Finding Possible Weakness in the Runoff Simulation Experiments to Assess Rill Erosion Changes without Non-Intermittent Surveying Capabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Runoff Simulation Experiment Procedure
2.2. Structure from Motion (SfM) Adapted to the Runoff Simulations: the TEPHOS
2.2.1. Study Area
2.2.2. TEPHOS
2.2.3. Image Treatments
2.3. Accuracy Assessment
3. Results and Discussion
3.1. Results Obtained Using Only a Stereo Device
3.2. The Implementation of Two Extra Cameras: The Quadro Device
3.3. Challenges and Future Procedures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Ballabio, C.; Poesen, J.; Lugato, E.; Scarpa, S.; Montanarella, L.; Borrelli, P. A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. Remote Sens. 2020, 12, 1365. [Google Scholar] [CrossRef]
- Safwan, M.; Alaa, K.; Omran, A.; Quoc, B.P.; Nguyen, T.T.L.; Van, N.T.; Duong, T.A.; Endre, H. Predicting soil erosion hazard in Lattakia Governorate (W Syria). Int. J. Sediment Res. 2020. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Auerswald, K.; Kutilek, M. A European view to the protection of the soil resource. Soil Tillage Res. 1998, 46, 1–2. [Google Scholar] [CrossRef]
- Bork, H.-R.; Beckedahl, H.R.; Dahlke, C.; Geldmacher, K.; Mieth, A.; Li, Y. The world-wide explosion of soil erosion rates in the 20th century: The global soil erosion drama—Are we losing our food production base? Petermanns Geogr. Mitt. 2003, 147, 16–29. [Google Scholar]
- Arnaez, J.; Lasanta, T.; Errea, M.P.; Ortigosa, L. Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejo. Land Degrad. Dev. 2011, 22, 537–550. [Google Scholar] [CrossRef]
- Amate, J.I.; de Molina, M.G.; Vanwalleghem, T.; Fernández, D.S.; Gómez, J.A. Erosion in the Mediterranean: The Case of Olive Groves in the South of Spain (1752–2000). Environ. Hist. 2013, 18, 360–382. [Google Scholar] [CrossRef]
- Govers, G.; Giménez, R.; Van Oost, K. Rill erosion: Exploring the relationship between experiments, modelling and field observations. Earth-Sci. Rev. 2007, 84, 87–102. [Google Scholar] [CrossRef]
- Sun, L.; Fang, H.; Qi, D.; Li, J.; Cai, Q. A review on rill erosion process and its influencing factors. Chin. Geogr. Sci. 2013, 23, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Ayoubi, S.; Mokhtari, J.; Mosaddeghi, M.R.; Zeraatpisheh, M. Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of central Iran. Environ. Monit. Assess. 2018, 190, 192. [Google Scholar] [CrossRef]
- Kertész, Á.; Gergely, J. Gully erosion in Hungary, review and case study. Procedia Soc. Behav. Sci. 2011, 19, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Castillo, C.; Gómez, J.A. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Science Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Van Mele, B.; Demuzere, M.; Bruynseels, A.; Golosov, V.; Bezerra, J.F.R.; Bolysov, S.; Dvinskih, A.; Frankl, A.; et al. How fast do gully headcuts retreat? Earth-Sci. Rev. 2016, 154, 336–355. [Google Scholar] [CrossRef]
- Marzolff, I.; Ries, J.B. Gully erosion monitoring in semi-arid landscapes. Z. Geomorphol. 2007, 51, 405–425. [Google Scholar] [CrossRef]
- Gutiérrez, A.G.; Schnabel, S.; Contador, F.L.; García, A.J. The origin and development of a valley bottom gully in a small rangeland catchment: Influences of land use in the growth model. Landf. Anal. 2011, 17, 65–70. [Google Scholar]
- Abrahams, A.D.; Parsons, A.J. Hydraulics of interrill overland flow on stone-covered desert surfaces. Catena 1994, 23, 111–140. [Google Scholar] [CrossRef]
- Armstrong, A.; Quinton, J.N.; Heng, B.C.P.; Chandler, J.H. Variability of interrill erosion at low slopes. Earth Surf. Process. Landf. 2011, 36, 97–106. [Google Scholar] [CrossRef]
- Castillo, C.; Marín-Moreno, V.; Pérez, R.; Muñoz-Salinas, R.; Taguas, E.V. Accurate automated assessment of gully cross-section geometry using the photogrammetric interface FreeXSapp. Earth Surf. Process. Landf. 2018, 43, 1726–1736. [Google Scholar] [CrossRef]
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surf. Process. Landf. 2015, 40, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, A.; Fortesa, J.; García-Comendador, J.; Lucas-Borja, M.E.; Calvo-Cases, A.; Estrany, J. Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment sensitivity. Land Degrad. Dev. 2018, 29, 1198–1210. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Vianello, A.; Cavalli, M.; Tarolli, P. LiDAR-derived slopes for headwater channel network analysis. Catena 2009, 76, 97–106. [Google Scholar] [CrossRef]
- Kaiser, A.; Neugirg, F.; Rock, G.; Müller, C.; Haas, F.; Ries, J.; Schmidt, J. Small-scale surface reconstruction and volume calculation of soil erosion in complex moroccan gully morphology using structure from motion. Remote Sens. 2014, 6, 7050–7080. [Google Scholar] [CrossRef] [Green Version]
- Alfonso-Torreño, A.; Gómez-Gutiérrez, Á.; Schnabel, S.; Contador, J.F.L.; de Sanjose, B.J.J.; Fernández, M.S. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams. Sci. Total. Environ. 2019, 678, 369–382. [Google Scholar] [CrossRef]
- Issa, O.M.; Le Bissonnais, Y.; Planchon, O.; Favis-Mortlock, D.; Silvera, N.; Wainwright, J. Soil detachment and transport on field- and laboratory-scale interrill areas: Erosion processes and the size-selectivity of eroded sediment. Earth Surf. Process. Landf. 2006, 31, 929–939. [Google Scholar] [CrossRef]
- Berger, C.; Schulze, M.; Rieke-Zapp, D.; Schlunegger, F. Rill development and soil erosion: A laboratory study of slope and rainfall intensity. Earth Surf. Process. Landf. 2010, 35, 1456–1467. [Google Scholar] [CrossRef]
- Kavian, A.; Saleh, I.; Habibnejad, M.; Brevik, E.C.; Jafarian, Z.; Rodrigo-Comino, J. Effectiveness of vegetative buffer strips at reducing runoff, soil erosion, and nitrate transport during degraded hillslope restoration in northern Iran. Land Degrad. Dev. 2018, 29, 3194–3203. [Google Scholar] [CrossRef]
- García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ. 2017, 236, 256–267. [Google Scholar] [CrossRef]
- Wirtz, S.; Seeger, M.; Ries, J.B. The rill experiment as a method to approach a quantification of rill erosion process activity. Z. Geomorphol. 2010, 54, 47–64. [Google Scholar] [CrossRef]
- Cerdà, A. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Can. J. Soil Sci. 1998, 78, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Iserloh, T.; Ries, J.B.; Arnáez, J.; Boix-Fayos, C.; Butzen, V.; Cerdà, A.; Echeverría, M.T.; Fernández-Gálvez, J.; Fister, W.; Geißler, C.; et al. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena 2013, 110, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Mertens, J.; Jacques, D.; VanderBorght, J.; Feyen, J. Characterisation of the field-saturated hydraulic conductivity on a hillslope: In situ single ring pressure infiltrometer measurements. J. Hydrol. 2002, 263, 217–229. [Google Scholar] [CrossRef]
- Di Prima, S. Automated single ring infiltrometer with a low-cost microcontroller circuit. Comput. Electron. Agric. 2015, 118, 390–395. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Lewis, J.K. A drive point application of the Guelph Permeameter method for coarse-textured soils. Geoderma 2012, 187–188, 59–66. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Sinoga, J.D.R.; González, J.M.S.; Guerra-Merchán, A.; Seeger, M.; Ries, J.B. High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). Catena 2016, 145, 274–284. [Google Scholar] [CrossRef]
- Wirtz, S.; Seeger, M.; Ries, J.B. Field experiments for understanding and quantification of rill erosion processes. Catena 2012, 91, 21–34. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Wirtz, S.; Brevik, E.C.; Ruiz-Sinoga, J.D.; Ries, J.B. Assessment of agri-spillways as a soil erosion protection measure in Mediterranean sloping vineyards. J. Mt. Sci. 2017, 14, 1009–1022. [Google Scholar] [CrossRef]
- Eltner, A.; Baumgart, P.; Maas, H.-G.; Faust, D. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surf. Process. Landf. 2015, 40, 741–755. [Google Scholar] [CrossRef]
- Kasprzak, M.; Jancewicz, K.; Michniewicz, A. UAV and SfM in Detailed Geomorphological Mapping of Granite Tors: An Example of Starościńskie Skały (Sudetes, SW Poland). Pure Appl. Geophys. 2017, 175, 3193–3207. [Google Scholar] [CrossRef] [Green Version]
- Meinen, B.U.; Robinson, D.T. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sens. Environ. 2020, 239, 111666. [Google Scholar] [CrossRef]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- Carollo, F.G.; Di Stefano, C.; Ferro, V.; Pampalone, V. Measuring rill erosion at plot scale by a drone-based technology. Hydrol. Process. 2015, 29, 3802–3811. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Revuelto, J.; Errea, P.; López-Moreno, J.I. The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees). Soil 2015, 1, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Prosdocimi, M.; Burguet, M.; Di Prima, S.; Sofia, G.; Terol, E.; Rodrigo-Comino, J.; Cerdà, A.; Tarolli, P. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Sci. Total. Environ. 2017, 574, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, S.; Seeger, M.; Zell, A.; Wagner, C.; Wagner, J.-F.; Ries, J.B. Applicability of different hydraulic parameters to describe soil detachment in eroding rills. PLoS ONE 2013, 8, e64861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glendell, M.; McShane, G.; Farrow, L.; James, M.R.; Quinton, J.; Anderson, K.; Evans, M.; Benaud, P.; Rawlins, B.; Morgan, D.; et al. Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surf. Process. Landf. 2017, 42, 1860–1871. [Google Scholar] [CrossRef]
- Heindel, R.C.; Chipman, J.W.; Dietrich, J.T.; Virginia, R.A. Quantifying rates of soil deflation with Structure-from-Motion photogrammetry in west Greenland. Arct. Antarct. Alp. Res. 2018, 50, S100012. [Google Scholar] [CrossRef] [Green Version]
- Balaguer-Puig, M.; Marqués-Mateu, Á.; Lerma, J.L.; Ibáñez-Asensio, S. Estimation of small-scale soil erosion in laboratory experiments with Structure from Motion photogrammetry. Geomorphology 2017, 295, 285–296. [Google Scholar] [CrossRef]
- Cooper, S.D.; Roy, D.P.; Schaaf, C.B.; Paynter, I. Examination of the Potential of Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry for Rapid Nondestructive Field Measurement of Grass Biomass. Remote Sens. 2017, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Remke, A.; Rodrigo-Comino, J.; Gyasi-Agyei, Y.; Cerdà, A.; Ries, J.B. Combining the Stock Unearthing Method and Structure-from-Motion Photogrammetry for a Gapless Estimation of Soil Mobilisation in Vineyards. ISPRS Int. J. Geo-Inf. 2018, 7, 461. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Baret, F. Using 3D Point Clouds Derived from UAV RGB Imagery to Describe Vineyard 3D Macro-Structure. Remote Sens. 2017, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.W.; Vericat, D. From experimental plots to experimental landscapes: Topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surf. Process. Landf. 2015, 40, 1656–1671. [Google Scholar] [CrossRef] [Green Version]
- Cullen, N.D.; Verma, A.K.; Bourke, M.C. A comparison of structure from motion photogrammetry and the traversing micro-erosion meter for measuring erosion on shore platforms. Earth Surf. Dyn. 2018, 6, 1023–1039. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, B.; Liutkus-Pierce, C.; Marshall, S.T.; Hatala, K.G.; Metallo, A.; Rossi, V. Using differential structure-from-motion photogrammetry to quantify erosion at the Engare Sero footprint site, Tanzania. Quat. Sci. Rev. 2018, 198, 226–241. [Google Scholar] [CrossRef]
- Mallison, H.; Wings, O. Photogrammetry in paleontology—A practical guide. J. Paleontol. Tech. 2014, 12, 1–31. [Google Scholar]
- Wang, D.; Wang, Z.; Shen, N.; Chen, H. Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 2016, 535, 473–479. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S. Deriving and evaluating hydraulics and detachment models of rill erosion for some calcareous soils. Catena 2018, 164, 107–115. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Palmeri, V.; Pampalone, V. Measuring rill erosion using structure from motion: A plot experiment. Catena 2017, 156, 383–392. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Palmeri, V.; Pampalone, V. Testing slope effect on flow resistance equation for mobile bed rills. Hydrol. Process. 2018, 32, 664–671. [Google Scholar] [CrossRef]
- He, J.; Sun, L.; Gong, H.; Cai, Q. Comparison of rill flow velocity regimes between developing and stationary rills. Catena 2018, 167, 13–17. [Google Scholar] [CrossRef]
- Shen, N.; Wang, Z.; Zhang, Q.; Chen, H.; Wu, B. Modelling soil detachment capacity by rill flow with hydraulic variables on a simulated steep loessial hillslope. Hydrol. Res. 2019, 50, 85–98. [Google Scholar] [CrossRef]
- De Lima, M.I.L.P.; De Lima, J.L.M.P. Water erosion of soils containing rock fragments. In The Hydrological Basis for Water Resources Management, Proceedings of the Beijing Symposium, Beijing, China, 23–26 October 1990; IAHS: Wallingford, UK, 1990; pp. 141–147. [Google Scholar]
- Rodrigo-Comino, J.; García-Díaz, A.; Brevik, E.C.; Keestra, S.D.; Pereira, P.; Novara, A.; Jordán, A.; Cerdà, A. Role of rock fragment cover on runoff generation and sediment yield in tilled vineyards. Eur. J. Soil Sci. 2017, 68, 864–872. [Google Scholar] [CrossRef] [Green Version]
- Wolf, P.; Dewitt, B.A.; Wilkinson, B. Elements of Photogrammetry with Applications in GIS, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2014; ISBN 978-0-07-176112-3. [Google Scholar]
- Kleinhans, M.G.; Bierkens, M.F.P.; Van der Perk, M. HESS Opinions on the use of laboratory experimentation: “Hydrologists, bring out shovels and garden hoses and hit the dirt”. Hydrol. Earth Syst. Sci. 2010, 14, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-based surface reconstruction in geomorphometry—merits, limits and developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef] [Green Version]
- Dunkerley, D. Organic litter: Dominance over stones as a source of interrill flow roughness on low-gradient desert slopes at Fowlers Gap, arid western NSW, Australia. Earth Surf. Process. Landf. 2003, 28, 15–29. [Google Scholar] [CrossRef]
- Da Silva, A.M.; Moradi, E.; Rodrigo-Comino, J.; Cerdà, A. Spatial variability of soil roughness in persimmon plantations: A new combined ISUM (improved stock unearthing method) approach. Ecol. Indic. 2019, 106, 105528. [Google Scholar] [CrossRef]
- Stefanik, K.V.; Gassaway, J.C.; Kochersberger, K.; Abbott, A. UAV-Based Stereo Vision for Rapid Aerial Terrain Mapping. GIScience Remote Sens. 2011, 48, 24–49. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Calligaro, S.; Sofia, G.; Fontana, G.D.; Tarolli, P. Bank erosion in agricultural drainage networks: New challenges from structure-from-motion photogrammetry for post-event analysis. Earth Surf. Process. Landf. 2015, 40, 1891–1906. [Google Scholar] [CrossRef]
- Hänsel, P.; Schindewolf, M.; Eltner, A.; Kaiser, A.; Schmidt, J. Feasibility of high-resolution soil erosion measurements by means of rainfall simulations and SfM photogrammetry. Hydrology 2016, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Hampel, U.; Maas, H.-G. Application of digital photogrammetry for measuring deformations and cracks during load tests in civil engineering material testing. Opt. 3D Meas. Tech. IV 2003, 2, 80–88. [Google Scholar]
Markers | Error X (m) | Error Y (m) | Error Z (m) | Accuracy (m) | Error (m) | Projections | Error in px |
---|---|---|---|---|---|---|---|
point 1 | −0.008 | 0.001 | −0.004 | 0.005 | 0.009 | 20 | 0.004 |
point 2 | −0.008 | 0.001 | −0.004 | 0.005 | 0.009 | 20 | 0.004 |
point 3 | 0.006 | −0.0002 | 0.002 | 0.005 | 0.006 | 16 | 0.003 |
point 4 | 0.006 | −0.0003 | 0.002 | 0.005 | 0.006 | 11 | 0.004 |
point 5 | 0.004 | −0.001 | 0.001 | 0.005 | 0.005 | 20 | 0.003 |
point 6 | 0.004 | −0.001 | 0.001 | 0.005 | 0.005 | 22 | 0.003 |
point 7 | 0.004 | −0.001 | 0.001 | 0.005 | 0.004 | 27 | 0.004 |
point 8 | 0.004 | −0.001 | 0.001 | 0.005 | 0.004 | 29 | 0.004 |
point 9 | 0.004 | −0.001 | 0.001 | 0.005 | 0.004 | 23 | 0.003 |
point 10 | 0.004 | −0.001 | 0.001 | 0.005 | 0.004 | 24 | 0.003 |
point 11 | 0.004 | −0.001 | 0.0001 | 0.005 | 0.004 | 15 | 0.003 |
point 12 | 0.004 | −0.001 | 0.001 | 0.005 | 0.004 | 7 | 0.004 |
point 13 | 0.003 | −0.001 | 0.001 | 0.005 | 0.003 | 17 | 0.003 |
point 14 | 0.003 | −0.001 | 0.001 | 0.005 | 0.003 | 17 | 0.003 |
point 15 | −0.001 | 0.0001 | −0.001 | 0.005 | 0.001 | 39 | 0.004 |
point 16 | −0.001 | 0.0002 | −0.0001 | 0.005 | 0.001 | 40 | 0.003 |
point 17 | −0.009 | 0.001 | −0.004 | 0.005 | 0.010 | 17 | 0.004 |
point 18 | −0.009 | 0.001 | −0.004 | 0.005 | 0.010 | 18 | 0.004 |
point 19 | −0.005 | 0.001 | −0.003 | 0.005 | 0.006 | 15 | 0.003 |
point 20 | −0.005 | 0.001 | −0.003 | 0.005 | 0.006 | 15 | 0.003 |
point 21 | 0.007 | 0.001 | 0.002 | 0.005 | 0.008 | 5 | 0.021 |
point 22 | 0.008 | 0.001 | 0.002 | 0.005 | 0.007 | 4 | 0.024 |
point 23 | −0.003 | 0.0002 | −0.001 | 0.005 | 0.003 | 10 | 0.004 |
point 24 | −0.003 | 0.0003 | −0.001 | 0.005 | 0.003 | 12 | 0.004 |
point 25 | −0.004 | 0.0005 | −0.002 | 0.005 | 0.005 | 16 | 0.004 |
point 26 | −0.004 | 0.0005 | −0.002 | 0.005 | 0.005 | 17 | 0.003 |
point 27 | −0.001 | 0.0002 | −0.0005 | 0.005 | 0.0008 | 34 | 0.003 |
point 28 | −0.001 | 0.0002 | −0.0005 | 0.005 | 0.0008 | 36 | 0.003 |
point 29 | 0.001 | 6.727 | 3.0655 | 0.005 | 0.0006 | 26 | 0.004 |
point 30 | 0.001 | 6.66 | 3.9304 | 0.005 | 0.0007 | 27 | 0.003 |
Total error | 0.005 | 0.006 | 0.002 | 0.005 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remke, A.A.; Rodrigo-Comino, J.; Wirtz, S.; Ries, J.B. Finding Possible Weakness in the Runoff Simulation Experiments to Assess Rill Erosion Changes without Non-Intermittent Surveying Capabilities. Sensors 2020, 20, 6254. https://doi.org/10.3390/s20216254
Remke AA, Rodrigo-Comino J, Wirtz S, Ries JB. Finding Possible Weakness in the Runoff Simulation Experiments to Assess Rill Erosion Changes without Non-Intermittent Surveying Capabilities. Sensors. 2020; 20(21):6254. https://doi.org/10.3390/s20216254
Chicago/Turabian StyleRemke, Alexander André, Jesus Rodrigo-Comino, Stefan Wirtz, and Johannes B. Ries. 2020. "Finding Possible Weakness in the Runoff Simulation Experiments to Assess Rill Erosion Changes without Non-Intermittent Surveying Capabilities" Sensors 20, no. 21: 6254. https://doi.org/10.3390/s20216254
APA StyleRemke, A. A., Rodrigo-Comino, J., Wirtz, S., & Ries, J. B. (2020). Finding Possible Weakness in the Runoff Simulation Experiments to Assess Rill Erosion Changes without Non-Intermittent Surveying Capabilities. Sensors, 20(21), 6254. https://doi.org/10.3390/s20216254