MS-BCS-SPL can be used as
a reference for research on CS reconstruction algorithms [24].

Aside from ABCS algorithms and associated reconstruction processes, FLSs are a pioneering form
of computational intelligence (CI) and have been applied in many fields to improve the handling
of systems in which uncertainty exists and for which only incomplete information is available [41].
Many studies have adopted FLSs in WSNs as well as in image processing due to their effectiveness at
improving decision-making. Heng et al. proposed a distributed-image compression architecture for
WSNs that uses an FLS; this architecture distributes image compression tasks among the members in
a cluster and uses fuzzy logic to form the clusters, select the nodes to perform each distributed task,
and determine the relay nodes to forward the compressed data to the BS [6].

An energy-efficient approach was proposed in [42] that utilizes an FLS to optimize the energy
consumption at high bandwidths to directly benefit WMSNs. The FLS is used to determine which
underutilized Wi-Fi access points should be switched off, allowing the proposed method to save energy
while maintaining acceptable network performance. Hassan et al. [43] presented a hybrid method
based on median filters and fuzzy logic to identify and remove the salt-and-pepper impulse noise
(SPN) that appears during image acquisition or transmission.

In the abovementioned works, all the ABCS studies adopt only one feature to allocate the
samplings, which causes these algorithms to lack robustness when confronted with various types of

Sensors 2020, 20, 6217 6 of 29

images. Some studies have also utilized fixed-base samplings, that prevent their ABCS techniques
from performing better on highly rich features of images. Therefore, we propose an ABCS algorithm
that adopts two well-known image features: Standard deviation and saliency for generating sampling
adaptively. Moreover, we apply adaptive convergence speed for image reconstruction to improve the
reconstructed image quality.

3. Proposed Architecture

In this section, we discuss our proposed architecture in detail, which is divided into six main phases,
namely, setup, image blocking, feature detection, adaptive sampling, CS measurement, and image
reconstruction, as illustrated in Figure 1.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 29

adaptively. Moreover, we apply adaptive convergence speed for image reconstruction to improve
the reconstructed image quality.

3. Proposed Architecture

In this section, we discuss our proposed architecture in detail, which is divided into six main
phases, namely, setup, image blocking, feature detection, adaptive sampling, CS measurement, and
image reconstruction, as illustrated in Figure 1.

Figure 1. Overview of the proposed adaptive block compressed sensing (ABCS) architecture for

wireless multimedia sensor networks (WMSNs).

• Setup phase: Our proposed scheme starts with a setup phase that generates the measurement
matrix and defines some parameters. The measurement matrix and parameters are loaded into
each SN before deployment to avoid wasting transmission bandwidth during the image
transmission phase. This approach reduces the energy consumption and prolongs SN lifetime.

• Image blocking phase: After deployment, when an original image is captured by an SN, it is
divided into equal-sized smaller blocks to reduce the computational complexity and memory
consumption of image processing, allowing a single SN to process these blocks effectively.

• Feature detection phase: As soon as image blocking is complete, two types of image features,
i.e., saliency and standard deviation, are computed for each block. Only one of these two feature
types will be selected to allocate sampling for each block in the next phase.

• Adaptive sampling phase: This phase is responsible for allocating suitable sampling to each
block to improve the image quality. Before the sampling is generated, an FLS is used to
determine which feature will be used for calculation. This phase consists of four main subphases:
Feature selection, base sampling determination, adaptive sampling determination, and
oversampling adjustment, each of which is discussed in detail below.

• CS measurement phase: CS measurements are performed to compress the size of each block
based on the adaptive sampling calculated during the adaptive sampling phase (i.e., by
multiplying a random measurement matrix with a vector of the block). Then, the compressed

Figure 1. Overview of the proposed adaptive block compressed sensing (ABCS) architecture for
wireless multimedia sensor networks (WMSNs).

• Setup phase: Our proposed scheme starts with a setup phase that generates the measurement
matrix and defines some parameters. The measurement matrix and parameters are loaded
into each SN before deployment to avoid wasting transmission bandwidth during the image
transmission phase. This approach reduces the energy consumption and prolongs SN lifetime.

• Image blocking phase: After deployment, when an original image is captured by an SN, it is
divided into equal-sized smaller blocks to reduce the computational complexity and memory
consumption of image processing, allowing a single SN to process these blocks effectively.

• Feature detection phase: As soon as image blocking is complete, two types of image features,
i.e., saliency and standard deviation, are computed for each block. Only one of these two feature
types will be selected to allocate sampling for each block in the next phase.

• Adaptive sampling phase: This phase is responsible for allocating suitable sampling to each
block to improve the image quality. Before the sampling is generated, an FLS is used to determine
which feature will be used for calculation. This phase consists of four main subphases: Feature

Sensors 2020, 20, 6217 7 of 29

selection, base sampling determination, adaptive sampling determination, and oversampling
adjustment, each of which is discussed in detail below.

• CS measurement phase: CS measurements are performed to compress the size of each block based
on the adaptive sampling calculated during the adaptive sampling phase (i.e., by multiplying
a random measurement matrix with a vector of the block). Then, the compressed image blocks
are transmitted individually among the SNs in hop-by-hop fashion until they arrive at the BS.

• Image reconstruction phase: After the compressed image blocks have arrived at the BS, each block
is reconstructed independently; then, the BS restores the reconstructed image from all the
reconstructed image blocks. An FLS is also utilizd in this phase to calculate appropriate weights
for the reconstruction algorithm to enhance the quality of the reconstructed image.

The details of all six phases are discussed in the following subsections. The notations used in this
paper are shown in Table 1.

Table 1. The overall notations used in this study.

Notation Description

C 2D discrete cosine transform (DCT)
C−1 2D DCT inverse transform

sign(.) Signum function
SM Saliency map
G Gaussian low-pass filter

STD Standard deviation
Sal Saliency
xi The i-th image block

xi(j) The value of the j-th pixel of the i-th image block
NB The size of the vector representing the block

mean(.) The function used to calculate the mean value.
FSBi The feature selection computation for the i-th block
FSC The fuzzy output of the FLS for feature selection
FST The constant feature selection threshold

NFSBSal The number of blocks for which saliency was selected as the
preferred feature type

TB The total number of blocks in the image.
FF The feature fraction

INTi The intensity of the i-th block
MG The maximum grayscale value in the image (e.g., 255)
M0

i The base sampling for the i-th block
ASi The adaptive sampling for the i-th block
Fi The feature (e.g., standard deviation or saliency) for the i-th block
N The size of the image vector

rnd(.) The function that rounds its argument to the nearest integer
yi The sampling vector of the i-th block
ϕi The measurement matrix of i-th block

3.1. Setup

During the setup phase (the first phase of our proposed method) the measurement matrix that
will be used for the CS process is generated, and several parameters (e.g., block size, sampling rate,
and thresholds) are determined. To save bandwidth and energy for the SNs, the resulting matrix and
parameters are loaded into each SN before the SNs are deployed. As a result, the SNs need to transfer
only compressed images to the BS during the image transmission phase, allowing the SNs to save
energy. The measurement matrix and other parameters are used both by the SNs to encode the images
and by the BS to decode the images. After the measurement matrix and all the parameters have been
stored in the SNs, the SNs are deployed.

Sensors 2020, 20, 6217 8 of 29

3.2. Image Blocking

The second phase of our proposed architecture involves image blocking. After deployment,
the camera-equipped SNs begin to capture images. Immediately after being captured by an SN,
the original large image is divided into equal smaller blocks (e.g., 16 × 16 or 32 × 32), and each
block is processed independently, as shown in Figure 1. Although image blocking degrades the
image reconstruction quality, it also reduces the computational complexity and memory consumption
required for image processing, allowing the resource-constrained SNs to implement CS and transmit
the compressed images to their destination. Two main features must be computed for each block:
Saliency and standard deviation, as discussed in Sections 3.3.1 and 3.3.2.

3.3. Feature Detection

Image features are numerical values extracted from images by feature detection algorithms,
and they represent the most important parts of an image. Therefore, image features play a vital role in
our proposed architecture—they are used to assign a different sampling to each block. In this way,
the blocks containing more important information will be allocated a higher sampling than will the
less important blocks. Appropriately allocating the sampling for each block increases the quality
of the reconstructed image. Based on our experiments, no single feature can produce good ABCS
results for all types of images; therefore, we adopt two main types of image features (i.e., saliency
and standard deviation) to allow our proposed architecture to achieve good performance on diverse
images. Both types of features must be computed for each block in this phase, as depicted in Figure 1.
These two feature types are explained in depth in the following subsections.

3.3.1. Saliency Detection

The distinct regions in an image that typically attract the attention of human viewers are called
salient objects. Saliency is defined as the ability of certain parts of an image to attract human visual
attention. The concept of saliency has been used for numerous research purposes in computer vision
and pattern recognition [32]. As shown in Figure 2 [44], a saliency map is a two-dimensional map
generated by a saliency detection algorithm to describe deviations in object shape, orientation, color,
or movement relative to the environment [45]. Numerous studies have been conducted on saliency
detection [31,46]. For example, Yu et al. [31] proposed a saliency detection method called the PCT,
which is a simple and fast algorithm with low computational complexity suitable for saliency-based
adaptive sampling in WMSNs. The PCT method captures the most highly correlated components in
the visual space and uses them to indicate the salient locations. Suppose that I represents a complete
image. The saliency map for I can then be computed as follows [31]:

P = sign(C(I)), (1)

F = abs
(
C−1(P)

)
, (2)

SM = G× F2 (3)

where C and C−1 are the 2D discrete cosine transform (DCT) and its inverse transform, respectively.
The signum function is denoted by sign(.), while the absolute value function is denoted by abs(.). G is
a Gaussian low-pass filter. The saliency map in Figure 2b was generated from the flower image.

Sensors 2020, 20, 6217 9 of 29

Sensors 2020, 20, x FOR PEER REVIEW 8 of 29

The second phase of our proposed architecture involves image blocking. After deployment, the
camera-equipped SNs begin to capture images. Immediately after being captured by an SN, the
original large image is divided into equal smaller blocks (e.g., 16 × 16 or 32 × 32), and each block is
processed independently, as shown in Figure 1. Although image blocking degrades the image
reconstruction quality, it also reduces the computational complexity and memory consumption
required for image processing, allowing the resource-constrained SNs to implement CS and transmit
the compressed images to their destination. Two main features must be computed for each block:
Saliency and standard deviation, as discussed in Sections 3.3.1 and 3.3.2.

3.3. Feature Detection

Image features are numerical values extracted from images by feature detection algorithms, and
they represent the most important parts of an image. Therefore, image features play a vital role in
our proposed architecture—they are used to assign a different sampling to each block. In this way,
the blocks containing more important information will be allocated a higher sampling than will the
less important blocks. Appropriately allocating the sampling for each block increases the quality of
the reconstructed image. Based on our experiments, no single feature can produce good ABCS results
for all types of images; therefore, we adopt two main types of image features (i.e., saliency and
standard deviation) to allow our proposed architecture to achieve good performance on diverse
images. Both types of features must be computed for each block in this phase, as depicted in Figure
1. These two feature types are explained in depth in the following subsections.

3.3.1. Saliency Detection

The distinct regions in an image that typically attract the attention of human viewers are called
salient objects. Saliency is defined as the ability of certain parts of an image to attract human visual
attention. The concept of saliency has been used for numerous research purposes in computer vision
and pattern recognition [32]. As shown in Figure 2 [44], a saliency map is a two-dimensional map
generated by a saliency detection algorithm to describe deviations in object shape, orientation, color,
or movement relative to the environment [45]. Numerous studies have been conducted on saliency
detection [31,46]. For example, Yu et al. [31] proposed a saliency detection method called the PCT,
which is a simple and fast algorithm with low computational complexity suitable for saliency-based
adaptive sampling in WMSNs. The PCT method captures the most highly correlated components in
the visual space and uses them to indicate the salient locations. Suppose that ܫ represents a complete
image. The saliency map for ܫ can then be computed as follows [31]: ܲ = ܨ ൯, (1)(ܫሺܥ൫݊݃݅ݏ = ܯܵ ଵሺܲ)൯, (2)ିܥ൫ݏܾܽ = ܩ × ଶ (3)ܨ

where ܥ and ିܥଵ are the 2D discrete cosine transform (DCT) and its inverse transform, respectively.
The signum function is denoted by ݊݃݅ݏሺ.), while the absolute value function is denoted by ܾܽݏሺ. .is a Gaussian low-pass filter. The saliency map in Figure 2b was generated from the flower image ܩ .(

(a) The original image (b) the saliency map of the original
image

Figure 2. Saliency map derivation: example.

Visual attention affects image perceptual quality because humans pay more attention to the salient
regions. SABCS algorithms use saliency to allocate a suitable sampling for each block to improve the
quality of the reconstructed image. We adopt the PCT technique for saliency detection in our proposed
architecture because of its simple and rapid execution as well as its high accuracy in detecting the
important objects in an image.

3.3.2. Standard Deviation

The other type of feature used in our proposed method is the standard deviation. The standard
deviation is a ubiquitous mathematical formula in statistics that is commonly used to represent
variability or diversity. In image processing, the standard deviation represents the amount of variation
or “dispersion” from an average (mean or expected value). A low standard deviation means that the
data points tend to be clustered very close to the mean, whereas a high standard deviation indicates
that the data points are spread over a wide range of values. The standard deviation of the i-th image
block, xi, is calculated as follows [47]:

STD(xi) =

√√∑NB
j=1(xi(j) −mean(xi))

NB
(4)

where xi(j) is the value of the j-th pixel, NB is the size of the vector representing the block and is
typically the same for all blocks, and mean(.) represents the function used to calculate the mean
value. The proposed method uses standard deviation as a feature for adaptive sampling because,
based on our experiments, the standard deviation feature tends to produce good results even on
low-intensity images.

After both types of features have been computed for each block, the adaptive sampling phase
is performed to determine which feature type should be used for the current image and how many
samples should be allocated to each block based on the selected feature type. The adaptive sampling
phase is described in the next subsection.

3.4. Adaptive Sampling

In this section, the adaptive allocation of sampling to each block is discussed in detail. This phase
is divided into four subphases: Feature selection, base sampling determination, adaptive sampling
determination, and oversampling adjustment. Because an FLS is adopted in this phase, we start by
introducing the FLS and then discuss each subphase.

3.4.1. Fuzzy Logic System (FLS)

Before continuing to discuss our proposed method, we briefly explain the FLS used in our
architecture. Developed by L. Zadeh, fuzzy logic, or fuzzy sets, is a useful technique suitable for use

Sensors 2020, 20, 6217 10 of 29

in improving decision-making in resource-constrained networks (i.e., WSNs) due to its low resource
consumption and effective performance [30,48]. An FLS can provide excellent solutions for many
control problems by imitating the human thought process. As shown in Figure 3, an FLS has four main
components: A fuzzifier, an inference engine, fuzzy rules, and a defuzzifier [49].

Sensors 2020, 20, x FOR PEER REVIEW 9 of 29

Figure 2. Saliency map derivation: example.

Visual attention affects image perceptual quality because humans pay more attention to the
salient regions. SABCS algorithms use saliency to allocate a suitable sampling for each block to
improve the quality of the reconstructed image. We adopt the PCT technique for saliency detection
in our proposed architecture because of its simple and rapid execution as well as its high accuracy in
detecting the important objects in an image.

3.3.2. Standard Deviation

The other type of feature used in our proposed method is the standard deviation. The standard
deviation is a ubiquitous mathematical formula in statistics that is commonly used to represent
variability or diversity. In image processing, the standard deviation represents the amount of
variation or “dispersion” from an average (mean or expected value). A low standard deviation means
that the data points tend to be clustered very close to the mean, whereas a high standard deviation
indicates that the data points are spread over a wide range of values. The standard deviation of the ݅-th image block, ݔ, is calculated as follows [47]:

(ݔሺܦܶܵ = ඨ∑ ൫ݔሺ݆) − ݉݁ܽ݊ሺݔ)൯ேಳୀଵ ܰ (4)

where ݔሺ݆) is the value of the ݆-th pixel, ܰ is the size of the vector representing the block and is
typically the same for all blocks, and ݉݁ܽ݊ሺ.) represents the function used to calculate the mean
value. The proposed method uses standard deviation as a feature for adaptive sampling because,
based on our experiments, the standard deviation feature tends to produce good results even on low-
intensity images.

After both types of features have been computed for each block, the adaptive sampling phase is
performed to determine which feature type should be used for the current image and how many
samples should be allocated to each block based on the selected feature type. The adaptive sampling
phase is described in the next subsection.

3.4. Adaptive Sampling

In this section, the adaptive allocation of sampling to each block is discussed in detail. This phase
is divided into four subphases: Feature selection, base sampling determination, adaptive sampling
determination, and oversampling adjustment. Because an FLS is adopted in this phase, we start by
introducing the FLS and then discuss each subphase.

3.4.1. Fuzzy Logic System (FLS)

Before continuing to discuss our proposed method, we briefly explain the FLS used in our
architecture. Developed by L. Zadeh, fuzzy logic, or fuzzy sets, is a useful technique suitable for use
in improving decision-making in resource-constrained networks (i.e., WSNs) due to its low resource
consumption and effective performance [30,48]. An FLS can provide excellent solutions for many
control problems by imitating the human thought process. As shown in Figure 3, an FLS has four
main components: A fuzzifier, an inference engine, fuzzy rules, and a defuzzifier [49].

Fuzzification Inference System Defuzzification

Rule base

Fuzzy Decision Block

Crisp Inputs Crisp
Outputs

Figure 3. Basic block diagram of a fuzzy logic system (FLS). Figure 3. Basic block diagram of a fuzzy logic system (FLS).

In the fuzzification process, the fuzzifier converts crisp inputs into a fuzzy set (described in linguistic
terms such as “near,” “medium,” or “far”) using a membership function. The membership function
maps nonfuzzy input values to fuzzy linguistic terms (and vice versa) to enable the quantification of
the linguistic terms. To date, a number of membership functions have been developed and investigated,
including triangular, trapezoidal, Gaussian, piecewise linear, and singleton functions. Researchers select
appropriate membership functions based on their experience and assessments. The membership
function is applied during both fuzzification and defuzzification. After the fuzzification process,
an inference is made by an inference system based on a set of rules stored in a rule base. Typically,
the rules are IF-THEN rules with conditions and a conclusion. Finally, the output of the FLS is
defuzzified using the membership function. Defuzzification transforms the fuzzy output back into
a crisp output value [50].

3.4.2. Feature Selection

Based on the FLS concept explanation in the previous subsection, we continue to explain our
proposed method in this section. After calculating the features of each block, the feature selection
subphase is executed to discover the most suitable feature type to characterize the image. Image features
provide information that can be used to determine which blocks of an image contain important
information. Even so, based on our experience, good results cannot be obtained for all types of
images using only a single feature type. More specifically, as mentioned above, we have found that
using saliency values seems to produce better results for high-intensity images, while using standard
deviation values works well for low-intensity images. Therefore, our proposed architecture selects
either saliency or standard deviation features to determine the adaptive sampling for all the blocks in
an image.

Before finding the most appropriate feature type for the complete image, the fuzzy cost for each
block is first computed using an FLS to determine the most suitable feature type for that block. If the
fuzzy cost for a block is less than or equal to a set feature selection threshold (FST), the standard
deviation feature will be selected as the preferred feature for this block; otherwise, saliency will be
selected. FST should be carefully defined based on experiments on various images to find the best value
for all types of images. The feature selection computation for the i-th block is performed as follows:

FSBi =

{
STD,
Sal,

i f FSC ≤ FST
else

(5)

where STD is the standard deviation, Sal is saliency, FSC is the fuzzy output of the FLS for feature
selection, as described below in this subsection, and FST is the constant feature selection threshold.

An FLS with two input variables (i.e., saliency and standard deviation) is used to compute
FSC, as depicted in Figure 4. Both input variables have the same 5 linguistic values: Very Low, Low,
Medium, High, and Very High. Triangular and trapezoidal membership functions are applied to

Sensors 2020, 20, 6217 11 of 29

all the linguistic input values because both our experimental results and the studies in [51] show
that these functions are simple and fast member functions suitable for use in WMSNs. Note that
we extensively tested the performance of all possible membership functions, including triangular,
trapezoidal, and Gaussian functions, and selected the best one. A similar selection process was also
used for membership function selection throughout the rest of the paper.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 29

In the fuzzification process, the fuzzifier converts crisp inputs into a fuzzy set (described in
linguistic terms such as “near,” “medium,” or “far”) using a membership function. The membership
function maps nonfuzzy input values to fuzzy linguistic terms (and vice versa) to enable the
quantification of the linguistic terms. To date, a number of membership functions have been
developed and investigated, including triangular, trapezoidal, Gaussian, piecewise linear, and
singleton functions. Researchers select appropriate membership functions based on their experience
and assessments. The membership function is applied during both fuzzification and defuzzification.
After the fuzzification process, an inference is made by an inference system based on a set of rules
stored in a rule base. Typically, the rules are IF-THEN rules with conditions and a conclusion. Finally,
the output of the FLS is defuzzified using the membership function. Defuzzification transforms the
fuzzy output back into a crisp output value [50].

3.4.2. Feature Selection

Based on the FLS concept explanation in the previous subsection, we continue to explain our
proposed method in this section. After calculating the features of each block, the feature selection
subphase is executed to discover the most suitable feature type to characterize the image. Image
features provide information that can be used to determine which blocks of an image contain
important information. Even so, based on our experience, good results cannot be obtained for all
types of images using only a single feature type. More specifically, as mentioned above, we have
found that using saliency values seems to produce better results for high-intensity images, while
using standard deviation values works well for low-intensity images. Therefore, our proposed
architecture selects either saliency or standard deviation features to determine the adaptive sampling
for all the blocks in an image.

Before finding the most appropriate feature type for the complete image, the fuzzy cost for each
block is first computed using an FLS to determine the most suitable feature type for that block. If the
fuzzy cost for a block is less than or equal to a set feature selection threshold (ܶܵܨ), the standard
deviation feature will be selected as the preferred feature for this block; otherwise, saliency will be
selected. ܶܵܨ should be carefully defined based on experiments on various images to find the best
value for all types of images. The feature selection computation for the ݅-th block is performed as
follows: ܤܵܨ = ቄ ܵܶܦ, ݈ܵܽ, ≥ ܥܵܨ ݂݅ ݁ݏ݈݁ܶܵܨ (5)

where ܵܶܦ is the standard deviation, ݈ܵܽ is saliency, ܥܵܨ is the fuzzy output of the FLS for feature
selection, as described below in this subsection, and ܶܵܨ is the constant feature selection threshold.

An FLS with two input variables (i.e., saliency and standard deviation) is used to compute ܥܵܨ,
as depicted in Figure 4. Both input variables have the same 5 linguistic values: Very Low, Low,
Medium, High, and Very High. Triangular and trapezoidal membership functions are applied to all
the linguistic input values because both our experimental results and the studies in [51] show that
these functions are simple and fast member functions suitable for use in WMSNs. Note that we
extensively tested the performance of all possible membership functions, including triangular,
trapezoidal, and Gaussian functions, and selected the best one. A similar selection process was also
used for membership function selection throughout the rest of the paper.

(a) Saliency (b) Standard deviation

Figure 4. Two fuzzy input variables for feature selection.

A set of 25 fuzzy rules and the corresponding output membership functions are shown in Table 2
and Figure 5, respectively. Following a selection process similar to that discussed above, all the possible
rules were exercised for the two input and one output variables, and the best rules were chosen.

Table 2. Fuzzy rules regarding the fuzzy cost for feature selection.

Standard Deviation Saliency FSFuzzyCost

Very Low Very Low Low Low
Very Low Low Low
Very Low Medium Low High
Very Low High Medium Low
Very Low Very High Medium

Low Very Low Low
Low Low Low High
Low Medium Medium Low
Low High Medium
Low Very High Medium High

Medium Very Low Low High
Medium Low Medium Low
Medium Medium Medium
Medium High Medium High
Medium Very High High Low

High Very Low Medium Low
High Low Medium
High Medium Medium High
High High High Low
High Very High High

Very High Very Low Medium
Very High Low Medium High
Very High Medium High Low
Very High High High
Very High Very High High High

Sensors 2020, 20, 6217 12 of 29

Sensors 2020, 20, x FOR PEER REVIEW 11 of 29

Figure 4. Two fuzzy input variables for feature selection.

A set of 25 fuzzy rules and the corresponding output membership functions are shown in Table
2 and Figure 5, respectively. Following a selection process similar to that discussed above, all the
possible rules were exercised for the two input and one output variables, and the best rules were
chosen.

Table 2. Fuzzy rules regarding the fuzzy cost for feature selection.

Standard Deviation Saliency FSFuzzyCost
Very Low Very Low Low Low
Very Low Low Low
Very Low Medium Low High
Very Low High Medium Low
Very Low Very High Medium

Low Very Low Low
Low Low Low High
Low Medium Medium Low
Low High Medium
Low Very High Medium High

Medium Very Low Low High
Medium Low Medium Low
Medium Medium Medium
Medium High Medium High
Medium Very High High Low

High Very Low Medium Low
High Low Medium
High Medium Medium High
High High High Low
High Very High High

Very High Very Low Medium
Very High Low Medium High
Very High Medium High Low
Very High High High
Very High Very High High High

Figure 5. The fuzzy cost for feature selection; (LL = Low Low, L = Low, LH = Low High, ML =

Medium Low, M = Medium, MH = Medium High, HL = High Low, H = High, HH = High)

The above computation finds the feature type most suitable for each block but not for the entire
image. To find the feature type most appropriate for the entire image (all blocks), we need to compute
the feature fraction, which is formulated as follows:

Figure 5. The fuzzy cost for feature selection; (LL = Low Low, L = Low, LH = Low High, ML = Medium
Low, M = Medium, MH = Medium High, HL = High Low, H = High, HH = High).

The above computation finds the feature type most suitable for each block but not for the entire
image. To find the feature type most appropriate for the entire image (all blocks), we need to compute
the feature fraction, which is formulated as follows:

FF =
NFSBSal

TB
, (6)

where NFSBSal denotes the number of blocks for which saliency was selected as the preferred feature
type and TB denotes the total number of blocks in the image.

Note that when FF is above a specified threshold (e.g., 0.5) meaning that the number of blocks for
which saliency was selected is greater than the number of blocks for which standard deviation was
selected, then saliency is chosen as the preferred feature type for the adaptive sampling of the entire
image (all blocks); otherwise, standard deviation is selected. Subsequently, sampling will be allocated
to all blocks based on the selected feature type. This selection process ensures that our algorithm
selects the feature type that is more suitable for most blocks in the image, thereby improving the image
reconstruction result. Immediately after the selected feature type is determined, the next phase is
initiated to calculate the base sampling for each block.

3.4.3. Base Sampling Determination

In this section, we discuss how base sampling is assigned to each block in detail. Base sampling is
important because without it, some blocks with very low feature values would be allocated insufficient
sampling, leading to blocking artifacts and poor reconstructed image quality. Moreover, if fast
reconstruction is needed, base sampling alone can be used, whereas when better image quality is
required, both the base sampling and additional adaptive sampling can be combined to improve the
reconstructed image.

In the previously mentioned ABCS studies, a fixed base sampling was assigned for all blocks
without considering any features; however, a fixed base sampling alone cannot produce the best results
for all types of images. Our experiments revealed that using adaptive base sampling can improve the
reconstructed image quality and that the relationship between the block intensity and the sampling
rate can be used to allocate the base sampling for this purpose. To allocate the base sampling for each
block based on the block intensity and sampling rate, we use an FLS is used to calculate a weight that
is used in Equation (8) to determine the base sampling. This FLS has 2 fuzzy inputs, namely, the block
intensity and the sampling rate, as shown in Figure 6. The intensity of the i-th block is computed
as follows:

INTi =
mean(xi)

MG
, (7)

where xi is the i-th block and MG is the maximum grayscale value in the image (e.g., 255) [52].
The intensity input variable has 2 possible linguistic values, low and high, and a triangular membership
function is used for both, as shown in Figure 6a. The second input variable is the sampling rate,
which has 5 possible linguistic values, namely, Very Low, Low, Medium, High and Very High,

Sensors 2020, 20, 6217 13 of 29

as depicted in Figure 6b. A triangular membership function is used for Very Low and Very High,
whereas a trapezoidal membership function is applied for Low, Medium, and High.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 29

𝐹𝐹 = 𝑁𝐹𝑆𝐵ௌ𝑇𝐵 , (6)

where 𝑁𝐹𝑆𝐵ௌ denotes the number of blocks for which saliency was selected as the preferred feature
type and 𝑇𝐵 denotes the total number of blocks in the image.

Note that when 𝐹𝐹 is above a specified threshold (e.g., 0.5) meaning that the number of blocks
for which saliency was selected is greater than the number of blocks for which standard deviation
was selected, then saliency is chosen as the preferred feature type for the adaptive sampling of the
entire image (all blocks); otherwise, standard deviation is selected. Subsequently, sampling will be
allocated to all blocks based on the selected feature type. This selection process ensures that our
algorithm selects the feature type that is more suitable for most blocks in the image, thereby
improving the image reconstruction result. Immediately after the selected feature type is determined,
the next phase is initiated to calculate the base sampling for each block.

3.4.3. Base Sampling Determination

In this section, we discuss how base sampling is assigned to each block in detail. Base sampling
is important because without it, some blocks with very low feature values would be allocated
insufficient sampling, leading to blocking artifacts and poor reconstructed image quality. Moreover,
if fast reconstruction is needed, base sampling alone can be used, whereas when better image quality
is required, both the base sampling and additional adaptive sampling can be combined to improve
the reconstructed image.

In the previously mentioned ABCS studies, a fixed base sampling was assigned for all blocks
without considering any features; however, a fixed base sampling alone cannot produce the best
results for all types of images. Our experiments revealed that using adaptive base sampling can
improve the reconstructed image quality and that the relationship between the block intensity and
the sampling rate can be used to allocate the base sampling for this purpose. To allocate the base
sampling for each block based on the block intensity and sampling rate, we use an FLS is used to
calculate a weight that is used in Equation (8) to determine the base sampling. This FLS has 2 fuzzy
inputs, namely, the block intensity and the sampling rate, as shown in Figure 6. The intensity of the 𝑖-th block is computed as follows: 𝐼𝑁𝑇 = 𝑚𝑒𝑎𝑛ሺ𝑥)𝑀𝐺 , (7)

where 𝑥 is the 𝑖-th block and 𝑀𝐺 is the maximum grayscale value in the image (e.g., 255) [52]. The
intensity input variable has 2 possible linguistic values, low and high, and a triangular membership
function is used for both, as shown in Figure 6a. The second input variable is the sampling rate, which
has 5 possible linguistic values, namely, Very Low, Low, Medium, High and Very High, as depicted
in Figure 6b. A triangular membership function is used for Very Low and Very High, whereas a
trapezoidal membership function is applied for Low, Medium, and High.

(a) Intensity (b) Sampling rate

Figure 6. The two fuzzy input variables; (VL = Very Low, L = Low, M = Medium, H = High, VH = Very
High).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Intensity

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 m

em
be

rs
hi

p

Low High

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sampling rate

0

0.2

0.4

0.6

0.8

1 VL M VHL H

D
eg

re
e

of
 m

em
be

rs
hi

p

Figure 6. The two fuzzy input variables; (VL = Very Low, L = Low, M = Medium, H = High,
VH = Very High).

Note that we use Mamdani’s method as the fuzzy inference technique. We also performed
an experiment using the Sugeno method but obtained lower performance; for example, in the case of
the cameraman image with 0.2 sampling rates as well as 16× 16 block size, the PSNR values for the
Mamdani and Sugeno methods are 27.70 and 33.81, respectively.

The fuzzy inference process relies on 10 fuzzy rules; these are the best rules selected from
implementing all possible rules for two input variables and one output variable, as listed in Table 3.
The output, depicted in Figure 7, is a weight that determines the base sampling size assigned to
each block.

Table 3. Fuzzy rules.

Intensity Sampling Rate Weight

Low Very Low Low
Low Low Very Low
Low Medium Very Low
Low High Very Low
Low Very High Very Low
High Very Low Very High
High Low High
High Medium Medium
High Very High Low
High Very High Very Low

Sensors 2020, 20, x FOR PEER REVIEW 13 of 29

Note that we use Mamdani’s method as the fuzzy inference technique. We also performed an
experiment using the Sugeno method but obtained lower performance; for example, in the case of the
cameraman image with 0.2 sampling rates as well as 16 × 16 block size, the PSNR values for the
Mamdani and Sugeno methods are 27.70 and 33.81, respectively.

The fuzzy inference process relies on 10 fuzzy rules; these are the best rules selected from
implementing all possible rules for two input variables and one output variable, as listed in Table 3.
The output, depicted in Figure 7, is a weight that determines the base sampling size assigned to each
block.

Table 3. Fuzzy rules.

Intensity Sampling Rate Weight
Low Very Low Low
Low Low Very Low
Low Medium Very Low
Low High Very Low
Low Very High Very Low
High Very Low Very High
High Low High
High Medium Medium
High Very High Low
High Very High Very Low

Figure 7. The weight; (VL = Very Low, L = Low, M = Medium, H = High, VH = Very High)

After the weight has been generated, the base sampling for the 𝑖-th block is calculated as follows: 𝑀 = 𝛼 × 𝑁, (8)
where 𝛼 is the weight generated by the FLS as described in this section and 𝑁 is the block size of
the image.

Next, we discuss how to allocate additional adaptive sampling for each block.

3.4.4. Adaptive Sampling Determination

After the feature selection process is complete and the preferred feature type is known,
additional sampling allocation is performed based on that feature type, and the results are combined
with the base sampling to form the adaptive sampling for each block. The adaptive sampling for the 𝑖-th block is formulated as follows:

𝐴𝑆 = 𝑟𝑛𝑑 ൭ 𝐹∑ 𝐹்ୀଵ ൭𝑁 − 𝑀்
ୀଵ ൱ + 𝑀൱, (9)

where 𝐹 is a single scalar value of the feature (e.g., standard deviation or saliency) for the 𝑖-th block, 𝑀 is the base sampling for the 𝑖-th block, 𝑇𝐵 is the number of blocks in the image, 𝑁 is the size of
the image vector, and 𝑟𝑛𝑑ሺ.) is a function that rounds its argument to the nearest integer.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
α

0

0.2

0.4

0.6

0.8

1 Very Low Low Meduim High Very High

D
eg

re
e

of
 m

em
be

rs
hi

p

Figure 7. The weight; (VL = Very Low, L = Low, M = Medium, H = High, VH = Very High).

After the weight has been generated, the base sampling for the i-th block is calculated as follows:

M0
i = αi ×NB, (8)

Sensors 2020, 20, 6217 14 of 29

where α is the weight generated by the FLS as described in this section and NB is the block size of
the image.

Next, we discuss how to allocate additional adaptive sampling for each block.

3.4.4. Adaptive Sampling Determination

After the feature selection process is complete and the preferred feature type is known, additional
sampling allocation is performed based on that feature type, and the results are combined with the
base sampling to form the adaptive sampling for each block. The adaptive sampling for the i-th block
is formulated as follows:

ASi = rnd

 Fi∑TB
k=1 Fk

N −
TB∑

k=1

M0
k

+ M0
i

, (9)

where Fi is a single scalar value of the feature (e.g., standard deviation or saliency) for the i-th block,
M0

i is the base sampling for the i-th block, TB is the number of blocks in the image, N is the size of the
image vector, and rnd(.) is a function that rounds its argument to the nearest integer.

Immediately after adaptive sampling allocation is complete, the oversampling algorithm is
executed to ensure proper adaptive sampling because—for some blocks—the number of samples
allocated may be greater than the block size.

3.4.5. Oversampling Adjustment

Oversampling refers to the situation in which the total sampling assigned to a block exceeds
the size of the block itself. For example, the vector of a 16 × 16 pixel block has a length of 256 so
that the maximum sampling assigned to this block should not be over 256. Even though this block
is an important block, we cannot allocate more sampling to each block more than its maximum
because the oversampling causes errors in the reconstruction process when the size (resolution) of
the reconstructed image block is larger than that of the original block. To prevent this situation,
an oversampling adjustment process is required to ensure that no oversampled blocks exist. The details
of the oversampling adjustment algorithm are presented in Algorithm 1. After adaptive sampling
allocation for each block, the oversampling adjustment algorithm checks the sampling for each block
to determine whether it is over the size limitation of the block; if so, the oversampling is eliminated for
that particular block. The total amount of oversampling from all oversampled blocks will be reassigned
to nonoversampled blocks based on the feature value of each block. This process is repeated until no
oversampled blocks remain. Then, the CS measurement phase, which will be discussed in the next
subsection, is executed to compress each block based on the calculated adaptive sampling allocation.

Sensors 2020, 20, 6217 15 of 29

Algorithm 1 Oversampling adjustment algorithm.

Input: Adaptive sampling: AS, Array of features of each block: F, Block size: NB, Number of blocks: TB
Output: Nonoversampled adaptive sampling: ASNOA

1: for each AS
2: if the sampling in AS is larger than NB
3: OS← 0 //This variable is used to store the amount of oversampling among all blocks
4: NOSI []← empty //This variable stores the indices of nonoversampled blocks
5: for counter←1 to TB
6: ifAS(counter) > NB
7: OSVal← AS(counter) −NB
8: OS ← OS + OSVal
9: AS(counter)← AS(counter) −OSVal //Subtract the excess sampling from oversampled blocks
10: Else
11: NOSI []← counter //Add counter to the array NOSI
12: end if
13: end for
14: NOSF← 0 //This variable stores the total feature values of nonoversampled blocks
15: for counter←1 to count(NOSI)
16: NOSF← NOSF + F(NOSI(counter))
17 end for
18: for counter←1 to count(NOSI)

19: AS(NOSI(counter))← AS(NOSI(counter)) +
((

F(NOSI(counter))
NOSF

)
×NOSF

)
20: end for
21: end if
22: end for
23: ASNOA

← AS

3.5. Compressed Sensing (CS) Measurement

Since we adopt the CS for our method, this section provides a detailed description of CS and BCS.
According to conventional CS theory, an image can be recovered from a few linear measurements if
there is sufficient sparsity in a specific domain. Suppose that we have a 2D image X of size N1× N2.
We convert it into a column vector x of size N× 1 (N = N1N2) by concatenating the individual columns
of X in order. The K-sparse vector contains values of one, zero, or the significant element in a specific
domain (K � N). Here, y ∈ RM is the measurement or sampling vector of x, which is computed as
follows [53]:

y = ϕx, (10)

where ϕ is an M×N random measurement matrix. Based on CS theory, y can be perfectly reconstructed
when M = O(KlogN).

As mentioned above, although CS offers good image compression, its implementation in a WSN
faces two main challenges, namely, it requires a large amount of memory and has high computational
complexity [20]. BCS was introduced to overcome these problems. In a CS architecture, the original
image is divided into smaller nonoverlapping blocks, and CS is applied to each block independently;
thus, a larger number of blocks results in better image quality. However, using a larger number of
blocks consumes more memory and increases the computational complexity. Suppose that xi is a vector
representing the i-th block of the input image and that the corresponding sampling vector yi is defined
as follows [20]:

yi = ϕixi, (11)

Sensors 2020, 20, 6217 16 of 29

where the dimensions of ϕi are ASi × NB
2, ASi is the corresponding number of samples of the i-th

block, and N is the size of the entire image in vector form. Thus, the measurement matrix ϕ of the
entire image x is defined as follows:

ϕ =

ϕ1 0 · · · 0
0 ϕ2 · · · 0
...

...
. . .

...
0 · · · 0 ϕTB

. (12)

Note that the reconstruction of each block requires onlyϕi and that all blocks can then be combined
to reconstruct the original image. Consequently, BCS requires less memory and computational power
than implementing CS for the complete image.

After the adaptive sampling has been derived for each block and CS measurements have been
conducted to adaptively reduce the sampling for each block, the result is a set of extremely small
compressed blocks. The compressed blocks are then transmitted from one SN to another in a hop-by-hop
fashion until they finally arrive at the BS.

3.6. Image Reconstruction

As soon as each block arrives at the BS, that block is reconstructed using an image reconstruction
algorithm. After all the blocks have been reconstructed, the reconstructed image is restored from all
the reconstructed blocks.

In CS, image reconstruction is the process of recovering each image block from a very limited
K-sparse sampling resulting from the CS measurement implementation. Many image signal
reconstruction algorithms exist, as discussed above. However, BCS-SPL has attracted many researchers
in the signal processing field due to its effectiveness and efficiency in improving the reconstructed
image quality by eliminating blocking artifacts, and it is also suitable for real-time applications [38].
Therefore, in our proposed architecture, BCS-SPL is improved by using an FLS to enhance the quality
of the reconstructed image. This subsection explains both the original BCS-SPL algorithm and our
proposed reconstruction algorithm in detail.

3.6.1. BCS with Smoothed Projected Landweber Reconstruction (BCS-SPL)

Here, we discuss a traditional BCS-SPL as a baseline and then discuss its enhancement with
a fuzzy-based approach (see the next subsection). On the decoder side, in the image reconstruction stage,
the original signal is recovered from the samples through iterative projection and hard thresholding.
An initial approximation is calculated as follows:

x0 = ϕT y (13)

The projected Landweber approach, corresponding to the update process described in
Equation (14), attempts to correct the signal xr+1 from the measurement y:

ˆ̂x(r) = x̂(r) + ϕT
(
y−ϕx̂(r)

)
, (14)

where ˆ̂x(r) and ˆ̂x(r+1) denote the data before and after the projected Landweber estimation, respectively.
The projected Landweber process is applied twice before the termination condition is checked.

The first application occurs immediately after the blocking artifacts have been reduced in the
provisionally reconstructed image using the Wiener filter, and the second occurs after artifacts
have been reduced via hard thresholding in the DCT domain. The pseudocode for the BCS-SPL
algorithm is provided in Algorithm 2.

Sensors 2020, 20, 6217 17 of 29

Algorithm 2 BCS-SPL Reconstruction Algorithm [38]

Input: The measurement matrix for the i-th block: ϕi, a constant used to control the convergence speed: λ,
the measurement: y, signal: x(r), 2D transform: ψ
Output: signal: x(r+1)

1: x̂(r) = Wiener
(
x(r)

)
2: for each block i
3: ˆ̂x(r)i = x̂(r)i + ϕT

i

(
yi −ϕix̂

(r)
i

)
4: end for
5: ˇ̌x(r) = ψ ˆ̂x(r)

6: x̌(r) = Threshold
(

ˇ̌x(r),λ
)

7: x(r) = ψ−1x̌(r)

8: for each block i
9: x(r+1)

i = x(r)i + ϕT
i

(
yi −ϕix

(r)
i

)
10: end for

In Algorithm 2, ϕi is the measurement matrix for the i-th block, Wiener(.) represents the pixelwise
adaptive Wiener filter with a neighborhood of 3×3, and Threshold(.) is the thresholding process
shown below:

x̌(r+1) =

 ˇ̌x(r), ˇ̌x(r+1)
> τ(r)

0 , else
(15)

where τ(r) is the threshold value in iteration r. Its formula is

τ(r) = λ
median

{∣∣∣∣ ˇ̌x(r)∣∣∣∣}
0.6745

√

2ln L (16)

whereλ is a constant used to control the convergence speed and L is the number of transform coefficients.
Although BCS-SPL achieves a good reconstructed image quality, the original method itself still

has some problems since the speed of convergence, λ, is fixed and is thus not suitable for all sampling
rates or all types of images. Therefore, we propose a fuzzy BCS-SPL reconstruction algorithm in which
the speed of convergence is adaptively adjusted using an FLS.

3.6.2. Fuzzy BCS-SPL Reconstruction

The results of extensive experiments show that the quality of BCS-SPL reconstruction can be
improved by adjusting λ, which is a constant that controls the convergence speed. During our
performance evaluation, we also found that the optimal value of λ depends on the feature fraction in
Equation (6) and the sampling rate. As a result, we developed an FLS to determine the best λ value
for a specific image and sampling rate. Our FLS has 2 fuzzy input variables, the first of which is the
feature fraction, which can take 7 linguistic values (Extremely Low (XL), Very Low, Low, Medium,
High, Very High, and Extremely High (XH)). A trapezoidal membership function is applied to all
these values.

The second input variable in this FLS is the sampling rate is, which has 9 linguistic values (Low
Low, Low, Low High, Medium Low, Medium, Medium High, High Low, High, and High High),
as shown in Figure 8a. A triangular membership function is used for Low Low and High High,
while a trapezoidal membership function is applied to the other values, as shown in Figure 8b.

Sensors 2020, 20, 6217 18 of 29

Sensors 2020, 20, x FOR PEER REVIEW 18 of 29

feature fraction, which can take 7 linguistic values (Extremely Low (XL), Very Low, Low, Medium,
High, Very High, and Extremely High (XH)). A trapezoidal membership function is applied to all
these values.

The second input variable in this FLS is the sampling rate is, which has 9 linguistic values (Low
Low, Low, Low High, Medium Low, Medium, Medium High, High Low, High, and High High), as
shown in Figure 8a. A triangular membership function is used for Low Low and High High, while a
trapezoidal membership function is applied to the other values, as shown in Figure 8b.

(a) Feature fraction (b) Sampling rate

Figure 8. Two fuzzy input variables for the fuzzy BCS-SPL algorithm: (LL = Low Low, L = Low, LH =
Low High, ML = Medium Low, M = Medium, MH = Medium High, HL = High Low, H = High, HH =
High High, XL = Extremely Low, VL = Very Low, L = Low, M = Medium, H = High, VH = Very High,
XH = Extremely High).

The fuzzy inference process relies on 63 fuzzy rules generated from these two fuzzy input
variables and one output variable, as described in Table 4. Analogous to the abovementioned fuzzy
rules, these rules are adopted from the possible rules that were implemented. The output, as depicted
in Figure 9, is ߣ.

Table 4. Fuzzy rules for the fuzzy cost for ࣅ.

Feature Sampling Rate ࣅ
Extremely Low Low Low Medium
Extremely Low Low Medium Low
Extremely Low Low High Medium Low
Extremely Low Medium Low Low High
Extremely Low Medium Low High
Extremely Low Medium High Low
Extremely Low High Low Low
Extremely Low High Low Low
Extremely Low High High Low Low

Very Low Low Low High
Very Low Low High Low
Very Low Low High High Low
Very Low Medium Low Medium High
Very Low Medium Medium High
Very Low Medium High Medium
Very Low High Low Medium
Very Low High Low Low
Very Low High High Low Low

Low Low Low Medium
Low Low Medium Low
Low Low High Low High
Low Medium Low Low
Low Medium Low

Figure 8. Two fuzzy input variables for the fuzzy BCS-SPL algorithm: (LL = Low Low, L = Low,
LH = Low High, ML = Medium Low, M = Medium, MH = Medium High, HL = High Low, H = High,
HH = High High, XL = Extremely Low, VL = Very Low, L = Low, M = Medium, H = High,
VH = Very High, XH = Extremely High).

The fuzzy inference process relies on 63 fuzzy rules generated from these two fuzzy input variables
and one output variable, as described in Table 4. Analogous to the abovementioned fuzzy rules,
these rules are adopted from the possible rules that were implemented. The output, as depicted in
Figure 9, is λ.

Table 4. Fuzzy rules for the fuzzy cost for λ.

Feature Sampling Rate λ

Extremely Low Low Low Medium
Extremely Low Low Medium Low
Extremely Low Low High Medium Low
Extremely Low Medium Low Low High
Extremely Low Medium Low High
Extremely Low Medium High Low
Extremely Low High Low Low
Extremely Low High Low Low
Extremely Low High High Low Low

Very Low Low Low High
Very Low Low High Low
Very Low Low High High Low
Very Low Medium Low Medium High
Very Low Medium Medium High
Very Low Medium High Medium
Very Low High Low Medium
Very Low High Low Low
Very Low High High Low Low

Low Low Low Medium
Low Low Medium Low
Low Low High Low High
Low Medium Low Low
Low Medium Low
Low Medium High Low
Low High Low Low Low
Low High Low Low
Low High High Low Low

Medium Low Low Medium
Medium Low Medium Low
Medium Low High Low High
Medium Medium Low Low
Medium Medium Low
Medium Medium High Low
Medium High Low Low Low
Medium High Low Low
Medium High High Low Low

Sensors 2020, 20, 6217 19 of 29

Table 4. Cont.

Feature Sampling Rate λ

High Low Low Medium
High Low Medium Low
High Low High Low High
High Medium Low Low
High Medium Low
High Medium High Low
High High Low Low
High High Low Low
High High High Low Low

Very High Low Low Medium Low
Very High Low Medium Low
Very High Low High Low
Very High Medium Low Low
Very High Medium Low Low
Very High Medium High Low Low
Very High High Low Low Low
Very High High Low Low
Very High High High Low Low

Extremely High Low Low Medium High
Extremely High Low Medium
Extremely High Low High Medium Low
Extremely High Medium Low Low High
Extremely High Medium Low High
Extremely High Medium High Low
Extremely High High Low Low
Extremely High High Low Low
Extremely High High High Low Low

Sensors 2020, 20, x FOR PEER REVIEW 19 of 29

Low Medium High Low
Low High Low Low Low
Low High Low Low
Low High High Low Low

Medium Low Low Medium
Medium Low Medium Low
Medium Low High Low High
Medium Medium Low Low
Medium Medium Low
Medium Medium High Low
Medium High Low Low Low
Medium High Low Low
Medium High High Low Low

High Low Low Medium
High Low Medium Low
High Low High Low High
High Medium Low Low
High Medium Low
High Medium High Low
High High Low Low
High High Low Low
High High High Low Low

Very High Low Low Medium Low
Very High Low Medium Low
Very High Low High Low
Very High Medium Low Low
Very High Medium Low Low
Very High Medium High Low Low
Very High High Low Low Low
Very High High Low Low
Very High High High Low Low

Extremely High Low Low Medium High
Extremely High Low Medium
Extremely High Low High Medium Low
Extremely High Medium Low Low High
Extremely High Medium Low High
Extremely High Medium High Low
Extremely High High Low Low
Extremely High High Low Low
Extremely High High High Low Low

Figure 9. The fuzzy output for ࣅ.(LL = Low Low, L = Low, LH = Low High, ML = Medium Low, M =
Medium, MH = Medium High, HL = High Low, H = High)

D
eg

re
e

of
 m

em
be

rs
hi

p

Figure 9. The fuzzy output for λ. (LL = Low Low, L = Low, LH = Low High, ML = Medium Low,
M = Medium, MH = Medium High, HL = High Low, H = High).

In our proposed architecture, the convergence speed is controlled by the feature selection
threshold (FST) as discussed in Section 3.4.2. Increasing or decreasing the value of FST affects both
the convergence speed and the quality of the reconstructed image. Determining the best FST requires
multiple experiments on many images, as will be discussed in the experimental section.

Remark 1. The triangular and trapezoidal membership functions perform better than do other membership
functions, as shown by tests performed using various membership functions to investigate the resulting stability
of the fuzzy system [54]. These membership functions are effective and frequently used for two reasons. First,
they are computationally highly efficient since their membership calculations are linear. Therefore, they can be
used to process large volumes of data, such as images. Second, the triangular and trapezoidal functions are easily
visually understood and offer an environment that is reasonably conducive to human-in-the-loop knowledge
acquisition [51]. Consequently, we adopt triangular and trapezoidal membership functions in this study.

Sensors 2020, 20, 6217 20 of 29

Remark 2. The proposed reconstruction method is improved relative to the work presented in [38] and extended
to a more flexible solution by reducing the computational complexity and improving the reconstructed image
quality. The performance and reliability of our algorithm are enhanced through the use of an FLS to adaptively
determine the convergence speed of the BCS-SPL reconstruction algorithm based on the image characteristics
and the sampling rate. The convergence speed determines the number of iterations of the BCS-SPL algorithm
required to reconstruct the image. A large number of iterations increases the computational complexity without
guaranteeing a better reconstructed image quality, while a small number of iterations reduces the complexity
but can result in an unsatisfactory image reconstruction. The conventional BCS-SPL algorithm uses a fixed
convergence speed for all blocks in the image. Utilizing an FLS based on the image features and sampling rate
to determine a suitable convergence speed for each block individually helps address these problems. A small
number of iterations can be used for less important blocks, while a larger number of iterations can be used for
more important blocks. The complexity of our reconstruction algorithm is discussed in the next section.

4. Experimental Results and Discussion

4.1. Experimental Settings

The algorithms were simulated using MATLAB 2017 on a computer equipped with a 64-bit
Windows 10 Pro operating system and an Intel (R) Core (TM) i5–7400 CPU @ 3.0 GHz and 16 GB
of RAM. While other ABCS studies [13,16,23,38,55] used only five or six grayscale standard images
in their experiments, we used eight grayscale standard images [44] depicting different categories
(i.e., human, animal, fruit, landscape, building, and vehicle), as shown in Figure 10, in our simulations
to demonstrate the effectiveness of our proposed architecture. We consider grayscale images instead of
color images because two-thirds of the measurement can be further compressed and the complexity
can be reduced dramatically; thus, the lifetime of WMSNs can be prolonged [56].Sensors 2020, 20, x FOR PEER REVIEW 21 of 29

Barbara Cameraman Boat Goldhill

Mandrill Pepper Lake APC

Figure 10. Standard test images [44].

Table 5. Simulation parameters.

Parameter Symbol Value
Block size ܰ 16 × 16, 32 × 32 [14,16]

Total number of blocks ܶ[14,16] 256 ܤ
Image size ܰ 512 × 512 pixels (grayscale) [14,16]

Feature selection threshold 0.1 ܶܵܨ
BCS-SPL reconstruction algorithm

Maximum iterations 200
Tolerance value ܱܶ0.0001 ܮ

DWT level 5 ܮ

There are two types of evaluation metrics, i.e., objective and subjective. For comparison purposes
in our objective evaluation, we adopted the well-known peak-signal-to-noise ratio (PSNR) image
quality metric to measure the performance of our proposed architecture. A higher PSNR value
indicates a better reconstructed image quality. The PSNR is defined as follows [57]: ܴܲܵܰ = 10݃10݈ (17) ܧܵܯଶܩܯ

where ܩܯ is the maximum grayscale value of the image and ܧܵܯ is the mean squared error, which
represents the mean of the cumulative squared error between the reconstructed and original images.

A feature selection threshold (ܶܵܨ), as discussed in Section 3.4.2, is used to select the feature type
to be used for sampling allocation for each block in our proposed architecture. Therefore, it is
important to find the optimal ܶܵܨ value that can yield the best reconstructed image quality. To this
end, we conducted many experiments on different images at various sampling rates from 0.1 to 0.9
and ܶܵܨ values from 0 to 1. Based on the results of these experiments, we can conclude that our
proposed method produces the optimal results when the threshold is 0.1 for all test images and
sampling rates. Next, we present the image reconstruction results of our proposed method.

4.2. Experimental Results

In this section, we evaluate the quality of the reconstructed images. An objective evaluation
yields specific results based on mathematical formulas, while a subjective evaluation is generally
based on observer perceptions when evaluating the quality of a reconstructed image [58].

The experimental results for block sizes of 16 × 16 and 32 × 32 are presented in Figures 11 and
12, respectively. For the 16 × 16 block size, on all test images, the BCS algorithm does not yield better

Figure 10. Standard test images [44].

In our experiments, the sampling rate was varied from 0.1 to 0.9 with a step size of 0.1. Based on
many experiments on different images, we found that our proposed architecture produces optimal
results when the feature selection threshold (FST) is set to 0.1. We compared our proposed fuzzy ABCS
architecture (FABCS) with the traditional BCS algorithm [20] and three state-of-the-art algorithms,
namely, SABCS [31], STD-ABCS [14], and saliency-based adaptive BCS for images using measurement
contrast (SABCS-MC) [16]. Similar to previous studies, because CS is performed using a random
matrix, we conducted five trials and averaged the results [14,16,31]. The simulation parameters are
summarized in Table 5.

Sensors 2020, 20, 6217 21 of 29

Table 5. Simulation parameters.

Parameter Symbol Value

Block size NB 16 × 16, 32 × 32 [14,16]
Total number of blocks TB 256 [14,16]

Image size N 512 × 512 pixels (grayscale) [14,16]
Feature selection threshold FST 0.1

BCS-SPL reconstruction algorithm
Maximum iterations 200

Tolerance value TOL 0.0001
DWT level L 5

There are two types of evaluation metrics, i.e., objective and subjective. For comparison purposes
in our objective evaluation, we adopted the well-known peak-signal-to-noise ratio (PSNR) image
quality metric to measure the performance of our proposed architecture. A higher PSNR value indicates
a better reconstructed image quality. The PSNR is defined as follows [57]:

PSNR = 10log10
MG2

MSE
(17)

where MG is the maximum grayscale value of the image and MSE is the mean squared error, which
represents the mean of the cumulative squared error between the reconstructed and original images.

A feature selection threshold (FST), as discussed in Section 3.4.2, is used to select the feature
type to be used for sampling allocation for each block in our proposed architecture. Therefore, it is
important to find the optimal FST value that can yield the best reconstructed image quality. To this
end, we conducted many experiments on different images at various sampling rates from 0.1 to 0.9 and
FST values from 0 to 1. Based on the results of these experiments, we can conclude that our proposed
method produces the optimal results when the threshold is 0.1 for all test images and sampling rates.
Next, we present the image reconstruction results of our proposed method.

4.2. Experimental Results

In this section, we evaluate the quality of the reconstructed images. An objective evaluation yields
specific results based on mathematical formulas, while a subjective evaluation is generally based on
observer perceptions when evaluating the quality of a reconstructed image [58].

The experimental results for block sizes of 16 × 16 and 32 × 32 are presented in Figures 11 and 12,
respectively. For the 16 × 16 block size, on all test images, the BCS algorithm does not yield better
results than our proposed architecture or some existing ABCS algorithms. However, BCS performs
better than does SABCS-MC on the Cameraman, Goldhill, and Lake test images. For the 32 × 32 block
size, the BCS algorithm produces the lowest image reconstruction quality compared with all of the
other ABCS algorithms and our proposed architecture at all sampling rates on the Mandrill and APC
test images. However, BCS performs better than the STD-BCS algorithm on the Goldhill image at a
sampling rate of 0.1 and on the Peppers image at sampling rates of 0.1 and 0.2. Moreover, the BCS
algorithm achieves a higher PSNR than does SABCS-MC on the Barbara, Boat, Cameraman, Goldhill,
Peppers, and Lake images at most sampling rates.

Sensors 2020, 20, 6217 22 of 29

Sensors 2020, 20, x FOR PEER REVIEW 22 of 29

results than our proposed architecture or some existing ABCS algorithms. However, BCS performs
better than does SABCS-MC on the Cameraman, Goldhill, and Lake test images. For the 32 × 32 block
size, the BCS algorithm produces the lowest image reconstruction quality compared with all of the
other ABCS algorithms and our proposed architecture at all sampling rates on the Mandrill and APC
test images. However, BCS performs better than the STD-BCS algorithm on the Goldhill image at a
sampling rate of 0.1 and on the Peppers image at sampling rates of 0.1 and 0.2. Moreover, the BCS
algorithm achieves a higher PSNR than does SABCS-MC on the Barbara, Boat, Cameraman, Goldhill,
Peppers, and Lake images at most sampling rates.

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Barbara

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Boat

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

65

Sampling rate

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Cameraman

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Goldhill

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Mandrill

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Pepper

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

Sampling rate

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Lake

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

APC

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

Figure 11. The experimental results for a block size of 16 × 16.

Sensors 2020, 20, 6217 23 of 29

Sensors 2020, 20, x FOR PEER REVIEW 23 of 29

Figure 11. The experimental results for a block size of 16 × 16.

Figure 12. The experimental results for a block size of 32 × 32.

For both block sizes, the STD-ABCS algorithm yields improved reconstructed images on the
Boat, Cameraman, and APC images at the majority of sampling rates compared with BCS and the

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Barbara

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Boat

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Cameraman

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Goldhill

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Mandrill

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Pepper

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

Pepper

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

BCS
STD-ABCS
SABCS
SABCS-MC
FABCS

Sampling rate

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45

50

55

60

PS
N

R
(d

B)

APC

BCS

SABCS

FABCS

STD-ABCS

SABCS-MC

Figure 12. The experimental results for a block size of 32 × 32.

For both block sizes, the STD-ABCS algorithm yields improved reconstructed images on the
Boat, Cameraman, and APC images at the majority of sampling rates compared with BCS and the
other ABCS algorithms. These results show that STD-ABCS results in better image reconstruction for
low-intensity images.

On the other hand, for both block sizes, SABCS achieves better results than do BCS and the other
ABCS algorithms on high-intensity images such as Barbara and Peppers at all sampling rates and on
the Goldhill and Mandrill images at most sampling rates.

The results of the SABCS-MC algorithm for all block sizes and test images are lower than those of
the BCS and ABCS algorithms as well as our proposed architecture.

Sensors 2020, 20, 6217 24 of 29

For both block sizes, our proposed architecture yields satisfactory results at very low sampling
rates of 0.1 and 0.2 and achieves the best performance at medium and high sampling rates between 0.3
and 0.9 on the following test images: Barbara, Cameraman, Mandrill, and Lake. For Boat, Goldhill,
Peppers and APC, our proposed architecture produces acceptable results at all sampling rates.

These experimental results show the outstanding performance of our proposed FABCS architecture
and clearly indicate that our proposed architecture offers better image reconstruction quality than
both the conventional BCS algorithm and state-of-the-art ABCS algorithms. The results show that
as the sampling rate increases, our proposed architecture achieves better PSNR results. This is
because at a high sampling rate, the number of samples is large, and our proposed architecture can
properly allocate the sampling to each block. Overall, for the various test images and sampling rates,
our proposed FABCS architecture yields average PSNR values that are 5.21 dB, 2.56 dB, 2.55 dB,
and 4.22 dB better than those of BCS, STD-ABCS, SABCS, and SABCS-MC, respectively. Moreover,
the experimental results show that our proposed architecture produces better results when the block
size is small.

In addition, we subjectively evaluated the ABCS algorithms based on visualizations of the
reconstructed images. Table 6 shows sample reconstructed images (cameraman [44]) for all the ABCS
algorithms (32 × 32 block size) used in this study at various sampling rates (e.g., 0.1, 0.3 and 0.5). At low
sampling rates, a limited number of samplings exist for ABCS; therefore, most of the information is lost.
Consequently, the distortion rate of the reconstructed images is high. As the sampling rate increases,
the quality of the reconstructed images improves.

Based on the results in Table 6, because the BCS algorithm assigns the same fixed sampling to
all blocks without considering whether the blocks contain vital information, the rate of distortion is
very high at the sampling rate of 0.1. The quality of the reconstructed images is improves slightly at
sampling rates of 0.3 and 0.5; however, their quality is still rather low compared with those produced
by the ABCS algorithms and our proposed architecture because the reconstructed images lose many
structural details.

In the STD-ABCS algorithm, adaptive sampling is assigned based on the standard deviation.
The results of the STD-ABCS algorithm are substantially improved compared with BCS and SABCS-MC
and slightly enhanced compared with SABCS. However, at a sampling rate of 0.1, blocking artifacts
clearly appear at the top of the reconstructed image. The images reconstructed using SABCS are
superior to those reconstructed using BCS and SABCS-MC; unfortunately, the structural details of
the images reconstructed by SABCS are slightly worse than those obtained using STD-ABCS and our
proposed architecture.

The SABCS-MC algorithm results in a reconstructed image only outperforms BCS because many
blocking artifacts are visible around the edges of the reconstructed image, and some of the structural
details of the reconstructed image are lost.

As shown in Table 6, compared with the BCS and the other ABCS algorithms, our proposed
FABCS architecture more effectively reduces blocking artifacts and retains the structural details of the
reconstructed images, such as texture, corners and edges; therefore, our proposed architecture ensures
superior subjective visual quality.

Sensors 2020, 20, 6217 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

STD-BCS

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

SABCS

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

SACS-MC

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

FABCS

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

Sensors 2020, 20, x FOR PEER REVIEW 25 of 29

Table 6. Image of the ABCS algorithm at different sampling rates (32 x 32 block size).

Method
Sampling Rate

0.1 0.3 0.5

BCS

STD-BCS

SABCS

SACS-MC

FABCS

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for
implementation in resource-constrained WMSNs to enhance image transmission. In this article, we
presented the fuzzy adaptive block compressed sensing architecture (FABCS), which improves

5. Conclusions

CS is an effective, simple, and low-complexity signal coding algorithm suitable for implementation
in resource-constrained WMSNs to enhance image transmission. In this article, we presented the
fuzzy adaptive block compressed sensing architecture (FABCS), which improves reconstructed image
quality while maintaining low complexity and memory usage that are suitable for execution by SNs.
Our algorithm uses an FLS to select the most suitable feature type to use as the basis for adaptive

Sensors 2020, 20, 6217 26 of 29

sampling allocation for each block. The base sampling is calculated and used as the base sampling
configuration for each block before additional adaptive sampling is allocated based on the selected
feature type. When the total number of samples allocated to a block exceeds its size, our proposed
oversampling adjustment algorithm eliminates oversampled blocks.

For image reconstruction, we propose the fuzzy BCS-SPL algorithm, which adjusts the convergence
speed of BCS-SPL using an FLS. The experimental results show that the proposed FABCS architecture
yields better-quality reconstructed images than do the existing methods, including BCS, SABCS,
STD-ABCS, and SABCS-MC, particularly as the sampling rate increases. Moreover, FABCS works even
better for low-intensity images. However, several interesting questions remain to be solved in our
future work, as described below.

First, we plan to leverage the results of the current study and design a new architecture suitable
for color image applications because color images include more information than do grayscale images.
Second, we plan to investigate the possibility of using an irregular or adaptive block size, which may
produce better results than a fixed block size. Further work may also involve investigating other
distributions, e.g., asymmetric and convergent distributions [59,60]. We also plan to investigate
neutrosophic logic [61] in future studies. Note that although CS derivatives are suitable for on use on
limited-resource devices, a deep analysis of space/time usage should also be conducted when more
advanced techniques have been embedded. Moreover, considering that multimedia signals include
not only images but also video, we plan to develop an adaptive CS algorithm that can be applied to
such data. Finally, we are also interested in finding other, more effective multimedia content features
for use in future adaptive-sampling BCS algorithms.

Author Contributions: Conceptualization and methodology, S.H. and C.S.-I. writing—original draft—S.H.;
writing—review and editing: S.H., C.S.-I., P.A., V.N.V., and T.G.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by grants from Khon Kaen University via the ASEAN and GMS Countries’
Personnel Programs 2016–2019 and by an interdisciplinary grant (CSKKU2559) from the Department of Computer
Science, Khon Kaen University; by the Research Affairs and Graduate School, Khon Kaen University, Thailand,
through the Post-Doctoral Training Program under grant number 59257; and by the Thailand Research Fund (TRF)
under grant number RTA6080013.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330.
[CrossRef]

2. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Commun. Mag.
2002, 40, 102–105. [CrossRef]

3. Akyildiz, I.; Melodia, T.; Chowdury, K. Wireless multimedia sensor networks: A survey. IEEE Wirel. Commun.
2007, 14, 32–39. [CrossRef]

4. Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research
challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [CrossRef]

5. Vo, V.N.; Nguyen, T.G.; So-in, C.; Member, S.; Ha, D.-B. Secrecy Performance Analysis of Energy Harvesting
Wireless Sensor Networks with a Friendly Jammer. IEEE Access 2017, 5, 25196–25206. [CrossRef]

6. Heng, S.; So-In, C.; Nguyen, T.G. Distributed Image Compression Architecture over Wireless Multimedia
Sensor Networks. Wirel. Commun. Mob. Comput. 2017, 2017, 1–21. [CrossRef]

7. Shen, H.; Bai, G. Routing in wireless multimedia sensor networks: A survey and challenges ahead. J. Netw.
Comput. Appl. 2016, 71, 30–49. [CrossRef]

8. ZainEldin, H.; Elhosseini, M.A.; Ali, H.A. Image compression algorithms in wireless multimedia sensor
networks: A survey. Ain Shams Eng. J. 2015, 6, 481–490. [CrossRef]

9. Sun, F.; Xiao, D.; He, W.; Li, R. Adaptive Image Compressive Sensing Using Texture Contrast. Int. J. Digit.
Multimed. Broadcast. 2017, 2017, 1–10. [CrossRef]

http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1109/MCOM.2002.1024422
http://dx.doi.org/10.1109/MWC.2007.4407225
http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1109/ACCESS.2017.2768443
http://dx.doi.org/10.1155/2017/5471721
http://dx.doi.org/10.1016/j.jnca.2016.05.013
http://dx.doi.org/10.1016/j.asej.2014.11.001
http://dx.doi.org/10.1155/2017/3902543

Sensors 2020, 20, 6217 27 of 29

10. Li, R.; Duan, X.; Lv, Y. Adaptive compressive sensing of images using error between blocks. Spec. Collect.
Artic. Int. J. Distrib. Sens. Netw. 2018, 14, 2018. [CrossRef]

11. Zhou, C.; Chen, C.; Ding, F.; Zhang, D. Distributed Compressive Video Sensing with Mixed Multihypothesis
Prediction. Math. Probl. Eng. 2018, 2018, 1–10. [CrossRef]

12. Chen, J.; Xue, F.; Kuo, Y. Distributed compressed video sensing based on key frame secondary reconstruction.
Multimed. Tools Appl. 2018, 77, 14873–14889. [CrossRef]

13. Li, R.; Duan, X.; Guo, X.; He, W.; Lv, Y. Adaptive compressive sensing of images using spatial entropy.
Comput. Intell. Neurosci. 2017, 2017. [CrossRef]

14. Zhang, J.; Xiang, Q.; Yin, Y.; Chen, C.; Luo, X. Adaptive compressed sensing for wireless image sensor
networks. Multimed. Tools Appl. 2017, 76, 4227–4242. [CrossRef]

15. Kuo, Y.; Wu, K.; Chen, J. A scheme for distributed compressed video sensing based on hypothesis set
optimization techniques. Multidimens. Syst. Signal Process. 2017, 28, 129–148. [CrossRef]

16. Li, R.; He, W.; Liu, Z.; Li, Y.; Fu, Z. Saliency-based adaptive compressive sampling of images using
measurement contrast. Multimed. Tools Appl. 2017. [CrossRef]

17. Yang, J.; Yuan, X.; Liao, X.; Llull, P.; Brady, D.J.; Sapiro, G.; Carin, L. Video Compressive Sensing Using
Gaussian Mixture Models. IEEE Trans. Image Process. 2014, 23, 4863–4878. [CrossRef]

18. Sun, Z.; Wang, H.; Liu, B.; Li, C.; Pan, X.; Nie, Y. CS-FCDA: A compressed sensing-based on fault-tolerant
data aggregation in sensor networks. Sensors 2018, 18, 3749. [CrossRef]

19. Candes, E.J.; Tao, T. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [CrossRef]

20. Gan, L. Block compressed sensing of natural images. In Proceedings of the 2007 15th International Conference
on Digital Signal Processing, Cardiff, UK, 1–4 July 2007; pp. 403–406.

21. Wang, R.-F.; Jiao, L.-C.; Liu, F.; Yang, S.-Y. Block-based adaptive compressed sensing of image using texture
information. Acta Electron. Sin. 2013, 41, 1506–1514.

22. Ran, L.; Zongliang, G.; Ziguan, C.; Minghu, W.; Xiuchang, Z. Distributed adaptive compressed video sensing
using smoothed projected landweber reconstruction. China Commun. 2013, 10, 58–69. [CrossRef]

23. Zhou, S.; Chen, Z.; Zhong, Q.; Li, H. Block compressed sampling of image signals by saliency based adaptive
partitioning. Multimed. Tools Appl. 2017, 1–17. [CrossRef]

24. ZHENG, H.; ZHU, X. Sampling adaptive block compressed sensing reconstruction algorithm for images
based on edge detection. J. China Univ. Posts Telecommun. 2013, 20, 97–103. [CrossRef]

25. Fowler, J.E.; Mun, S.; Tramel, E.W. Multiscale block compressed sensing with smoothed projected Landweber
reconstruction. In Proceedings of the 2011 19th European Signal Processing Conference, Barcelona, Spain,
29 August–2 September 2011; pp. 564–568.

26. Giryes, R.; Eldar, Y.C.; Bronstein, A.M.; Sapiro, G. Tradeoffs between Convergence Speed and Reconstruction
Accuracy in Inverse Problems. IEEE Trans. Signal Process. 2018, 66, 1670–1690.

27. Babu, B.V. Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012),
December 28-30, 2012; Springer Publishing Company: Berlin/Heidelberg, Germany, 2014.

28. Wang, Y.; Yang, X.; Yan, H. Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic
measurement information. IEEE Trans. Ind. Electron. 2019, 66, 9439–9447. [CrossRef]

29. Wang, Y.; Zhou, W.; Luo, J.; Yan, H.; Pu, H.; Peng, Y. Reliable Intelligent Path following Control for a Robotic
Airship against Sensor Faults. IEEE/ASME Trans. Mechatronics 2019, 24, 2572–2582. [CrossRef]

30. Maksimović, M.; Vujović, V.; Milošević, V. Fuzzy logic and Wireless Sensor Networks-A survey. In Proceedings
of the Journal of Intelligent and Fuzzy Systems; IOS Press: Amsterdam, The Netherlands, 2014; Volume 27,
pp. 877–890.

31. Yu, Y.; Wang, B.; Zhang, L. Saliency-based compressive sampling for image signals. IEEE Signal Process. Lett.
2010, 17, 973–976. [CrossRef]

32. Avraham, T.; Lindenbaum, M. Esaliency (Extended Saliency): Meaningful Attention Using Stochastic Image
Modeling. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 693–708. [CrossRef]

33. Liu, X.; Zhai, D.; Zhou, J.; Zhang, X.; Zhao, D.; Gao, W. Compressive Sampling-Based Image Coding for
Resource-Deficient Visual Communication. IEEE Trans. Image Process. 2016, 25, 2844–2855. [CrossRef]

http://dx.doi.org/10.1177/1550147718781751
http://dx.doi.org/10.1155/2018/7020828
http://dx.doi.org/10.1007/s11042-017-5071-5
http://dx.doi.org/10.1155/2017/9059204
http://dx.doi.org/10.1007/s11042-016-3496-x
http://dx.doi.org/10.1007/s11045-015-0337-4
http://dx.doi.org/10.1007/s11042-017-4862-z
http://dx.doi.org/10.1109/TIP.2014.2344294
http://dx.doi.org/10.3390/s18113749
http://dx.doi.org/10.1109/TIT.2006.885507
http://dx.doi.org/10.1109/CC.2013.6674211
http://dx.doi.org/10.1007/s11042-017-5249-x
http://dx.doi.org/10.1016/S1005-8885(13)60056-4
http://dx.doi.org/10.1109/TIE.2019.2892696
http://dx.doi.org/10.1109/TMECH.2019.2929224
http://dx.doi.org/10.1109/LSP.2010.2080673
http://dx.doi.org/10.1109/TPAMI.2009.53
http://dx.doi.org/10.1109/TIP.2016.2554320

Sensors 2020, 20, 6217 28 of 29

34. Institute of Electrical and Electronics Engineers Proceedings of the European Signal Processing Conference
(EUSIPCO). Eur. Signal Process. Conf. 2012, 874–878.

35. Haupt, J.; Nowak, R. Signal Reconstruction From Noisy Random Projections. IEEE Trans. Inf. Theory 2006,
52, 4036–4048. [CrossRef]

36. Do, T.T.; Gan, L.; Nguyen, N.; Tran, T.D. Sparsity adaptive matching pursuit algorithm for practical
compressed sensing. In Proceedings of the 2008 42nd Asilomar Conference on Signals, Systems and Computers;
IEEE: Piscatvey, NJ, USA, 2008; pp. 581–587.

37. Figueiredo, M.A.T.; Nowak, R.D.; Wright, S.J. Gradient Projection for Sparse Reconstruction: Application
to Compressed Sensing and Other Inverse Problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597.
[CrossRef]

38. Sungkwang, M.; Fowler, J.E. Block compressed sensing of images using directional transforms. 2009 16th
IEEE Int. Conf. Image Process. 2009, 3021–3024. [CrossRef]

39. Tropp, J.A.; Gilbert, A.C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit.
IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [CrossRef]

40. Donoho, D.L.; Tsaig, Y.; Drori, I.; Starck, J.-L. Sparse Solution of Underdetermined Systems of Linear
Equations by Stagewise Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2012, 58, 1094–1121. [CrossRef]

41. Logambigai, R.; Kannan, A. Fuzzy logic based unequal clustering for wireless sensor networks.
Wirel. Networks 2016, 22, 945–957. [CrossRef]

42. Collotta, M.; Pau, G.; Costa, D.G. A fuzzy-based approach for energy-efficient Wi-Fi communications in
dense wireless multimedia sensor networks. Comput. Networks 2018, 134, 127–139. [CrossRef]

43. Dawood, H.; Dawood, H.; Guo, P. Removal of random-valued impulse noise by local statistics.
Multimed. Tools Appl. 2015, 74, 11485–11498. [CrossRef]

44. CVG - UGR - Image Database. Available online: http://decsai.ugr.es/cvg/dbimagenes/ (accessed on 3 July 2018).
45. Ben Amor, M.; Kammoun, F.; Masmoudi, N. Improved performance of quality metrics using saliency map

and CSF filter for standard coding H264/AVC. Multimed. Tools Appl. 2017, 77, 19377–19397. [CrossRef]
46. Vig, E.; Dorr, M.; Martinetz, T.; Barth, E. Intrinsic Dimensionality Predicts the Saliency of Natural Dynamic

Scenes. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1080–1091. [CrossRef]
47. Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size,

median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [CrossRef]
48. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
49. Balakrishnan, B.; Balachandran, S. FLECH: Fuzzy Logic Based Energy Efficient Clustering Hierarchy for

Nonuniform Wireless Sensor Networks. Wirel. Commun. Mob. Comput. 2017, 2017, 1–13. [CrossRef]
50. AlShawi, I.S.; Yan, L.; Pan, W.; Luo, B. Lifetime Enhancement in Wireless Sensor Networks Using Fuzzy

Approach and A-Star Algorithm. IEEE Sens. J. 2012, 12, 3010–3018. [CrossRef]
51. Zimmermann, H.-J. Fuzzy Set Theory — and Its Applications; Springer: Dordrecht, The Netherlands, 1991;

ISBN 978-94-015-7951-3.
52. Liu, L.; Lu, Y.; Yan, X.; Wang, H. Greyscale-images-oriented progressive secret sharing based on the linear

congruence equation. Multimed Tools Appl 2018, 77, 20569–20596. [CrossRef]
53. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
54. Gupta, N.; Jain, S.K. Comparative Analysis of Fuzzy Power System Stabilizer Using Different Membership

Functions. Int. J. Comput. Electr. Eng. 2010, 262–267. [CrossRef]
55. Zhu, S.; Zeng, B.; Gabbouj, M. Adaptive sampling for compressed sensing based image compression. J. Vis.

Commun. Image Represent. 2015, 30, 94–105. [CrossRef]
56. Wang, Y.; Wang, D.; Lu, Q.; Luo, D.; Fang, W. Aquatic Debris Detection Using Embedded Camera Sensors.

Sensors 2015, 15, 3116–3137. [CrossRef] [PubMed]
57. Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett.

2008, 44, 800. [CrossRef]
58. Müller, H.; Müller, W.; Squire, D.M.; Marchand-Maillet, S.; Pun, T. Performance evaluation in content-based

image retrieval: Overview and proposals. Pattern Recognit. Lett. 2001, 22, 593–601. [CrossRef]
59. Dubois, D.; Foulloy, L.; Mauris, G.; Prade, H. Probability-possibility transformations, triangular fuzzy sets,

and probabilistic inequalities. Reliab. Comput. 2004, 10, 273–297. [CrossRef]

http://dx.doi.org/10.1109/TIT.2006.880031
http://dx.doi.org/10.1109/JSTSP.2007.910281
http://dx.doi.org/10.1109/ICIP.2009.5414429
http://dx.doi.org/10.1109/TIT.2007.909108
http://dx.doi.org/10.1109/TIT.2011.2173241
http://dx.doi.org/10.1007/s11276-015-1013-1
http://dx.doi.org/10.1016/j.comnet.2018.01.041
http://dx.doi.org/10.1007/s11042-014-2246-1
http://decsai.ugr.es/cvg/dbimagenes/
http://dx.doi.org/10.1007/s11042-017-5393-3
http://dx.doi.org/10.1109/TPAMI.2011.198
http://dx.doi.org/10.1186/1471-2288-14-135
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1155/2017/1214720
http://dx.doi.org/10.1109/JSEN.2012.2207950
http://dx.doi.org/10.1007/s11042-017-5435-x
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.7763/IJCEE.2010.V2.147
http://dx.doi.org/10.1016/j.jvcir.2015.03.006
http://dx.doi.org/10.3390/s150203116
http://www.ncbi.nlm.nih.gov/pubmed/25647741
http://dx.doi.org/10.1049/el:20080522
http://dx.doi.org/10.1016/S0167-8655(00)00118-5
http://dx.doi.org/10.1023/B:REOM.0000032115.22510.b5

Sensors 2020, 20, 6217 29 of 29

60. El Khateb, A.; Rahim, N.A.; Selvaraj, J.; Uddin, M.N. Fuzzy-logic-controller-based SEPIC converter for
maximum power point tracking. IEEE Trans. Ind. Appl. 2014, 50, 2349–2358. [CrossRef]

61. Albassam, M.; Aslam, M. Monitoring Non-Conforming Products Using Multiple Dependent State Sampling
Under Indeterminacy-An Application to Juice Industry. IEEE Access 2020, 8, 172379–172386. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIA.2014.2298558
http://dx.doi.org/10.1109/ACCESS.2020.3024569
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Proposed Architecture
	Setup
	Image Blocking
	Feature Detection
	Saliency Detection
	Standard Deviation

	Adaptive Sampling
	Fuzzy Logic System (FLS)
	Feature Selection
	Base Sampling Determination
	Adaptive Sampling Determination
	Oversampling Adjustment

	Compressed Sensing (CS) Measurement
	Image Reconstruction
	BCS with Smoothed Projected Landweber Reconstruction (BCS-SPL)
	Fuzzy BCS-SPL Reconstruction

	Experimental Results and Discussion
	Experimental Settings
	Experimental Results

	Conclusions
	References

